Skip to main content

Polyploidy in Fish and the Teleost Genome Duplication

  • Chapter
  • First Online:
Polyploidy and Genome Evolution

Abstract

Multiple rounds of whole-genome duplications (WGDs) punctuated the evolution of rayfin fish, a species-rich group comprising about half of all vertebrates. Rayfin fish, along with lobefin vertebrates including humans, derive from early vertebrate ancestors that evolved through two rounds of polyploidization (the first and second rounds of vertebrate genome duplication, VGD1 and VGD2) at the dawn of the vertebrate lineage. Furthermore, teleost fish underwent an additional round of polyploidization in their stem lineage, the teleost genome duplication (TGD). Additional WGD events occurred independently in numerous species and higher level taxa of teleosts and other rayfin fish, for example in salmonids, carp, and sturgeon, so that some fish lineages experienced at least four rounds of WGD since the origin of vertebrates. This chapter provides an overview of these polyploidization events in the fish lineage and focuses on the impact these genome duplications (GD) had on genome evolution in selected fish taxa. We then review evidence for the TGD and discuss its consequences for the evolution of gene content, order, and functions in the teleost lineage. We argue that, although evidence remains sparse, the TGD may have had a profound influence on the evolutionary success and the biodiversity of teleosts. Importantly, an in-depth understanding of the causes and consequences of the TGD and other teleost GD events will help to inform us about the evolution of our own paleopolyploid genome.

The problems of this world are only truly solved in two ways: by extinction or duplication.

Susan Sontag

In their great numbers and degree of anatomical diversity, the modern ray-finned fishes may be considered the most successful of all vertebrates.

Robert L. Carroll

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmon LJ (2009) Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Nat Acad Sci USA 106(32):13410–13414. doi:10.1073/pnas.0811087106 0811087106 [pii]

    PubMed  CAS  Google Scholar 

  • Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner BT (ed) Evolutionary genetics of fishes. Plenum Press, New York, pp 1–53

    Google Scholar 

  • Altschmied J, Delfgaauw J, Wilde B, Duschl J, Bouneau L, Volff JN, Schartl M (2002) Subfunctionalization of duplicate mitf genes associated with differential degeneration of alternative exons in fish. Genetics 161(1):259–267

    PubMed  CAS  Google Scholar 

  • Alves MJ, Coelho MM, Collares-Pereira MJ (2001) Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica 111(1–3):375–385

    PubMed  CAS  Google Scholar 

  • Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282(5394):1711–1714

    PubMed  CAS  Google Scholar 

  • Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH (2011) Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics 188(4):799–808. doi:10.1534/genetics.111.127324 188/4/799 [pii]

    PubMed  CAS  Google Scholar 

  • Aparicio S, Hawker K, Cottage A, Mikawa Y, Zuo L, Venkatesh B, Chen E, Krumlauf R, Brenner S (1997) Organization of the Fugu rubripes hox clusters: evidence for continuing evolution of vertebrate hox complexes. Nat Genet 16(1):79–83. doi:10.1038/ng0597-79

    PubMed  CAS  Google Scholar 

  • Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297(5585):1301–1310. doi:10.1126/science.1072104 1072104[pii]

    PubMed  CAS  Google Scholar 

  • Arnegard ME, Zwickl DJ, Lu Y, Zakon HH (2010) Old gene duplication facilitates origin and diversification of an innovative communication system-twice. P Nat Acad Sci USA 107(51):22172–22177. doi:10.1073/Pnas.1011803107

    CAS  Google Scholar 

  • Balon EK (2004) About the oldest domesticates among fishes. J Fish Biol 65:1–27. doi:10.1111/j.1095-8649.2004.00563.x

    Google Scholar 

  • Birstein VJ, Hanner R, DeSalle R (1997) Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. Environ Biol Fish 48(1–4):127–156

    Google Scholar 

  • Boldajipour B, Doitsidou M, Tarbashevich K, Laguri C, Yu SR, Ries J, Dumstrei K, Thelen S, Dorries J, Messerschmidt EM, Thelen M, Schwille P, Brand M, Lortat-Jacob H, Raz E (2011) Cxcl12 evolution—subfunctionalization of a ligand through altered interaction with the chemokine receptor. Development 138(14):2909–2914. doi:10.1242/Dev.068379

    PubMed  Google Scholar 

  • Braasch I, Salzburger W, Meyer A (2006) Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration. Mol Biol Evol 23(6):1192–1202. doi:10.1093/molbev/msk003 msk003 [pii]

    PubMed  CAS  Google Scholar 

  • Braasch I, Schartl M, Volff JN (2007) Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evol Biol 7:74. doi:10.1186/1471-2148-7-74 1471-2148-7-74 [pii]

    PubMed  Google Scholar 

  • Braasch I, Volff JN, Schartl M (2008) The evolution of teleost pigmentation and the fish-specific genome duplication. J Fish Biol 73(8):1891–1918. doi:10.1111/J.1095-8649.2008.02011.X

    Google Scholar 

  • Braasch I, Brunet F, Volff JN, Schartl M (2009a) Pigmentation pathway evolution after whole-genome duplication in fish. Genome Biol Evol 1:479–493. doi:10.1093/gbe/evp050

    PubMed  Google Scholar 

  • Braasch I, Liedtke D, Volff JN, Schartl M (2009b) Pigmentary function and evolution of tyrp1 gene duplicates in fish. Pigment Cell Melanoma Res 22(6):839–850. doi:10.1111/j.1755-148X.2009.00614.x PCR614 [pii]

    PubMed  CAS  Google Scholar 

  • Bromberg JF, Horvath CM, Wen ZL, Schreiber RD, Darnell JE (1996) Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon alpha and interferon gamma. P Nat Acad Sci USA 93(15):7673–7678

    CAS  Google Scholar 

  • Brunet FG, Crollius HR, Paris M, Aury JM, Gibert P, Jaillon O, Laudet V, Robinson-Rechavi M (2006) Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol Biol Evol 23(9):1808–1816. doi:10.1093/Molbev/Mls049

    PubMed  CAS  Google Scholar 

  • Bu L, Bergthorsson U, Katju V (2011) Local synteny and codon usage contribute to asymmetric sequence divergence of Saccharomyces cerevisiae gene duplicates. BMC Evol Biol 11:279. doi:10.1186/1471-2148-11-279 1471-2148-11-279 [pii]

    PubMed  CAS  Google Scholar 

  • Canestro C, Yokoi H, Postlethwait JH (2007) Evolutionary developmental biology and genomics. Nat Rev Genet 8(12):932–942. doi:10.1038/nrg2226 nrg2226 [pii]

    PubMed  CAS  Google Scholar 

  • Canestro C, Catchen JM, Rodriguez-Mari A, Yokoi H, Postlethwait JH (2009) Consequences of lineage-specific gene loss on functional evolution of surviving paralogs: ALDH1A and retinoic acid signaling in vertebrate genomes. PLoS Genet 5(5):e1000496. doi:10.1371/journal.pgen.1000496

    PubMed  Google Scholar 

  • Catchen JM, Conery JS, Postlethwait JH (2009) Automated identification of conserved synteny after whole-genome duplication. Genome Res 19(8):1497–1505. doi:10.1101/Gr.090480.108

    PubMed  CAS  Google Scholar 

  • Catchen JM, Braasch I, Postlethwait JH (2011) Conserved synteny and the zebrafish genome. Method Cell Biol 104:259–285. doi:10.1016/B978-0-12-374814-0.00015-X

    CAS  Google Scholar 

  • Cerda J (2009) Molecular pathways during marine fish egg hydration: the role of aquaporins. J Fish Biol 75(9):2175–2196. doi:10.1111/j.1095-8649.2009.02397.x JFB2397 [pii]

    PubMed  CAS  Google Scholar 

  • Chenuil A, Galtier N, Berrebi P (1999) A test of the hypothesis of an autopolyploid vs. allopolyploid origin for a tetraploid lineage: application to the genus Barbus (Cyprinidae). Heredity (Edinb) 82(Pt 4):373–380. doi:her489 [pii]

    Google Scholar 

  • Chiu CH, Dewar K, Wagner GP, Takahashi K, Ruddle F, Ledje C, Bartsch P, Scemama JL, Stellwag E, Fried C, Prohaska SJ, Stadler PF, Amemiya CT (2004) Bichir HoxA cluster sequence reveals surprising trends in ray-finned fish genomic evolution. Genome Res 14(1):11–17. doi:10.1101/gr.1712904 14/1/11[pii]

    PubMed  CAS  Google Scholar 

  • Christoffels A, Koh EG, Chia JM, Brenner S, Aparicio S, Venkatesh B (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21(6):1146–1151. doi:10.1093/molbev/msh114 msh114 [pii]

    PubMed  CAS  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6(11):836–846. doi:10.1038/nrg1711

    PubMed  CAS  Google Scholar 

  • Cresko WA, Yan YL, Baltrus DA, Amores A, Singer A, Rodriguez-Mari A, Postlethwait JH (2003) Genome duplication, subfunction partitioning, and lineage divergence: sox9 in stickleback and zebrafish. Dev Dyn 228(3):480–489. doi:10.1002/dvdy.10424

    PubMed  CAS  Google Scholar 

  • Crow KD, Wagner GP (2006) Proceedings of the SMBE tri-national young investigators’ workshop. What is the role of genome duplication in the evolution of complexity and diversity? Mol Biol Evol 23(5):887–892. doi:10.1093/molbev/msj083 msj083 [pii]

    PubMed  CAS  Google Scholar 

  • Crow KD, Stadler PF, Lynch VJ, Amemiya C, Wagner GP (2006) The “fish-specific” Hox cluster duplication is coincident with the origin of teleosts. Mol Biol Evol 23(1):121–136. doi:10.1093/molbev/msj020 msj020 [pii]

    PubMed  CAS  Google Scholar 

  • Crow KD, Amemiya CT, Roth J, Wagner GP (2009) Hypermutability of HoxA13A and functional divergence from its paralog are associated with the origin of a novel developmental feature in zebrafish and related taxa (cypriniformes). Evolution 63(6):1574–1592. doi:10.1111/j.1558-5646.2009.00657.x EVO657 [pii]

    PubMed  CAS  Google Scholar 

  • Danzmann RG, Davidson EA, Ferguson MM, Gharbi K, Koop BF, Hoyheim B, Lien S, Lubieniecki KP, Moghadam HK, Park J, Phillips RB, Davidson WS (2008) Distribution of ancestral proto-actinopterygian chromosome arms within the genomes of 4R-derivative salmonid fishes (rainbow trout and Atlantic salmon). BMC Genomics 9:557. doi:10.1186/1471-2164-9-557

    PubMed  Google Scholar 

  • David L, Blum S, Feldman MW, Lavi U, Hillel J (2003) Recent duplication of the, common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci. Mol Biol Evol 20(9):1425–1434. doi:10.1093/molbev/msg173

    PubMed  CAS  Google Scholar 

  • David L, Rothbard S, Rubinstein I, Katzman H, Hulata G, Hillel J, Lavi U (2004) Aspects of red and black color inheritance in the Japanese ornamental (Koi) carp (Cyprinus carpio L.). Aquaculture 233(1–4):129–147. doi:10.1016/j.aquaculture.2003.10.033

    Google Scholar 

  • Davidson WS, Koop BF, Jones SJM, Iturra P, Vidal R, Maass A, Jonassen I, Lien S, Omholt SW (2010) Sequencing the genome of the Atlantic salmon (Salmo salar). Genome Biol 11(9):403. doi:10.1186/gb-2010-11-9-403

    PubMed  Google Scholar 

  • Davis CA, Holmyard DP, Millen KJ, Joyner AL (1991) Examining pattern formation in mouse, chicken and frog embryos with an en-specific antiserum. Development 111(2):287–298

    PubMed  CAS  Google Scholar 

  • de Pinna MCC (1996) Teleostean monophyly. In: Stiassny MLJ, Parenti LR, Johnson GD (eds) Interrelationships of fishes. Academic, San Diego, pp 147–162

    Google Scholar 

  • de Souza FS, Bumaschny VF, Low MJ, Rubinstein M (2005) Subfunctionalization of expression and peptide domains following the ancient duplication of the proopiomelanocortin gene in teleost fishes. Mol Biol Evol 22(12):2417–2427. doi:10.1093/molbev/msi236 msi236 [pii]

    PubMed  Google Scholar 

  • Deng C, Cheng CH, Ye H, He X, Chen L (2010) Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Proc Nat Acad Sci USA 107(50):21593–21598. doi:10.1073/pnas.1007883107 1007883107 [pii]

    PubMed  CAS  Google Scholar 

  • Doitsidou M, Reichman-Fried M, Stebler J, Koprunner M, Dorries J, Meyer D, Esguerra CV, Leung T, Raz E (2002) Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111(5):647–659 S0092867402011352[pii]

    PubMed  CAS  Google Scholar 

  • Donoghue PC, Purnell MA (2005) Genome duplication, extinction and vertebrate evolution. Trends Ecol Evol 20(6):312–319. doi:10.1016/j.tree.2005.04.008 S0169-5347(05)00108-4 [pii]

    PubMed  Google Scholar 

  • Douard V, Brunet F, Boussau B, Ahrens-Fath I, Vlaeminck-Guillem V, Haendler B, Laudet V, Guiguen Y (2008) The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event? BMC Evol Biol 8:336. doi:10.1186/1471-2148-8-336 Artn 336

    PubMed  Google Scholar 

  • Eiken HG, Njolstad PR, Molven A, Fjose A (1987) A zebrafish homeobox-containing gene with embryonic transcription. Biochem Biophys Res Commun 149(3):1165–1171

    PubMed  CAS  Google Scholar 

  • Elgar G, Clark MS, Meek S, Smith S, Warner S, Edwards YJ, Bouchireb N, Cottage A, Yeo GS, Umrania Y, Williams G, Brenner S (1999) Generation and analysis of 25 Mb of genomic DNA from the pufferfish Fugu rubripes by sequence scanning. Genome Res 9(10):960–971

    PubMed  Google Scholar 

  • Ferris SD (1984) Tetraploidy and the evolution of the catostomid fishes. In: Turner BT (ed) Evolutionary genetics of fishes. Plenus Press, New York, pp 54–93

    Google Scholar 

  • Ferris SD, Whitt GS (1977a) Duplicate gene expression in diploid and tetraploid loaches (cypriniformes, Cobitidae). Biochem Genet 15(11–12):1097–1112

    PubMed  CAS  Google Scholar 

  • Ferris SD, Whitt GS (1977b) Evolution of duplicate gene-expression in carp (Cyprinus carpio). Experientia 33(10):1299–1301

    CAS  Google Scholar 

  • Finn RN, Kristoffersen BA (2007) Vertebrate vitellogenin gene duplication in relation to the “3R hypothesis”: correlation to the pelagic egg and the oceanic radiation of teleosts. PLoS One 2(1):e169. doi:10.1371/journal.pone.0000169

    PubMed  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151(4):1531–1545

    PubMed  CAS  Google Scholar 

  • Froschauer A, Braasch I, Volff JN (2006) Fish genomes, comparative genomics and vertebrate evolution. Curr Genomics 7(1):43–57. doi:10.2174/138920206776389766

    CAS  Google Scholar 

  • Gardner CA, Barald KF (1992) Expression patterns of engrailed-like proteins in the chick embryo. Dev Dyn 193(4):370–388. doi:10.1002/aja.1001930410

    PubMed  CAS  Google Scholar 

  • Gates MA, Kim L, Egan ES, Cardozo T, Sirotkin HI, Dougan ST, Lashkari D, Abagyan R, Schier AF, Talbot WS (1999) A genetic linkage map for zebrafish: comparative analysis and localization of genes and expressed sequences. Genome Res 9(4):334–347

    PubMed  CAS  Google Scholar 

  • Gomez A, Volff JN, Hornung U, Schartl M, Wellbrock C (2004) Identification of a second egfr gene in Xiphophorus uncovers an expansion of the epidermal growth factor receptor family in fish. Mol Biol Evol 21(2):266–275. doi:10.1093/molbev/msh017 msh017[pii]

    PubMed  CAS  Google Scholar 

  • Gould SJ, Lewontin RC (1979) Spandrels of San-Marco and the Panglossian paradigm—a critique of the adaptationist program. Proc R Soc Lond B Biol Sci 205(1161):581–598

    PubMed  CAS  Google Scholar 

  • Graham A, Papalopulu N, Krumlauf R (1989) The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57(3):367–378. doi:0092-8674(89)90912-4 [pii]

    PubMed  CAS  Google Scholar 

  • Haussler D, O’Brien SJ, Ryder OA, Barker FK, Clamp M, Crawford AJ, Hanner R, Hanotte O, Johnson WE, McGuire JA, Miller W, Murphy RW, Murphy WJ, Sheldon FH, Sinervo B, Venkatesh B, Wiley EO, Allendorf FW, Amato G, Baker CS, Bauer A, Beja-Pereira A, Bermingham E, Bernardi G, Bonvicino CR, Brenner S, Burke T, Cracraft J, Diekhans M, Edwards S, Ericson PGP, Estes J, Fjelsda J, Flesness N, Gamble T, Gaubert P, Graphodatsky AS, Graves JAM, Green ED, Green RE, Hackett S, Hebert P, Helgen KM, Joseph L, Kessing B, Kingsley DM, Lewin HA, Luikart G, Martelli P, Moreira MAM, Nguyen N, Orti G, Pike BL, Rawson DM, Schuster SC, Seuanez HN, Shaffer HB, Springer MS, Stuart JM, Sumner J, Teeling E, Vrijenhoek RC, Ward RD, Warren WC, Wayne R, Williams TM, Wolfe ND, Zhang YP, Graph-Odatsky A, Johnson WE, Felsenfeld A, Turner S, Scientists GKC, Grp M, Grp B, Grp AR, Grp F, Grp GP, Grp A (2009) Genome 10 K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J Hered 100(6):659–674. doi:10.1093/jhered/esp086

    Google Scholar 

  • He X, Zhang J (2005) Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 169(2):1157–1164. doi:10.1534/genetics.104.037051 genetics.104.037051 [pii]

    PubMed  Google Scholar 

  • Hoegg S, Meyer A (2005) Hox clusters as models for vertebrate genome evolution. Trends Genet 21(8):421–424. doi:10.1016/j.tig.2005.06.004 S0168-9525(05)00165-4 [pii]

    PubMed  CAS  Google Scholar 

  • Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59(2):190–203. doi:10.1007/s00239-004-2613-z

    PubMed  CAS  Google Scholar 

  • Hoegg S, Boore JL, Kuehl JV, Meyer A (2007) Comparative phylogenomic analyses of teleost fish hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni. BMC Genomics 8:317. doi:10.1186/1471-2164-8-317 1471-2164-8-317 [pii]

    PubMed  Google Scholar 

  • Howarth DL, Law SHW, Barnes B, Hall JM, Hinton DE, Moore L, Maglich JM, Moore JT, Kullman SW (2008) Paralogous vitamin D receptors in teleosts: transition of nuclear receptor function. Endocrinology 149(5):2411–2422. doi:10.1210/En.2007-1256

    PubMed  CAS  Google Scholar 

  • Hufton AL, Groth D, Vingron M, Lehrach H, Poustka AJ, Panopoulou G (2008) Early vertebrate whole genome duplications were predated by a period of intense genome rearrangement. Genome Res 18(10):1582–1591. doi:10.1101/gr.080119.108 gr.080119.108 [pii]

    PubMed  CAS  Google Scholar 

  • Huminiecki L, Heldin CH (2010) 2R and remodeling of vertebrate signal transduction engine. BMC Biol 8:146. doi:10.1186/1741-7007-8-146 1741-7007-8-146 [pii]

    PubMed  Google Scholar 

  • Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedman M, Ho RK, Prince VE, Yang Z, Thomas MG, Coates MI (2007) A new time-scale for ray-finned fish evolution. Proc Biol Sci 274(1609):489–498

    PubMed  CAS  Google Scholar 

  • Inoue JG, Miya M, Tsukamoto K, Nishida M (2003) Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the “ancient fish”. Mol Phylogenet Evol 26(1):110–120

    PubMed  CAS  Google Scholar 

  • Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431(7011):946–957. doi:10.1038/nature03025 nature03025 [pii]

    PubMed  Google Scholar 

  • Jovelin R, He X, Amores A, Yan YL, Shi R, Qin B, Roe B, Cresko WA, Postlethwait JH (2007) Duplication and divergence of fgf8 functions in teleost development and evolution. J Exp Zool B Mol Dev Evol 308(6):730–743. doi:10.1002/jez.b.21193

    PubMed  Google Scholar 

  • Joyner AL, Martin GR (1987) En-1 and En-2, two mouse genes with sequence homology to the Drosophila engrailed gene: expression during embryogenesis. Genes Dev 1(1):29–38

    PubMed  CAS  Google Scholar 

  • Karanth S, Lall SP, Denovan-Wright EM, Wright JM (2009) Differential transcriptional modulation of duplicated fatty acid-binding protein genes by dietary fatty acids in zebrafish (Danio rerio): evidence for subfunctionalization or neofunctionalization of duplicated genes. BMC Evol Biol 9:219. doi:10.1186/1471-2148-9-219 1471-2148-9-219 [pii]

    PubMed  Google Scholar 

  • Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin IT, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447(7145):714–719. doi:10.1038/nature05846 nature05846 [pii]

    PubMed  CAS  Google Scholar 

  • Kassahn KS, Dang VT, Wilkins SJ, Perkins AC, Ragan MA (2009) Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Genome Res 19(8):1404–1418. doi:10.1101/Gr.086827.108

    PubMed  CAS  Google Scholar 

  • Kikugawa K, Katoh K, Kuraku S, Sakurai H, Ishida O, Iwabe N, Miyata T (2004) Basal jawed vertebrate phylogeny inferred from multiple nuclear DNA-coded genes. BMC Biol 2:3. doi:10.1186/1741-7007-2-3 1741-7007-2-3 [pii]

    PubMed  Google Scholar 

  • Kluver N, Kondo M, Herpin A, Mitani H, Schartl M (2005) Divergent expression patterns of Sox9 duplicates in teleosts indicate a lineage specific subfunctionalization. Dev Genes Evol 215(6):297–305. doi:10.1007/s00427-005-0477-x

    PubMed  Google Scholar 

  • Kohn M, Hogel J, Vogel W, Minich P, Kehrer-Sawatzki H, Graves JA, Hameister H (2006) Reconstruction of a 450-My-old ancestral vertebrate protokaryotype. Trends Genet 22(4):203–210. doi:10.1016/j.tig.2006.02.008 S0168-9525(06)00063-1 [pii]

    PubMed  CAS  Google Scholar 

  • Komiyama T, Kobayashi H, Tateno Y, Inoko H, Gojobori T, Ikeo K (2009) An evolutionary origin and selection process of goldfish. Gene 430(1–2):5–11. doi:10.1016/j.gene.2008.10.019 S0378-1119(08)00543-X [pii]

    PubMed  CAS  Google Scholar 

  • Koop BF, von Schalburg KR, Leong J, Walker N, Lieph R, Cooper GA, Robb A, Beetz-Sargent M, Holt RA, Moore R, Brahmbhatt S, Rosner J, Rexroad CE, McGowan CR, Davidson WS (2008) A salmonid EST genomic study: genes, duplications, phylogeny and microarrays. BMC Genomics 9:545. doi:10.1186/1471-2164-9-545

    PubMed  Google Scholar 

  • Kupka E (1948) Chromosomale Verschiedenheiten bei schweizerischen Coregonen (Felchen). Rev Suisse Zool 55:293–295

    Google Scholar 

  • Larhammar D, Risinger C (1994) Molecular genetic aspects of tetraploidy in the common carp Cyprinus carpio. Mol Phylogenet Evol 3(1):59–68. doi:10.1006/mpev.1994.1007 S1055-7903(84)71007-4 [pii]

    PubMed  CAS  Google Scholar 

  • Le Comber SC, Smith C (2004) Polyploidy in fishes: patterns and processes. Biol J Linn Soc 82(4):431–442

    Google Scholar 

  • Leggatt RA, Iwama GK (2003) Occurrence of polyploidy in the fishes. Rev Fish Biol Fisher 13(3):237–246

    Google Scholar 

  • Leong JS, Jantzen SG, von Schalburg KR, Cooper GA, Messmer AM, Liao NY, Munro S, Moore R, Holt RA, Jones SJM, Davidson WS, Koop BF (2010) Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome. BMC Genomics 11:279. doi:10.1186/1471-2164-11-279

    PubMed  Google Scholar 

  • Li YJ, Yu Z, Zhang MZ, Qian C, Abe S, Arai K (2011) The origin of natural tetraploid loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) inferred from meiotic chromosome configurations. Genetica 139(6):805–811. doi:10.1007/s10709-011-9585-x

    PubMed  Google Scholar 

  • Lien S, Gidskehaug L, Moen T, Hayes BJ, Berg PR, Davidson WS, Omholt SW, Kent MP (2011) A dense SNP-based linkage map for Atlantic salmon (Salmo salar) reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns. BMC Genomics 12(1):615. doi:10.1186/1471-2164-12-615 1471-2164-12-615 [pii]

    PubMed  CAS  Google Scholar 

  • Lister JA, Close J, Raible DW (2001) Duplicate mitf genes in zebrafish: complementary expression and conservation of melanogenic potential. Dev Biol 237(2):333–344

    PubMed  CAS  Google Scholar 

  • Ludwig A, Belfiore NM, Pitra C, Svirsky V, Jenneckens I (2001) Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 158(3):1203–1215

    PubMed  CAS  Google Scholar 

  • Luo J, Stadler PF, He S, Meyer A (2007) PCR survey of Hox genes in the goldfish Carassius auratus auratus. J Exp Zool B Mol Dev Evol 308(3):250–258. doi:10.1002/jez.b.21144

    PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290(5494):1151–1155 8976 [pii]

    PubMed  CAS  Google Scholar 

  • Lynch M, Force AG (2000) The origin of interspecific genomic incompatibility via gene duplication. Am Nat 156(6):590–605

    Google Scholar 

  • Mable BK (2004) ‘Why polyploidy is rarer in animals than in plants’: myths and mechanisms. Biol J Linn Soc 82(4):453–466

    Google Scholar 

  • Mable BK, Alexandrou MA, Taylor MI (2011) Genome duplication in amphibians and fish: an extended synthesis. J Zool 284(3):151–182. doi:10.1111/j.1469-7998.2011.00829.x

    Google Scholar 

  • Mank JE, Avise JC (2006a) Cladogenetic correlates of genomic expansions in the recent evolution of actinopterygiian fishes. Proc R Soc Lond B Biol Sci 273(1582):33–38. doi:10.1098/rspb.2005.3295

    Google Scholar 

  • Mank JE, Avise JC (2006b) Phylogenetic conservation of chromosome numbers in actinopterygiian fishes. Genetica 127(1–3):321–327. doi:10.1007/s10709-005-5248-0

    PubMed  Google Scholar 

  • Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP (2011) Recently formed polyploid plants diversify at lower rates. Science 333(6047):1257. doi:10.1126/Science.1207205

    PubMed  CAS  Google Scholar 

  • Meyer A (1998) Hox gene variation and evolution. Nature 391 (6664):225, 227–228. doi:10.1038/34530

    Google Scholar 

  • Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11(6):699–704. doi:S0955-0674(99)00039-3 [pii]

    PubMed  CAS  Google Scholar 

  • Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays 27(9):937–945. doi:10.1002/bies.20293

    PubMed  CAS  Google Scholar 

  • Miller MR, Brunelli JP, Wheeler PA, Liu S, Rexroad CE 3rd, Palti Y, Doe CQ, Thorgaard GH (2011) A conserved haplotype controls parallel adaptation in geographically distant salmonid populations. Mol Ecol. doi:10.1111/j.1365-294X.2011.05305.x

    Google Scholar 

  • Misof BY, Wagner GP (1996) Evidence for four hox clusters in the killifish Fundulus heteroclitus (teleostei). Mol Phylogenet Evol 5(2):309–322. doi:10.1006/mpev.1996.0026 S1055-7903(96)90026-3 [pii]

    PubMed  CAS  Google Scholar 

  • Moghadam HK, Ferguson MM, Danzmann RG (2005a) Evidence for Hox gene duplication in rainbow trout (Oncorhynchus mykiss): a tetraploid model species. J Mol Evol 61(6):804–818. doi:10.1007/s00239-004-0230-5

    PubMed  CAS  Google Scholar 

  • Moghadam HK, Ferguson MM, Danzmann RG (2005b) Evolution of Hox clusters in Salmonidae: a comparative analysis between Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). J Mol Evol 61(5):636–649. doi:10.1007/s00239-004-0338-7

    PubMed  CAS  Google Scholar 

  • Moghadam HK, Ferguson MM, Danzmann RG (2009) Comparative genomics and evolution of conserved noncoding elements (CNE) in rainbow trout. BMC Genomics 10:278. doi:10.1186/1471-2164-10-278 Artn 278

    PubMed  Google Scholar 

  • Morizot DC (1990) Use of fish gene maps to predict ancestral vertebrate genome organization. In: Ogita Z-I, Markert CL (eds) Isozymes: structure, function, and use in biology, and medicine. Wiley-Liss, Inc., New York, pp 207–234

    Google Scholar 

  • Muller HJ (1925) Why polyploidy is rarer in animals than in plants. Am Nat 59(663):346–353

    Google Scholar 

  • Mulley JF, Chiu CH, Holland PW (2006) Breakup of a homeobox cluster after genome duplication in teleosts. Proc Nat Acad Sci USA 103(27):10369–10372. doi:10.1073/pnas.0600341103 0600341103 [pii]

    PubMed  CAS  Google Scholar 

  • Mungpakdee S, Seo HC, Angotzi AR, Dong XJ, Akalin A, Chourrout D (2008a) Differential evolution of the 13 Atlantic salmon Hox clusters. Mol Biol Evol 25(7):1333–1343. doi:10.1093/molbev/msn097

    PubMed  CAS  Google Scholar 

  • Mungpakdee S, Seo HC, Chourrout D (2008b) Spatio-temporal expression patterns of anterior Hox genes in Atlantic salmon (Salmo salar). Gene Expr Patterns 8(7–8):508–514. doi:10.1016/j.gep.2008.06.004

    PubMed  CAS  Google Scholar 

  • Nair S, Schilling TF (2008) Chemokine signaling controls endodermal migration during zebrafish gastrulation. Science 322(5898):89–92. doi:10.1126/science.1160038 1160038 [pii]

    PubMed  CAS  Google Scholar 

  • Nakatani Y, Takeda H, Kohara Y, Morishita S (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17(9):1254–1265. doi:10.1101/gr.6316407

    PubMed  CAS  Google Scholar 

  • Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14(5):820–828. doi:10.1101/gr.2004004 2004004 [pii]

    PubMed  CAS  Google Scholar 

  • Nelson JS (2006) Fishes of the world, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Njolstad PR, Molven A, Hordvik I, Apold J, Fjose A (1988) Primary structure, developmentally regulated expression and potential duplication of the zebrafish homeobox gene ZF-21. Nucleic Acids Res 16(19):9097–9111

    PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin

    Google Scholar 

  • Ohno S, Muramoto J, Christia L, Atkin NB (1967) Diploid-tetraploid relationship among old-world members of fish family Cyprinidae. Chromosoma 23(1):1

    Google Scholar 

  • Ohno S, Wolf U, Atkin NB (1968) Evolution from fish to mammals by gene duplication. Hereditas-Genetisk A 59(1):169 &

    CAS  Google Scholar 

  • Okuda Y, Yoda H, Uchikawa M, Furutani-Seiki M, Takeda H, Kondoh H, Kamachi Y (2006) Comparative genomic and expression analysis of group B1 sox genes in zebrafish indicates their diversification during vertebrate evolution. Dev Dyn 235(3):811–825. doi:10.1002/dvdy.20678

    PubMed  CAS  Google Scholar 

  • Oliveira C, Almeidatoledo LF, Mori L, Toledofilho SA (1992) Extensive chromosomal rearrangements and nuclear-DNA content changes in the evolution of the armored catfishes genus Corydoras (pisces, siluriformes, callichthyidae). J Fish Biol 40(3):419–431

    Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131(3):452–462. doi:10.1016/j.cell.2007.10.022

    PubMed  CAS  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437. doi:10.1146/annurev.genet.34.1.401 34/1/401 [pii]

    PubMed  CAS  Google Scholar 

  • Pala I, Coelho MM, Schartl M (2008) Dosage compensation by gene-copy silencing in a triploid hybrid fish. Curr Biol 18(17):1344–1348. doi:10.1016/j.cub.2008.07.096

    PubMed  CAS  Google Scholar 

  • Pala I, Schartl M, Brito M, Vacas JM, Coelho MM (2010) Gene expression regulation and lineage evolution: the north and south tale of the hybrid polyploid Squalius alburnoides complex. Proc R Soc B Biol Sci 277(1699):3519–3525. doi:10.1098/rspb.2010.1071

    CAS  Google Scholar 

  • Pandian TJ, Koteeswaran R (1999) Natural occurrence of monoploids and polyploids in the Indian catfish, Heteropneustes fossilis. Curr Sci India 76(8):1134–1137

    Google Scholar 

  • Phillips R, Rab P (2001) Chromosome evolution in the Salmonidae (pisces): an update. Biol Rev Camb Philos Soc 76(1):1–25

    PubMed  CAS  Google Scholar 

  • Phillips RB, Keatley KA, Morasch MR, Ventura AB, Lubieniecki KP, Koop BF, Danzmann RG, Davidson WS (2009) Assignment of Atlantic salmon (Salmo salar) linkage groups to specific chromosomes: conservation of large syntenic blocks corresponding to whole chromosome arms in rainbow trout (Oncorhynchus mykiss). BMC Genet 10:46. doi:10.1186/1471-2156-10-46

    PubMed  Google Scholar 

  • Piferrer F, Beaumont A, Falguiere JC, Flajshans M, Haffray P, Colombo L (2009) Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293(3–4):125–156. doi:10.1016/j.aquaculture.2009.04.036

    Google Scholar 

  • Postlethwait JH, Yan YL, Gates MA, Horne S, Amores A, Brownlie A, Donovan A, Egan ES, Force A, Gong Z, Goutel C, Fritz A, Kelsh R, Knapik E, Liao E, Paw B, Ransom D, Singer A, Thomson M, Abduljabbar TS, Yelick P, Beier D, Joly JS, Larhammar D, Rosa F, Westerfield M, Zon LI, Johnson SL, Talbot WS (1998) Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18(4):345–349. doi:10.1038/ng0498-345

    PubMed  CAS  Google Scholar 

  • Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10(12):1890–1902

    PubMed  CAS  Google Scholar 

  • Postlethwait JH, Amores A, Yan YL, Austin CA (2002) Duplication of a portion of human chromosome 20q containing topoisomerase (top1) and snail genes provides evidence on genome expansion and the radiation of teleost fish. In: Shimizu N, Aoki T, Hirono I, Takashima F (eds) Aquatic genomics. Springer, Tokyo

    Google Scholar 

  • Postlethwait J, Amores A, Cresko W, Singer A, Yan YL (2004) Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 20(10):481–490. doi:10.1016/j.tig.2004.08.001 S0168-9525(04)00213-6 [pii]

    PubMed  CAS  Google Scholar 

  • Prince VE (2002) The Hox paradox: more complex(es) than imagined. Dev Biol 249(1):1–15. doi:10.1006/Dbio.2002.0745

    PubMed  CAS  Google Scholar 

  • Prince VE, Joly L, Ekker M, Ho RK (1998) Zebrafish hox genes: genomic organization and modified colinear expression patterns in the trunk. Development 125(3):407–420

    PubMed  CAS  Google Scholar 

  • Prohaska SJ, Stadler PF (2004) The duplication of the Hox gene clusters in teleost fishes. Theory Biosci 123(1):89–110. doi:10.1016/j.thbio.2004.03.004

    PubMed  CAS  Google Scholar 

  • Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutierrez EL, Dubchak I, Garcia-Fernandez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin IT, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453(7198):1064–1071. doi:10.1038/nature06967 nature06967 [pii]

    PubMed  CAS  Google Scholar 

  • Raincrow JD, Dewar K, Stocsits C, Prohaska SJ, Amemiya CT, Stadler PF, Chiu CH (2011) Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny. J Exp Zool B Mol Dev Evol 316(6):451–464. doi:10.1002/jez.b.21420

    PubMed  CAS  Google Scholar 

  • Rastogi S, Liberles DA (2005) Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol Biol 5:28. doi:10.1186/1471-2148-5-28 1471-2148-5-28 [pii]

    PubMed  Google Scholar 

  • Ravi V, Venkatesh B (2008) Rapidly evolving fish genomes and teleost diversity. Curr Opin Genet Dev 18(6):544–550. doi:10.1016/j.gde.2008.11.001 S0959-437X(08)00151-2 [pii]

    PubMed  CAS  Google Scholar 

  • Richardson BE, Lehmann R (2010) Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol 11(1):37–49. doi:10.1038/nrm2815 nrm2815 [pii]

    PubMed  CAS  Google Scholar 

  • Risinger C, Larhammar D (1993) Multiple loci for synapse protein SNAP-25 in the tetraploid goldfish. Proc Nat Acad Sci USA 90(22):10598–10602

    PubMed  CAS  Google Scholar 

  • Robinson-Rechavi M, Marchand O, Escriva H, Bardet PL, Zelus D, Hughes S, Laudet V (2001) Euteleost fish genomes are characterized by expansion of gene families. Genome Res 11(5):781–788. doi:10.1101/gr.165601

    PubMed  CAS  Google Scholar 

  • Rohner N, Bercsenyi M, Orban L, Kolanczyk ME, Linke D, Brand M, Nusslein-Volhard C, Harris MP (2009) Duplication of fgfr1 permits Fgf signaling to serve as a target for selection during domestication. Curr Biol 19(19):1642–1647. doi:10.1016/j.cub.2009.07.065 S0960-9822(09)01542-5 [pii]

    PubMed  CAS  Google Scholar 

  • Santini F, Harmon LJ, Carnevale G, Alfaro ME (2009) Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evol Biol 9:194. doi:10.1186/1471-2148-9-194 1471-2148-9-194 [pii]

    PubMed  Google Scholar 

  • Sato Y, Nishida M (2007) Post-duplication charge evolution of phosphoglucose isomerases in teleost fishes through weak selection on many amino acid sites. BMC Evol Biol 7:204. doi:10.1186/1471-2148-7-204 Artn 204

    PubMed  Google Scholar 

  • Sato Y, Hashiguchi Y, Nishida M (2009) Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. BMC Evol Biol 9:127. doi:10.1186/1471-2148-9-127 1471-2148-9-127 [pii]

    PubMed  Google Scholar 

  • Scannell DR, Wolfe KH (2008) A burst of protein sequence evolution and a prolonged period of asymmetric evolution follow gene duplication in yeast. Genome Res 18(1):137–147. doi:10.1101/gr.6341207 gr.6341207 [pii]

    PubMed  CAS  Google Scholar 

  • Schultz RJ (1980) Role of polyploidy in the evolution of fishes. In: Lewis WH (ed) Polyploidy—biological relevance. Basic life science, vol 13. Plenum Press, New York, pp 313–340

    Google Scholar 

  • Semon M, Wolfe KH (2007a) Rearrangement rate following the whole-genome duplication in teleosts. Mol Biol Evol 24(3):860–867. doi:10.1093/molbev/msm003 msm003 [pii]

    PubMed  CAS  Google Scholar 

  • Semon M, Wolfe KH (2007b) Reciprocal gene loss between Tetraodon and zebrafish after whole genome duplication in their ancestor. Trends Genet 23(3):108–112. doi:10.1016/j.tig.2007.01.003 S0168-9525(07)00021-2 [pii]

    PubMed  CAS  Google Scholar 

  • Setiamarga DH, Miya M, Yamanoue Y, Azuma Y, Inoue JG, Ishiguro NB, Mabuchi K, Nishida M (2009) Divergence time of the two regional medaka populations in Japan as a new time scale for comparative genomics of vertebrates. Biol Lett 5(6):812–816. doi:10.1098/rsbl.2009.0419 rsbl.2009.0419 [pii]

    PubMed  Google Scholar 

  • Sha Z, Yu P, Takano T, Liu H, Terhune J, Liu Z (2008) The warm temperature acclimation protein Wap65 as an immune response gene: its duplicates are differentially regulated by temperature and bacterial infections. Mol Immunol 45(5):1458–1469. doi:10.1016/J.Molimm.2007.08.012

    PubMed  CAS  Google Scholar 

  • Shimada A, Yabusaki M, Niwa H, Yokoi H, Hatta K, Kobayashi D, Takeda H (2008) Maternal-zygotic medaka mutants for fgfr1 reveal its essential role in the migration of the axial mesoderm but not the lateral mesoderm. Development 135(2):281–290. doi:10.1242/dev.011494 135/2/281 [pii]

    PubMed  CAS  Google Scholar 

  • Siegel N, Hoegg S, Salzburger W, Braasch I, Meyer A (2007) Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications. BMC Genomics 8:312. doi:10.1186/1471-2164-8-312 1471-2164-8-312 [pii]

    PubMed  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J et al (2009) Polyploidy and angiosperm diversification. Am J Bot 96(1):336–348

    PubMed  Google Scholar 

  • Song H, Yan YL, Titus T, He XJ, Postlethwait JH (2011) The role of stat1b in zebrafish hematopoiesis. Mech Develop 128(7–10):442–456. doi:10.1016/J.Mod.2011.08.004

    CAS  Google Scholar 

  • Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrom M, Gregers TF, Rounge TB, Paulsen J, Solbakken MH, Sharma A, Wetten OF, Lanzen A, Winer R, Knight J, Vogel JH, Aken B, Andersen O, Lagesen K, Tooming-Klunderud A, Edvardsen RB, Tina KG, Espelund M, Nepal C, Previti C, Karlsen BO, Moum T, Skage M, Berg PR, Gjoen T, Kuhl H, Thorsen J, Malde K, Reinhardt R, Du L, Johansen SD, Searle S, Lien S, Nilsen F, Jonassen I, Omholt SW, Stenseth NC, Jakobsen KS (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477(7363):207–210. doi:10.1038/nature10342 nature10342 [pii]

    PubMed  CAS  Google Scholar 

  • Steinke D, Salzburger W, Braasch I, Meyer A (2006) Many genes in fish have species-specific asymmetric rates of molecular evolution. BMC Genomics 7:20. doi:10.1186/1471-2164-7-20 1471-2164-7-20 [pii]

    PubMed  Google Scholar 

  • Stellwag EJ (1999) Hox gene duplication in fish. Semin Cell Dev Biol 10(5):531–540. doi:10.1006/scdb.1999.0334 S1084-9521(99)90334-8 [pii]

    PubMed  CAS  Google Scholar 

  • Stoltzfus A (1999) On the possibility of constructive neutral evolution. J Mol Evol 49(2):169–181. doi:JME1907 [pii]

    PubMed  CAS  Google Scholar 

  • Svärdson G (1945) Chromosome studies on Salmonidae. Rep Swed State Inst Fresh Fish Res 23:1–151

    Google Scholar 

  • Taylor JS, Van de Peer Y, Braasch I, Meyer A (2001) Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B Biol Sci 356(1414):1661–1679. doi:10.1098/rstb.2001.0975

    PubMed  CAS  Google Scholar 

  • Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Res 13(3):382–390. doi:10.1101/gr.640303

    PubMed  CAS  Google Scholar 

  • Tumpel S, Cambronero F, Wiedemann LM, Krumlauf R (2006) Evolution of cis elements in the differential expression of two Hoxa2 coparalogous genes in pufferfish (Takifugu rubripes). Proc Nat Acad Sci USA 103(14):5419–5424. doi:10.1073/pnas.0600993103 0600993103 [pii]

    PubMed  CAS  Google Scholar 

  • Udono T, Yasumoto K, Takeda K, Amae S, Watanabe K, Saito H, Fuse N, Tachibana M, Takahashi K, Tamai M, Shibahara S (2000) Structural organization of the human microphthalmia-associated transcription factor gene containing four alternative promoters. Biochim Biophys Acta 1491(1–3):205–219

    PubMed  CAS  Google Scholar 

  • Uyeno T, Smith GR (1972) Tetraploid origin of karyotype of catostomid fishes. Science 175(4022):644

    PubMed  CAS  Google Scholar 

  • Van de Peer Y, Taylor JS, Braasch I, Meyer A (2001) The ghost of selection past: rates of evolution and functional divergence of anciently duplicated genes. J Mol Evol 53(4–5):436–446. doi:10.1007/s002390010233

    PubMed  Google Scholar 

  • Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10(10):725–732. doi:10.1038/nrg2600 nrg2600 [pii]

    PubMed  Google Scholar 

  • Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y (2004) Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Nat Acad Sci USA 101(6):1638–1643. doi:10.1073/pnas.0307968100 0307968100[pii]

    PubMed  CAS  Google Scholar 

  • Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E (2009) EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19(2):327–335. doi:10.1101/Gr.073585.107

    PubMed  CAS  Google Scholar 

  • Volff JN (2005) Genome evolution and biodiversity in teleost fish. Heredity (Edinb) 94(3):280–294. doi:10.1038/sj.hdy.6800635 6800635 [pii]

    CAS  Google Scholar 

  • Volff JN, Brunet F, Böhne A, Galiana-Arnoux D (2011) Evolution of fish genomes. In: Farrell AP, Cech JJ, Richards JG, Stevens ED (eds) Encyclopedia of fish physiology: from genome to environment. Elsevier Inc., San Diego

    Google Scholar 

  • Werth CR, Windham MD (1991) A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate-gene expression. Am Nat 137(4):515–526

    Google Scholar 

  • Winkler C, Schafer M, Duschl J, Schartl M, Volff JN (2003) Functional divergence of two zebrafish midkine growth factors following fish-specific gene duplication. Genome Res 13(6A):1067–1081. doi:10.1101/gr.1097503 GR-10975R [pii]

    PubMed  CAS  Google Scholar 

  • Wittbrodt J, Meyer A, Schartl M (1998) More genes in fish? BioEssays 20(6):511–515. doi:10.1002/(sici)1521-1878(199806)20:6<511:aid-bies10>3.0.co;2-3

    Google Scholar 

  • Woltering JM, Durston AJ (2006) The zebrafish hoxDb cluster has been reduced a single microRNA. Nat Genet 38(6):601–602. doi:10.1038/Ng0606-601

    PubMed  CAS  Google Scholar 

  • Woods TD, Buth DG (1984) High-level of gene silencing in the tetraploid goldfish. Biochem Syst Ecol 12(4):415–421

    CAS  Google Scholar 

  • Woods IG, Kelly PD, Chu F, Ngo-Hazelett P, Yan YL, Huang H, Postlethwait JH, Talbot WS (2000) A comparative map of the zebrafish genome. Genome Res 10(12):1903–1914

    PubMed  CAS  Google Scholar 

  • Woods IG, Wilson C, Friedlander B, Chang P, Reyes DK, Nix R, Kelly PD, Chu F, Postlethwait JH, Talbot WS (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15(9):1307–1314. doi:10.1101/gr.4134305 gr.4134305 [pii]

    PubMed  CAS  Google Scholar 

  • Woolfe A, Elgar G (2007) Comparative genomics using fugu reveals insights into regulatory subfunctionalization. Genome Biol 8(4):R53. doi:10.1186/gb-2007-8-4-r53 gb-2007-8-4-r53 [pii]

    PubMed  Google Scholar 

  • Yao K, Ge W (2010) Kit system in the zebrafish ovary: evidence for functional divergence of two isoforms of kit (kita and kitb) and kit ligand (kitlga and kitlgb) during folliculogenesis. Biol Reprod 82(6):1216–1226. doi:10.1095/biolreprod.109.082644 biolreprod.109.082644 [pii]

    PubMed  CAS  Google Scholar 

  • Yokoi H, Shimada A, Carl M, Takashima S, Kobayashi D, Narita T, Jindo T, Kimura T, Kitagawa T, Kage T, Sawada A, Naruse K, Asakawa S, Shimizu N, Mitani H, Shima A, Tsutsumi M, Hori H, Wittbrodt J, Saga Y, Ishikawa Y, Araki K, Takeda H (2007) Mutant analyses reveal different functions of fgfr1 in medaka and zebrafish despite conserved ligand-receptor relationships. Dev Biol 304(1):326–337. doi:10.1016/j.ydbio.2006.12.043 S0012-1606(06)01502-8 [pii]

    PubMed  CAS  Google Scholar 

  • Yokoi H, Yan YL, Miller MR, BreMiller RA, Catchen JM, Johnson EA, Postlethwait JH (2009) Expression profiling of zebrafish sox9 mutants reveals that sox9 is required for retinal differentiation. Dev Biol 329(1):1–15. doi:10.1016/j.ydbio.2009.01.002 S0012-1606(09)00020-7 [pii]

    PubMed  CAS  Google Scholar 

  • Yu WP, Brenner S, Venkatesh B (2003) Duplication, degeneration and subfunctionalization of the nested synapsin-timp genes in fugu. Trends Genet 19(4):180–183 S0168952503000489[pii]

    PubMed  CAS  Google Scholar 

  • Yuan J, He Z, Yuan X, Jiang X, Sun X, Zou S (2010) Speciation of polyploid Cyprinidae fish of common carp, crucian carp, and silver crucian carp derived from duplicated Hox genes. J Exp Zool B Mol Dev Evol 314(6):445–456. doi:10.1002/jez.b.21350

    PubMed  Google Scholar 

  • Zapater C, Chauvigne F, Norberg B, Finn RN, Cerda J (2011) Dual neofunctionalization of a rapidly evolving aquaporin-1 paralog resulted in constrained and relaxed traits controlling channel function during meiosis resumption in teleosts. Mol Biol Evol 28(11):3151–3169. doi:10.1093/molbev/msr146 msr146 [pii]

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Cristian Canestro for extensive discussions as well as Irene Pala for discussions of gene expression in the calandino. This work was supported by a grant from the Volkswagen Foundation Germany (IB) and National Institutes of Health grant R01 RR020833 (JHP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Postlethwait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Braasch, I., Postlethwait, J.H. (2012). Polyploidy in Fish and the Teleost Genome Duplication. In: Soltis, P., Soltis, D. (eds) Polyploidy and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31442-1_17

Download citation

Publish with us

Policies and ethics