Skip to main content

Rat Genome Mapping and Genomics

  • Chapter
  • First Online:
Genome Mapping and Genomics in Laboratory Animals

Part of the book series: Genome Mapping and Genomics in Animals ((MAPPANIMAL,volume 4))

Abstract

The rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and common diseases. Unlike the mouse, the rat was neglected by geneticists. However, most traits and diseases studied in the rat are complex, polygenic, and their analysis requires genetic approaches. Rat genome mapping and genomics were considerably developed in the last two decades, starting, as in the human, with chromosome and cytogenetic mapping based on standard somatic cell hybrids and fluorescence in situ hybridization (FISH). Linkage and radiation hybrid maps were then constructed that included genes, expressed sequences tags (EST), and microsatellite markers and they were integrated with the cytogenetic map. The genome sequences of two rat strains were published in 2004 (BN) and 2010 (spontaneous hypertensive rat, SHR), and thousands of various DNA polymorphisms have been identified. The availability of these resources has stimulated numerous linkage studies in rat crosses and in recombinant inbred strains, leading to the genetic identification of hundreds of quantitative trait loci (QTLs) influencing various traits and demonstrating that the rat is a valuable experimental model, including for geneticists. In addition, high-throughput gene expression profiling and genetical genomics have been applied to the rat, adding a new dimension to disease gene discovery. Several rat genes have now been identified that underlie complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes and also suggesting new therapeutic approaches. A major biological limitation of the rat as a model was the lack of totipotent embryonic stem (ES) cells; this limitation was recently removed and targeted knockout rats can now be generated. It can reasonably be predicted that identification of numerous relevant disease genes will be achieved in rat models in a near future and that these results will help in understanding the mechanisms underlying common human diseases, thereby also stimulating the development of new therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott A (2007) Biologists claim nobel prize with a knock-out. Nature 449:642

    PubMed  Google Scholar 

  • Adamovic T, McAllister D, Wang T, Adamovic D, Rowe JJ, Moreno C, Lazar J, Jacob HJ, Sugg SL (2010) Identification of novel carcinogen-mediated mammary tumor susceptibility loci in the rat using the chromosome substitution technique. Genes Chromosomes Cancer 49:1035–1045

    PubMed  CAS  Google Scholar 

  • Agenon I (2010) In: Rat genomics, Methods in molecular biology, vol 597. Humana Press, New York

    Google Scholar 

  • Ahmadiyeh N, Churchill GA, Shimomura K, Solberg LC, Takahashi JS, Redei EE (2003) X-linked and lineage-dependent inheritance of coping responses to stress. Mamm Genome 14:748–757

    PubMed  Google Scholar 

  • Aitman TJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, Wahid FN, Al-Majali KM, Trembling PM, Mann CJ, Shoulders CC, Graf D, St Lezin E, Kurtz TW, Kren V, Pravenec M, Ibrahimi A, Abumrad NA, Stanton LW, Scott J (1999) Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 21:76–83

    PubMed  CAS  Google Scholar 

  • Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, Smith J, Mangion J, Roberton-Lowe C, Marshall AJ, Petretto E, Hodges MD, Bhangal G, Patel SG, Sheehan-Rooney K, Duda M, Cook PR, Evans DJ, Domin J, Flint J, Boyle JJ, Pusey CD, Cook HT (2006) Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439:851–855

    PubMed  CAS  Google Scholar 

  • Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez-Suarez XM, Flint J, Gauguier D, Geurts AM, Gould M, Harris PC, Holmdahl R, Hubner N, Izsvak Z, Jacob HJ, Kuramoto T, Kwitek AE, Marrone A, Mashimo T, Moreno C, Mullins J, Mullins L, Olsson T, Pravenec M, Riley L, Saar K, Serikawa T, Shull JD, Szpirer C, Twigger SN, Voigt B, Worley K (2008) Progress and prospects in rat genetics: a community view. Nat Genet 40:516–522

    PubMed  CAS  Google Scholar 

  • Akiyama K, Morita H, Suetsugu S, Kuraba S, Numata Y, Yamamoto Y, Inui K, Ideura T, Wakisaka N, Nakano K, Oniki H, Takenawa T, Matsuyama M, Yoshimura A (2008) Actin -related protein 3 (Arp3) is mutated in proteinuric BUF/Mna rats. Mamm Genome 19:41–50

    PubMed  CAS  Google Scholar 

  • Alam I, Carr LG, Liang T, Liu Y, Edenberg HJ, Econs MJ, Turner CH (2010) Identification of genes influencing skeletal phenotypes in congenic P/NP rats. J Bone Miner Res 25:1314–1325

    PubMed  CAS  Google Scholar 

  • Alam I, Koller DL, Sun Q, Roeder RK, Canete T, Blazquez G, Lopez-Aumatell R, Martinez-Membrives E, Vicens-Costa E, Mont C, Diaz S, Tobena A, Fernandez-Teruel A, Whitley A, Strid P, Diez M, Johannesson M, Flint J, Econs MJ, Turner CH, Foroud T (2011) Heterogeneous stock rat: a unique animal model for mapping genes influencing bone fragility. Bone 48:1169–1177

    PubMed  CAS  Google Scholar 

  • Albert FW, Carlborg O, Plyusnina I, Besnier F, Hedwig D, Lautenschlager S, Lorenz D, McIntosh J, Neumann C, Richter H, Zeising C, Kozhemyakina R, Shchepina O, Kratzsch J, Trut L, Teupser D, Thiery J, Schoneberg T, Andersson L, Paabo S (2009) Genetic architecture of tameness in a rat model of animal domestication. Genetics 182:541–554

    PubMed  Google Scholar 

  • Alemayehu A, Breen L, Krenova D, Printz MP (2002) Reciprocal rat chromosome 2 congenic strains reveal contrasting blood pressure and heart rate QTL. Physiol Genomics 10:199–210

    PubMed  CAS  Google Scholar 

  • Anderson GW Jr, Rosebrock JA, Johnson AJ, Jennings GB, Peters CJ (1991) Infection of inbred rat strains with Rift Valley fever virus: development of a congenic resistant strain and observations on age-dependence of resistance. Am J Trop Med Hyg 44:475–480

    PubMed  Google Scholar 

  • Ando Y, Ichihara N, Takeshita S, Saito Y, Kikuchi T, Wakasugi N (2004) Histological and ultrastructural features in the early stage of Purkinje cell degeneration in the cerebellar calcification (CC) rat. Exp Anim 53:81–88

    PubMed  CAS  Google Scholar 

  • Andoh Y, Kuramoto T, Yokoi N, Maihara T, Kitada K, Serikawa T (1998) Correlation between genetic and cytogenetic maps of the rat. Mamm Genome 9:287–293

    PubMed  CAS  Google Scholar 

  • Ariyarajah A, Palijan A, Dutil J, Prithiviraj K, Deng Y, Deng AY (2004) Dissecting quantitative trait loci into opposite blood pressure effects on Dahl rat chromosome 8 by congenic strains. J Hypertens 22:1495–1502

    PubMed  CAS  Google Scholar 

  • Asano A, Tsubomatsu K, Jung CG, Sasaki N, Agui T (2007) A deletion mutation of the protein tyrosine phosphatase kappa (Ptprk) gene is responsible for T-helper immunodeficiency (thid) in the LEC rat. Mamm Genome 18:779–786

    PubMed  CAS  Google Scholar 

  • Ashenhurst JR, Seaman M, David JJ (2012) Responding in a test of decision-making under risk is under moderate genetic control in the rat. Alcohol Clin Exp Res 36(6):417–425

    Google Scholar 

  • Atanur SS, Birol I, Guryev V, Hirst M, Hummel O, Morrissey C, Behmoaras J, Fernandez-Suarez XM, Johnson MD, McLaren WM, Patone G, Petretto E, Plessy C, Rockland KS, Rockland C, Saar K, Zhao Y, Carninci P, Flicek P, Kurtz T, Cuppen E, Pravenec M, Hubner N, Jones SJ, Birney E, Aitman TJ (2010) The genome sequence of the spontaneously hypertensive rat: analysis and functional significance. Genome Res 20:791–803

    PubMed  CAS  Google Scholar 

  • Bäckdahl L, Guo JP, Jagodic M, Becanovic K, Ding B, Olsson T, Lorentzen JC (2009) Definition of arthritis candidate risk genes by combining rat linkage-mapping results with human case–control association data. Ann Rheum Dis 68:1925–1932

    PubMed  Google Scholar 

  • Bader M (2010) Rat models of cardiovascular diseases. Methods Mol Biol 597:403–414

    PubMed  Google Scholar 

  • Bahr J, Follak N, Kloting N, Wilke B, Haertel B, Kloting I (2011) Iddm1 and Iddm2 Homozygous WOK.4BB Rats Develop Lymphopenia, but no Hyperglycemia like the BB/OK Rats. Exp Clin Endocrinol Diabetes 119:395–400

    PubMed  CAS  Google Scholar 

  • Balmain A, Gray J, Ponder B (2003) The genetics and genomics of cancer. Nat Genet 33(Suppl):238–244

    PubMed  CAS  Google Scholar 

  • Barkalifa R, Yagil Y, Yagil C (2010) Sex-specific genetic dissection of diabetes in a rodent model identifies Ica1 and Ndufa4 as major candidate genes. Physiol Genomics 42:445–455

    PubMed  CAS  Google Scholar 

  • Barr M, MacKenzie SM, Friel EC, Holloway CD, Wilkinson DM, Brain NJ, Ingram MC, Fraser R, Brown M, Samani NJ, Caulfield M, Munroe PB, Farrall M, Webster J, Clayton D, Dominiczak AF, Connell JM, Davies E (2007) Polymorphic variation in the 11beta-hydroxylase gene associates with reduced 11-hydroxylase efficiency. Hypertension 49:113–119

    PubMed  CAS  Google Scholar 

  • Baum AE, Solberg LC, Kopp P, Ahmadiyeh N, Churchill G, Takahashi JS, Jameson JL, Redei EE (2005) Quantitative trait loci associated with elevated thyroid-stimulating hormone in the Wistar-Kyoto rat. Endocrinology 146:870–878

    PubMed  CAS  Google Scholar 

  • Behmoaras J, Bhangal G, Smith J, McDonald K, Mutch B, Lai PC, Domin J, Game L, Salama A, Foxwell BM, Pusey CD, Cook HT, Aitman TJ (2008) Jund is a determinant of macrophage activation and is associated with glomerulonephritis susceptibility. Nat Genet 40:553–559

    PubMed  CAS  Google Scholar 

  • Ben-Ami Bartal I, Decety J, Mason P (2011) Empathy and pro-social behavior in rats. Science 334:1427–1430

    PubMed  Google Scholar 

  • Benton ME, Chen KS, Haag JD, Sattler CA, Gould MN (1999) Precocious differentiation of the virgin Wistar-Kyoto rat mammary gland. Endocrinology 140:2659–2671

    PubMed  CAS  Google Scholar 

  • Bernard I, Fournie GJ, Saoudi A (2010) Genomics studies of immune-mediated diseases using the BN-LEW rat model. Methods Mol Biol 597:389–402

    PubMed  CAS  Google Scholar 

  • Bhattacharyya S, Luan J, Challis B, Schmitz C, Clarkson P, Franks PW, Middelberg R, Keogh J, Farooqi IS, Montague C, Brennand J, Wareham NJ, O’Rahilly S (2003) Association of polymorphisms in GPR10, the gene encoding the prolactin-releasing peptide receptor with blood pressure, but not obesity, in a U.K. Caucasian population. Diabetes 52:1296–1299

    PubMed  CAS  Google Scholar 

  • Bianchi G, Ferrari P, Staessen JA (2005) Adducin polymorphism: detection and impact on hypertension and related disorders. Hypertension 45:331–340

    PubMed  CAS  Google Scholar 

  • Bice PJ, Liang T, Zhang L, Graves TJ, Carr LG, Lai D, Kimpel MW, Foroud T (2010) Fine mapping and expression of candidate genes within the chromosome 10 QTL region of the high and low alcohol-drinking rats. Alcohol 44:477–485

    PubMed  CAS  Google Scholar 

  • Bihoreau MT, Gauguier D, Kato N, Hyne G, Lindpaintner K, Rapp JP, James MR, Lathrop GM (1997) A linkage map of the rat genome derived from three F2 crosses. Genome Res 7:434–440

    PubMed  CAS  Google Scholar 

  • Bihoreau MT, Sebag-Montefiore L, Godfrey RF, Wallis RH, Brown JH, Danoy PA, Collins SC, Rouard M, Kaisaki PJ, Lathrop M, Gauguier D (2001) A high-resolution consensus linkage map of the rat, integrating radiation hybrid and genetic maps. Genomics 75:57–69

    PubMed  CAS  Google Scholar 

  • Bihoreau MT, Megel N, Brown JH, Kranzlin B, Crombez L, Tychinskaya Y, Broxholme J, Kratz S, Bergmann V, Hoffman S, Gauguier D, Gretz N (2002) Characterization of a major modifier locus for polycystic kidney disease (Modpkdr1) in the Han:SPRD(cy/+) rat in a region conserved with a mouse modifier locus for Alport syndrome. Hum Mol Genet 11:2165–2173

    PubMed  CAS  Google Scholar 

  • Bilusic M, Bataillard A, Tschannen MR, Gao L, Barreto NE, Vincent M, Wang T, Jacob HJ, Sassard J, Kwitek AE (2004) Mapping the genetic determinants of hypertension, metabolic diseases, and related phenotypes in the Lyon hypertensive rat. Hypertension 44:695–701

    PubMed  CAS  Google Scholar 

  • Blaisdell AP, Sawa K, Leising KJ, Waldmann MR (2006) Causal reasoning in rats. Science 311:1020–1022

    PubMed  CAS  Google Scholar 

  • Blakely CM, Stoddard AJ, Belka GK, Dugan KD, Notarfrancesco KL, Moody SE, D’Cruz CM, Chodosh LA (2006) Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy. Cancer Res 66:6421–6431

    PubMed  CAS  Google Scholar 

  • Bleich A, Hopf S, Hedrich HJ, van Lith HA, Li F, Balfour Sartor R, Mahler M (2009) Genetic dissection of granulomatous enterocolitis and arthritis in the intramural peptidoglycan-polysaccharide-treated rat model of IBD. Inflamm Bowel Dis 15:1794–1802

    PubMed  CAS  Google Scholar 

  • Bourque G, Pevzner PA, Tesler G (2004) Reconstructing the genomic architecture of ancestral mammals: lessons from human, mouse, and rat genomes. Genome Res 14:507–516

    PubMed  CAS  Google Scholar 

  • Brown DM, Matise TC, Koike G, Simon JS, Winer ES, Zangen S, McLaughlin MG, Shiozawa M, Atkinson OS, Hudson JR Jr, Chakravarti A, Lander ES, Jacob HJ (1998) An integrated genetic linkage map of the laboratory rat. Mamm Genome 9:521–530

    PubMed  CAS  Google Scholar 

  • Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298

    PubMed  CAS  Google Scholar 

  • Cai L, Lindpaintner K, Browne J, Gruetzner F, Haaf T, James MR, Bihoreau M (2000) An anchored YAC-STS framework for the rat genome. Cytogenet Cell Genet 89:168–170

    PubMed  CAS  Google Scholar 

  • Cailleau-Thomas A, Le Moullac-Vaidye B, Rocher J, Bouhours D, Szpirer C, Le Pendu J (2002) Cloning of a rat gene encoding the histo-blood group A enzyme. Tissue expression of the gene and of the A and B antigens. Eur J Biochem 269:4040–4047

    PubMed  CAS  Google Scholar 

  • Canzian F (1997) Phylogenetics of the laboratory rat Rattus norvegicus. Genome Res 7:262–267

    PubMed  CAS  Google Scholar 

  • Carlborg O, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625

    PubMed  CAS  Google Scholar 

  • Cavailles P, Sergent V, Bisanz C, et al. (2006) The rat Toxo1 locus directs toxoplasmosis outcome and controls parasite proliferation and spreading by macrophage-dependent mechanisms. Proc Natl Acad Sci U S A 103:744–749

    PubMed  CAS  Google Scholar 

  • Cenci MA, Whishaw IQ, Schallert T (2002) Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci 3:574–579

    PubMed  CAS  Google Scholar 

  • Chauvet C, Menard A, Xiao C, Aguila B, Blain M, Roy J, Deng AY (2012) Novel genes as primary triggers for polygenic hypertension. J Hypertens 30:81–86

    PubMed  CAS  Google Scholar 

  • Chen J, Batta A, Zheng S, Fitzgibbon WR, Ullian ME, Yu H, Tso P, Salen G, Patel SB (2005) The missense mutation in Abcg5 gene in spontaneously hypertensive rats (SHR) segregates with phytosterolemia but not hypertension. BMC Genet 6:40

    PubMed  Google Scholar 

  • Churchill PC, Churchill MC, Bidani AK, Kurtz TW (2001) Kidney-specific chromosome transfer in genetic hypertension: the Dahl hypothesis revisited. Kidney Int 60:705–714

    PubMed  CAS  Google Scholar 

  • Cicila GT, Garrett MR, Lee SJ, Liu J, Dene H, Rapp JP (2001) High-resolution mapping of the blood pressure QTL on chromosome 7 using Dahl rat congenic strains. Genomics 72:51–60

    PubMed  CAS  Google Scholar 

  • Clemitson JR, Dixon RJ, Haines S, Bingham AJ, Patel BR, Hall L, Lo M, Sassard J, Charchar FJ, Samani NJ (2007) Genetic dissection of a blood pressure quantitative trait locus on rat chromosome 1 and gene expression analysis identifies SPON1 as a novel candidate hypertension gene. Circ Res 100:992–999

    PubMed  CAS  Google Scholar 

  • Connell JM, Fraser R, MacKenzie SM, Friel EC, Ingram MC, Holloway CD, Davies E (2004) The impact of polymorphisms in the gene encoding aldosterone synthase (CYP11B2) on steroid synthesis and blood pressure regulation. Mol Cell Endocrinol 217:243–247

    PubMed  CAS  Google Scholar 

  • Corpeleijn E, van der Kallen CJ, Kruijshoop M, Magagnin MG, de Bruin TW, Feskens EJ, Saris WH, Blaak EE (2006) Direct association of a promoter polymorphism in the CD36/FAT fatty acid transporter gene with Type 2 diabetes mellitus and insulin resistance. Diabet Med 23:907–911

    PubMed  CAS  Google Scholar 

  • Cowley AW Jr, Liang M, Roman RJ, Greene AS, Jacob HJ (2004) Consomic rat model systems for physiological genomics. Acta Physiol Scand 181:585–592

    PubMed  CAS  Google Scholar 

  • Cox DR, Burmeister M, Price ER, Kim S, Myers RM (1990) Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250:245–250

    PubMed  CAS  Google Scholar 

  • Cox A, Sheehan SM, Kloting I, Paigen B, Korstanje R (2010) Combining QTL data for HDL cholesterol levels from two different species leads to smaller confidence intervals. Heredity (Edinb) 105:426–432

    CAS  Google Scholar 

  • Crespo K, Chauvet C, Blain M, Menard A, Roy J, Deng AY (2011) Normotension in Lewis and Dahl salt-resistant rats is governed by different genes. J Hypertens 29:460–465

    PubMed  CAS  Google Scholar 

  • Dalberg U, Markholst H, Hornum L (2007) Both Gimap5 and the diabetogenic BBDP allele of Gimap5 induce apoptosis in T cells. Int Immunol 19:447–453

    PubMed  CAS  Google Scholar 

  • Dann CT, Alvarado AL, Hammer RE, Garbers DL (2006) Heritable and stable gene knockdown in rats. Proc Natl Acad Sci USA 103:11246–11251

    PubMed  CAS  Google Scholar 

  • Darvasi A, Soller M (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141:1199–1207

    PubMed  CAS  Google Scholar 

  • De Miglio MR, Pascale RM, Simile MM, Muroni MR, Calvisi DF, Virdis P, Bosinco GM, Frau M, Seddaiu MA, Ladu S, Feo F (2002) Chromosome mapping of multiple loci affecting the genetic predisposition to rat liver carcinogenesis. Cancer Res 62:4459–4463

    PubMed  Google Scholar 

  • De Miglio MR, Simile MM, Muroni MR, Calvisi DF, Virdis P, Asara G, Frau M, Bosinco GM, Seddaiu MA, Daino L, Feo F, Pascale RM (2003) Phenotypic reversion of rat neoplastic liver nodules is under genetic control. Int J Cancer 105:70–75

    PubMed  Google Scholar 

  • De Miglio MR, Pascale RM, Simile MM, Muroni MR, Virdis P, Kwong KM, Wong LK, Bosinco GM, Pulina FR, Calvisi DF, Frau M, Wood GA, Archer MC, Feo F (2004) Polygenic control of hepatocarcinogenesis in Copenhagen x F344 rats. Int J Cancer 111:9–16

    PubMed  Google Scholar 

  • De Miglio MR, Virdis P, Calvisi DF, Frau M, Muroni MR, Simile MM, Daino L, Careddu GM, Sanna-Passino E, Pascale RM, Feo F (2006) Mapping a sex hormone-sensitive gene determining female resistance to liver carcinogenesis in a congenic F344.BN-Hcs4 rat. Cancer Res 66:10384–10390

    PubMed  Google Scholar 

  • De Miglio MR, Virdis P, Calvisi DF, Mele D, Muroni MR, Frau M, Pinna F, Tomasi ML, Simile MM, Pascale RM, Feo F (2007) Identification and chromosome mapping of loci predisposing to colorectal cancer that control Wnt/beta-catenin pathway and progression of early lesions in the rat. Carcinogenesis 28:2367–2374

    PubMed  Google Scholar 

  • Delles C, McBride MW, Graham D, Padmanabhan S, Dominiczak AF (2010) Genetics of hypertension: from experimental animals to humans. Biochim Biophys Acta 1802:1299–1308

    PubMed  CAS  Google Scholar 

  • Demant P (2003) Cancer susceptibility in the mouse: genetics, biology and implications for human cancer. Nat Rev Genet 4:721–734

    PubMed  CAS  Google Scholar 

  • Deng AY (2007) Positional cloning of quantitative trait loci for blood pressure: how close are we?: a critical perspective. Hypertension 49:740–747

    PubMed  CAS  Google Scholar 

  • Deng AY, Gu L, Rapp JP, Szpirer C, Szpirer J (1994) Chromosomal assignment of 11 loci in the rat by mouse-rat somatic hybrids and linkage. Mamm Genome 5:712–716

    PubMed  CAS  Google Scholar 

  • Dervieux T, Bala MV (2006) Overview of the pharmacoeconomics of pharmacogenetics. Pharmacogenomics 7:1175–1184

    PubMed  CAS  Google Scholar 

  • Draski LJ, Spuhler KP, Erwin VG, Baker RC, Deitrich RA (1992) Selective breeding of rats differing in sensitivity to the effects of acute ethanol administration. Alcohol Clin Exp Res 16:48–54

    PubMed  CAS  Google Scholar 

  • Du Y, Remmers EF, Zha H, Goldmuntz EA, Mathern P, Crofford LJ, Szpirer J, Szpirer C, Wilder RL (1995) Genetic map of eight microsatellite markers comprising two linkage groups on rat chromosome 6. Cytogenet Cell Genet 68:107–111

    PubMed  CAS  Google Scholar 

  • Dumas ME, Wilder SP, Bihoreau MT, Barton RH, Fearnside JF, Argoud K, D’Amato L, Wallis RH, Blancher C, Keun HC, Baunsgaard D, Scott J, Sidelmann UG, Nicholson JK, Gauguier D (2007) Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models. Nat Genet 39:666–672

    PubMed  CAS  Google Scholar 

  • Duong C, Charron S, Xiao C, Hamet P, Menard A, Roy J, Deng AY (2006) Distinct quantitative trait loci for kidney, cardiac, and aortic mass dissociated from and associated with blood pressure in Dahl congenic rats. Mamm Genome 17:1147–1161

    PubMed  Google Scholar 

  • Dutil J, Eliopoulos V, Marchand EL, Devlin AM, Tremblay J, Prithiviraj K, Hamet P, Migneault A, deBlois D, Deng AY (2005a) A quantitative trait locus for aortic smooth muscle cell number acting independently of blood pressure: implicating the angiotensin receptor AT1B gene as a candidate. Physiol Genomics 21:362–369

    PubMed  CAS  Google Scholar 

  • Dutil J, Eliopoulos V, Tremblay J, Hamet P, Charron S, Deng AY (2005b) Multiple quantitative trait loci for blood pressure interacting epistatically and additively on Dahl rat chromosome 2. Hypertension 45:557–564

    PubMed  CAS  Google Scholar 

  • Dwinell MR, Lazar J, Geurts AM (2011) The emerging role for rat models in gene discovery. Mamm Genome 22:466–475

    PubMed  Google Scholar 

  • Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R, Wareham N, Ahmed S, Healey CS, Bowman R, Meyer KB, Haiman CA, Kolonel LK, Henderson BE, Le Marchand L, Brennan P, Sangrajrang S, Gaborieau V, Odefrey F, Shen CY, Wu PE, Wang HC, Eccles D, Evans DG, Peto J, Fletcher O, Johnson N, Seal S, Stratton MR, Rahman N, Chenevix-Trench G, Bojesen SE, Nordestgaard BG, Axelsson CK, Garcia-Closas M, Brinton L, Chanock S, Lissowska J, Peplonska B, Nevanlinna H, Fagerholm R, Eerola H, Kang D, Yoo KY, Noh DY, Ahn SH, Hunter DJ, Hankinson SE, Cox DG, Hall P, Wedren S, Liu J, Low YL, Bogdanova N, Schurmann P, Dork T, Tollenaar RA, Jacobi CE, Devilee P, Klijn JG, Sigurdson AJ, Doody MM, Alexander BH, Zhang J, Cox A, Brock IW, MacPherson G, Reed MW, Couch FJ, Goode EL, Olson JE, Meijers-Heijboer H, van den Ouweland A, Uitterlinden A, Rivadeneira F, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Hopper JL, McCredie M, Southey M, Giles GG, Schroen C, Justenhoven C, Brauch H, Hamann U, Ko YD, Spurdle AB, Beesley J, Chen X, Mannermaa A, Kosma VM, Kataja V, Hartikainen J, Day NE, Cox DR, Ponder BA (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093

    PubMed  CAS  Google Scholar 

  • El Yacoubi M, Vaugeois JM (2007) Genetic rodent models of depression. Curr Opin Pharmacol 7:3–7

    PubMed  CAS  Google Scholar 

  • Ely D, Underwood A, Dunphy G, Boehme S, Turner M, Milsted A (2010) Review of the Y chromosome, Sry and hypertension. Steroids 75:747–753

    PubMed  CAS  Google Scholar 

  • Fanciulli M, Norsworthy PJ, Petretto E, Dong R, Harper L, Kamesh L, Heward JM, Gough SC, de Smith A, Blakemore AI, Froguel P, Owen CJ, Pearce SH, Teixeira L, Guillevin L, Graham DS, Pusey CD, Cook HT, Vyse TJ, Aitman TJ (2007) FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet 39:721–723

    PubMed  CAS  Google Scholar 

  • Feo F, De Miglio MR, Simile MM, Muroni MR, Calvisi DF, Frau M, Pascale RM (2006) Hepatocellular carcinoma as a complex polygenic disease. Interpretive analysis of recent developments on genetic predisposition. Biochim Biophys Acta 1765:126–147

    PubMed  CAS  Google Scholar 

  • Feo F, Frau M, Pascale RM (2008) Interaction of major genes predisposing to hepatocellular carcinoma with genes encoding signal transduction pathways influences tumor phenotype and prognosis. World J Gastroenterol 14:6601–6615

    PubMed  CAS  Google Scholar 

  • Fernandez ML (2007) The metabolic syndrome. Nutr Rev 65:S30–S34

    PubMed  Google Scholar 

  • Festing MF (1997) Fat rats and carcinogenesis screening. Nature 388:321–322

    PubMed  CAS  Google Scholar 

  • Finlay C, Argoud K, Wilder SP, Ouali F, Ktorza A, Kaisaki PJ, Gauguier D (2010) Chromosomal mapping of pancreatic islet morphological features and regulatory hormones in the spontaneously diabetic (Type 2) Goto-Kakizaki rat. Mamm Genome 21:499–508

    PubMed  CAS  Google Scholar 

  • Flint J (2003) Animal models of anxiety and their molecular dissection. Semin Cell Dev Biol 14:37–42

    PubMed  CAS  Google Scholar 

  • Foroud T, Bice P, Castelluccio P, Bo R, Ritchotte A, Stewart R, Lumeng L, Li TK, Carr L (2002) Mapping of QTL influencing saccharin consumption in the selectively bred alcohol-preferring and -nonpreferring rat lines. Behav Genet 32:57–67

    PubMed  CAS  Google Scholar 

  • Francis D, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155–1158

    PubMed  CAS  Google Scholar 

  • Frankel WN (2009) Genetics of complex neurological disease: challenges and opportunities for modeling epilepsy in mice and rats. Trends Genet 25:361–367

    PubMed  CAS  Google Scholar 

  • Franks PW, Bhattacharyya S, Luan J, Montague C, Brennand J, Challis B, Brage S, Ekelund U, Middelberg RP, O’Rahilly S, Wareham NJ (2004) Association between physical activity and blood pressure is modified by variants in the G-protein coupled receptor 10. Hypertension 43:224–228

    PubMed  CAS  Google Scholar 

  • Freel EM, Ingram M, Friel EC, Fraser R, Brown M, Samani NJ, Caulfield M, Munroe P, Farrall M, Webster J, Clayton D, Dominiczak AF, Davies E, Connell JM (2007) Phenotypic consequences of variation across the aldosterone synthase and 11-beta hydroxylase locus in a hypertensive cohort: data from the MRC BRIGHT Study. Clin Endocrinol 67:832–838

    CAS  Google Scholar 

  • Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7:645–658

    PubMed  CAS  Google Scholar 

  • Friese RS, Schmid-Schonbein GW, O’Connor DT (2011) Systematic polymorphism discovery after genome-wide identification of potential susceptibility loci in a hereditary rodent model of human hypertension. Blood Press 20:222–231

    PubMed  CAS  Google Scholar 

  • Furuya T, Salstrom JL, McCall-Vining S, Cannon GW, Joe B, Remmers EF, Griffiths MM, Wilder RL (2000) Genetic dissection of a rat model for rheumatoid arthritis: significant gender influences on autosomal modifier loci. Hum Mol Genet 9:2241–2250

    PubMed  CAS  Google Scholar 

  • Fuse M, Yokoi N, Shinohara M, Masuyama T, Kitazawa R, Kitazawa S, Seino S (2008) Identification of a major locus for islet inflammation and fibrosis in the spontaneously diabetic Torii rat. Physiol Genomics 35:96–105

    PubMed  CAS  Google Scholar 

  • Gardiner RM (1999) Genetic basis of the human epilepsies. Epilepsy Res 36:91–95

    PubMed  CAS  Google Scholar 

  • Garrett MR, Rapp JP (2003) Defining the blood pressure QTL on chromosome 7 in Dahl rats by a 177-kb congenic segment containing Cyp11b1. Mamm Genome 14:268–273

    PubMed  CAS  Google Scholar 

  • Garrett MR, Pezzolesi MG, Korstanje R (2010) Integrating human and rodent data to identify the genetic factors involved in chronic kidney disease. J Am Soc Nephrol 21:398–405

    PubMed  CAS  Google Scholar 

  • Gauguier D, Kaisaki PJ, Rouard M, Wallis RH, Browne J, Rapp JP, Bihoreau MT (1999) A gene map of the rat derived from linkage analysis and related regions in the mouse and human genomes. Mamm Genome 10:675–686

    PubMed  CAS  Google Scholar 

  • Gauguier D, van Luijtelaar G, Bihoreau MT, Wilder SP, Godfrey RF, Vossen J, Coenen A, Cox RD (2004) Chromosomal mapping of genetic loci controlling absence epilepsy phenotypes in the WAG/Rij rat. Epilepsia 45:908–915

    PubMed  CAS  Google Scholar 

  • Gauguier D, Behmoaras J, Argoud K, Wilder SP, Pradines C, Bihoreau MT, Osborne-Pellegrin M, Jacob MP (2005) Chromosomal mapping of quantitative trait loci controlling elastin content in rat aorta. Hypertension 45:460–466

    PubMed  CAS  Google Scholar 

  • Gelderman KA, Hultqvist M, Olsson LM, Bauer K, Pizzolla A, Olofsson P, Holmdahl R (2007) Rheumatoid arthritis: the role of reactive oxygen species in disease development and therapeutic strategies. Antioxid Redox Signal 9:1541–1567

    PubMed  CAS  Google Scholar 

  • Gering KM, Marx JA, Lennartz K, Fischer C, Rajewsky MF, Kindler-Rohrborn A (2006) The interaction mode of premalignant Schwann and immune effector cells during chemically induced carcinogenesis in the rat peripheral nervous system is strongly influenced by genetic background. Cancer Res 66:4708–4714

    PubMed  CAS  Google Scholar 

  • Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    PubMed  CAS  Google Scholar 

  • Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera HRA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Cooney AJ, D’Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E, Birney E, Mongin E, Ureta-Vidal A, Woodwark C, Zdobnov E, Bork P, Suyama M, Torrents D, Alexandersson M, Trask BJ, Young JM, Huang H, Wang H, Xing H, Daniels S, Gietzen D, Schmidt J, Stevens K, Vitt U, Wingrove J, Camara F, Mar Alba M, Abril JF, Guigo R, Smit A, Dubchak I, Rubin EM, Couronne O, Poliakov A, Hubner N, Ganten D, Goesele C, Hummel O, Kreitler T, Lee YA, Monti J, Schulz H, Zimdahl H, Himmelbauer H, Lehrach H, Jacob HJ, Bromberg S, Gullings-Handley J, Jensen-Seaman MI, Kwitek AE, Lazar J, Pasko D, Tonellato PJ, Twigger S, Ponting CP, Duarte JM, Rice S, Goodstadt L, Beatson SA, Emes RD, Winter EE, Webber C, Brandt P, Nyakatura G, Adetobi M, Chiaromonte F, Elnitski L, Eswara P, Hardison RC, Hou M, Kolbe D, Makova K, Miller W, Nekrutenko A, Riemer C, Schwartz S, Taylor J, Yang S, Zhang Y, Lindpaintner K, Andrews TD, Caccamo M, Clamp M, Clarke L, Curwen V, Durbin R, Eyras E, Searle SM, Cooper GM, Batzoglou S, Brudno M, Sidow A, Stone EA, Payseur BA, Bourque G, Lopez-Otin C, Puente XS, Chakrabarti K, Chatterji S, Dewey C, Pachter L, Bray N, Yap VB, Caspi A, Tesler G, Pevzner PA, Haussler D, Roskin KM, Baertsch R, Clawson H, Furey TS, Hinrichs AS, Karolchik D, Kent WJ, Rosenbloom KR, Trumbower H, Weirauch M, Cooper DN, Stenson PD, Ma B, Brent M, Arumugam M, Shteynberg D, Copley RR, Taylor MS, Riethman H, Mudunuri U, Peterson J, Guyer M, Felsenfeld A, Old S, Mockrin S, Collins F (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521

    PubMed  CAS  Google Scholar 

  • Gigante B, Rubattu S, Stanzione R, Lombardi A, Baldi A, Baldi F, Volpe M (2003) Contribution of genetic factors to renal lesions in the stroke-prone spontaneously hypertensive rat. Hypertension 42:702–706

    PubMed  CAS  Google Scholar 

  • Gilibert S, Kwitek AE, Hubner N, Tschannen M, Jacob HJ, Sassard J, Bataillard A (2008) Effects of chromosome 17 on features of the metabolic syndrome in the Lyon hypertensive rat. Physiol Genomics 33:212–217

    PubMed  CAS  Google Scholar 

  • Gillett A, Marta M, Jin T, Tuncel J, Leclerc P, Nohra R, Lange S, Holmdahl R, Olsson T, Harris RA, Jagodic M (2010) TNF production in macrophages is genetically determined and regulates inflammatory disease in rats. J Immunol 185:442–450

    PubMed  CAS  Google Scholar 

  • Glazier AM, Nadeau JH, Aitman TJ (2002a) Finding genes that underlie complex traits. Science 298:2345–2349

    PubMed  CAS  Google Scholar 

  • Glazier AM, Scott J, Aitman TJ (2002b) Molecular basis of the Cd36 chromosomal deletion underlying SHR defects in insulin action and fatty acid metabolism. Mamm Genome 13:108–113

    PubMed  CAS  Google Scholar 

  • Gohma H, Kuramoto T, Kuwamura M, Okajima R, Tanimoto N, Yamasaki K, Nakanishi S, Kitada K, Makiyama T, Akao M, Kita T, Sasa M, Serikawa T (2006) WTC deafness Kyoto (dfk): a rat model for extensive investigations of Kcnq1 functions. Physiol Genomics 24:198–206

    PubMed  CAS  Google Scholar 

  • Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129:1953–1971

    PubMed  Google Scholar 

  • Goldstein DB, Need AC, Singh R, Sisodiya SM (2007) Potential genetic causes of heterogeneity of treatment effects. Am J Med 120:S21–S25

    PubMed  CAS  Google Scholar 

  • Gopalakrishnan K, Kumarasamy S, Rapp JP, Joe B (2011) Reply to “Letter to the Editor: ‘Mapping genes for hypertension using experimental models: a challenging and unanticipated very long journey’”. Physiol Genomics 43:101–102

    CAS  Google Scholar 

  • Gould MN (1986) Inheritance and site of expression of genes controlling susceptibility to mammary cancer in an inbred rat model. Cancer Res 46:1199–1202

    PubMed  CAS  Google Scholar 

  • Gould KA, Tochacek M, Schaffer BS, Reindl TM, Murrin CR, Lachel CM, VanderWoude EA, Pennington KL, Flood LA, Bynote KK, Meza JL, Newton MA, Shull JD (2004) Genetic determination of susceptibility to estrogen-induced mammary cancer in the ACI rat: mapping of Emca1 and Emca2 to chromosomes 5 and 18. Genetics 168:2113–2125

    PubMed  CAS  Google Scholar 

  • Gould KA, Pandey J, Lachel CM, Murrin CR, Flood LA, Pennington KL, Schaffer BS, Tochacek M, McComb RD, Meza JL, Wendell DL, Shull JD (2005) Genetic mapping of Eutr1, a locus controlling E2-induced pyometritis in the Brown Norway rat, to RNO5. Mamm Genome 16:854–864

    PubMed  CAS  Google Scholar 

  • Gould KA, Strecker TE, Hansen KK, Bynote KK, Peterson KA, Shull JD (2006) Genetic mapping of loci controlling diethylstilbestrol-induced thymic atrophy in the Brown Norway rat. Mamm Genome 17:451–464

    PubMed  CAS  Google Scholar 

  • Graham D, McBride MW, Brain NJ, Dominiczak AF (2005) Congenic/consomic models of hypertension. Methods Mol Med 108:3–15

    PubMed  Google Scholar 

  • Graham D, McBride MW, Gaasenbeek M, Gilday K, Beattie E, Miller WH, McClure JD, Polke JM, Montezano A, Touyz RM, Dominiczak AF (2007) Candidate genes that determine response to salt in the stroke-prone spontaneously hypertensive rat: congenic analysis. Hypertension 50:1134–1141

    PubMed  CAS  Google Scholar 

  • Greenhouse DG, Festing MF, Hasan S, Cohen AL (1990) Catalogue of inbred strains of rats and mutants. In: Hedrich HJ (ed) Genetic monitoring of inbred strains of rats. Gustav Fischer Verlag, Stuttgard, pp 410–480

    Google Scholar 

  • Grieve IC, Dickens NJ, Pravenec M, Kren V, Hubner N, Cook SA, Aitman TJ, Petretto E, Mangion J (2008) Genome-wide co-expression analysis in multiple tissues. PLoS One 3:e4033

    PubMed  Google Scholar 

  • Guryev V, Berezikov E, Malik R, Plasterk RH, Cuppen E (2004) Single nucleotide polymorphisms associated with rat expressed sequences. Genome Res 14:1438–1443

    PubMed  CAS  Google Scholar 

  • Guryev V, Smits BM, van de Belt J, Verheul M, Hubner N, Cuppen E (2006) Haplotype block structure is conserved across mammals. PLoS Genet 2:e121

    PubMed  Google Scholar 

  • Guryev V, Saar K, Adamovic T, Verheul M, van Heesch SA, Cook S, Pravenec M, Aitman T, Jacob H, Shull JD, Hubner N, Cuppen E (2008) Distribution and functional impact of DNA copy number variation in the rat. Nat Genet 40:538–545

    PubMed  CAS  Google Scholar 

  • Haag JD, Shepel LA, Kolman BD, Monson DM, Benton ME, Watts KT, Waller JL, Lopez-Guajardo CC, Samuelson DJ, Gould MN (2003) Congenic rats reveal three independent Copenhagen alleles within the Mcs1 quantitative trait locus that confer resistance to mammary cancer. Cancer Res 63:5808–5812

    PubMed  CAS  Google Scholar 

  • Haldi ML, Lim P, Kaphingst K, Akella U, Whang J, Lander ES (1997) Construction of a large-insert yeast artificial chromosome library of the rat genome. Mamm Genome 8:460

    PubMed  Google Scholar 

  • Hamta A, Adamovic T, Samuelson E, Helou K, Behboudi A, Levan G (2006) Chromosome ideograms of the laboratory rat (Rattus norvegicus) based on high-resolution banding, and anchoring of the cytogenetic map to the DNA sequence by FISH in sample chromosomes. Cytogenet Genome Res 115:158–168

    PubMed  CAS  Google Scholar 

  • Harris EL, Stoll M, Jones GT, Granados MA, Porteous WK, Van Rij AM, Jacob HJ (2001) Identification of two susceptibility loci for vascular fragility in the Brown Norway rat. Physiol Genomics 6:183–189

    PubMed  CAS  Google Scholar 

  • Hecht F (2007) Familial cancer syndromes: catalog with comments. Cytogenet Genome Res 118:222–228

    PubMed  CAS  Google Scholar 

  • Hedrich HJ (1990a) List of mutant-bearing strains and stocks. In: Hedrich HJ (ed) Genetic monitoring of inbred strains of rats. Gustav Fischer Verlag, Stuttgart, New York, pp 495–499

    Google Scholar 

  • Hedrich HJ (1990b) Catalogue of mutant genes and polymorphic loci. In: Hedrich HJ (ed) Genetic monitoring of inbred strains of rats. Gustav Fischer Verlag, Stuttgart, pp 289–404

    Google Scholar 

  • Hedrich HJ (2006) Taxonomy and stocks and strains. In: Suckow MA, Weisbroth SH, Franklin CL (eds) The laboratory rat, 2nd edn. Elsevier, Amsterdam, pp 71–92

    Google Scholar 

  • Hegen M, Keith JC Jr, Collins M, Nickerson-Nutter CL (2008) Utility of animal models for identification of potential therapeutics for rheumatoid arthritis. Ann Rheum Dis 67:1505–1515

    PubMed  CAS  Google Scholar 

  • Hein DW, Doll MA, Fretland AJ, Gray K, Deitz AC, Feng Y, Jiang W, Rustan TD, Satran SL, Wilkie TR Sr (1997) Rodent models of the human acetylation polymorphism: comparisons of recombinant acetyltransferases. Mutat Res 376:101–106

    PubMed  CAS  Google Scholar 

  • Heinig M, Petretto E, Wallace C, Bottolo L, Rotival M, Lu H, Li Y, Sarwar R, Langley SR, Bauerfeind A, Hummel O, Lee YA, Paskas S, Rintisch C, Saar K, Cooper J, Buchan R, Gray EE, Cyster JG, Erdmann J, Hengstenberg C, Maouche S, Ouwehand WH, Rice CM, Samani NJ, Schunkert H, Goodall AH, Schulz H, Roider HG, Vingron M, Blankenberg S, Munzel T, Zeller T, Szymczak S, Ziegler A, Tiret L, Smyth DJ, Pravenec M, Aitman TJ, Cambien F, Clayton D, Todd JA, Hubner N, Cook SA (2010) A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature 467:460–464

    PubMed  CAS  Google Scholar 

  • Helou K, Walentinsson A, Levan G, Stahl F (2001) Between rat and mouse zoo-FISH reveals 49 chromosomal segments that have been conserved in evolution. Mamm Genome 12:765–771

    PubMed  CAS  Google Scholar 

  • Herrera VL, Tsikoudakis A, Ponce LR, Matsubara Y, Ruiz-Opazo N (2006) Sex-specific QTLs and interacting loci underlie salt-sensitive hypertension and target organ complications in Dahl S/jrHS hypertensive rats. Physiol Genomics 26:172–179

    PubMed  CAS  Google Scholar 

  • Hilbert P, Lindpaintner K, Beckmann JS, Serikawa T, Soubrier F, Dubay C, Cartwright P, De Gouyon B, Julier C, Takahasi S et al (1991) Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353:521–529

    PubMed  CAS  Google Scholar 

  • Hirano M, Tanuma J, Hirayama Y, Ohyama M, Semba I, Wakusawa S, Shisa H, Hiai H, Kitano M (2006) A speed congenic rat strain bearing the tongue cancer susceptibility locus Tscc1 from Dark-Agouti rats. Cancer Lett 231:185–191

    PubMed  CAS  Google Scholar 

  • Hitzemann R, Malmanger B, Cooper S, Coulombe S, Reed C, Demarest K, Koyner J, Cipp L, Flint J, Talbot C, Rademacher B, Buck K, McCaughran J Jr (2002) Multiple cross mapping (MCM) markedly improves the localization of a QTL for ethanol-induced activation. Genes Brain Behav 1:214–222

    PubMed  CAS  Google Scholar 

  • Homberg J, Nijman IJ, Kuijpers S, Cuppen E (2010) Identification of genetic modifiers of behavioral phenotypes in serotonin transporter knockout rats. BMC Genet 11:37

    PubMed  Google Scholar 

  • Hoopes RR Jr, Reid R, Sen S, Szpirer C, Dixon P, Pannett AA, Thakker RV, Bushinsky DA, Scheinman SJ (2003) Quantitative trait loci for hypercalciuria in a rat model of kidney stone disease. J Am Soc Nephrol 14:1844–1850

    PubMed  CAS  Google Scholar 

  • Hornum L, Markholst H (2004) New autoimmune genes and the pathogenesis of type 1 diabetes. Curr Diab Rep 4:135–142

    PubMed  Google Scholar 

  • Hornum L, Romer J, Markholst H (2002) The diabetes-prone BB rat carries a frameshift mutation in Ian4, a positional candidate of Iddm1. Diabetes 51:1972–1979

    PubMed  CAS  Google Scholar 

  • Hsu LC, Kennan WS, Shepel LA, Jacob HJ, Szpirer C, Szpirer J, Lander ES, Gould MN (1994) Genetic identification of Mcs-1, a rat mammary carcinoma suppressor gene. Cancer Res 54:2765–2770

    PubMed  CAS  Google Scholar 

  • Huang G, Tong C, Kumbhani DS, Ashton C, Yan H, Ying QL (2011) Beyond knockout rats: new insights into finer genome manipulation in rats. Cell Cycle 10:1059–1066

    PubMed  CAS  Google Scholar 

  • Huberle A, Beyeen AD, Ockinger J, Ayturan M, Jagodic M, de Graaf KL, Fissolo N, Marta M, Olofsson P, Hultqvist M, Holmdahl R, Olsson T, Weissert R (2009) Advanced intercross line mapping suggests that ncf1 (ean6) regulates severity in an animal model of guillain-barre syndrome. J Immunol 182:4432–4438

    PubMed  CAS  Google Scholar 

  • Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, Musilova A, Kren V, Causton H, Game L, Born G, Schmidt S, Muller A, Cook SA, Kurtz TW, Whittaker J, Pravenec M, Aitman TJ (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37:243–253

    PubMed  CAS  Google Scholar 

  • Hultqvist M, Olofsson P, Gelderman KA, Holmberg J, Holmdahl R (2006) A new arthritis therapy with oxidative burst inducers. PLoS Med 3:e348

    PubMed  Google Scholar 

  • Imaoka T, Nishimura M, Kakinuma S, Hatano Y, Ohmachi Y, Yoshinaga S, Kawano A, Maekawa A, Shimada Y (2007) High relative biologic effectiveness of carbon ion radiation on induction of rat mammary carcinoma and its lack of H-ras and Tp53 mutations. Int J Radiat Oncol Biol Phys 69:194–203

    PubMed  CAS  Google Scholar 

  • Inaguma S, Takahashi S, Ohnishi H, Suzuki S, Cho YM, Shirai T (2003) High susceptibility of the ACI and spontaneously hypertensive rat (SHR) strains to 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) prostate carcinogenesis. Cancer Sci 94:974–979

    PubMed  CAS  Google Scholar 

  • Isaacs JT (1984) The aging ACI/Seg versus Copenhagen male rat as a model system for the study of prostatic carcinogenesis. Cancer Res 44:5785–5796

    PubMed  CAS  Google Scholar 

  • Isaacs JT (1988) Inheritance of a genetic factor from the Copenhagen rat and the suppression of chemically induced mammary adenocarcinogenesis. Cancer Res 48:2204–2213

    PubMed  CAS  Google Scholar 

  • Isaacs JT (1991) A mammary cancer suppressor gene and its site of action in the rat. Cancer Res 51:1591–1595

    PubMed  CAS  Google Scholar 

  • Izidio GS, Oliveira LC, Oliveira LF, Pereira E, Wehrmeister TD, Ramos A (2011) The influence of sex and estrous cycle on QTL for emotionality and ethanol consumption. Mamm Genome 22:329–340

    PubMed  CAS  Google Scholar 

  • Jacob HJ (1999) Functional genomics and rat models. Genome Res 9:1013–1016

    PubMed  CAS  Google Scholar 

  • Jacob HJ, Lindpaintner K, Lincoln SE, Kusumi K, Bunker RK, Mao YP, Ganten D, Dzau VJ, Lander ES (1991) Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67:213–224

    PubMed  CAS  Google Scholar 

  • Jacob HJ, Brown DM, Bunker RK, Daly MJ, Dzau VJ, Goodman A, Koike G, Kren V, Kurtz T, Lernmark A et al (1995) A genetic linkage map of the laboratory rat, Rattus norvegicus. Nat Genet 9:63–69

    PubMed  CAS  Google Scholar 

  • Jacob HJ, Lazar J, Dwinell MR, Moreno C, Geurts AM (2010) Gene targeting in the rat: advances and opportunities. Trends Genet 26:510–518

    PubMed  CAS  Google Scholar 

  • Jagodic M, Olsson T (2006) Combined-cross analysis of genome-wide linkage scans for experimental autoimmune encephalomyelitis in rat. Genomics 88:737–744

    PubMed  CAS  Google Scholar 

  • Jagodic M, Marta M, Becanovic K, Sheng JR, Nohra R, Olsson T, Lorentzen JC (2005) Resolution of a 16.8-Mb autoimmunity-regulating rat chromosome 4 region into multiple encephalomyelitis quantitative trait loci and evidence for epistasis. J Immunol 174:918–924

    PubMed  CAS  Google Scholar 

  • Jagodic M, Colacios C, Nohra R, Dejean AS, Beyeen AD, Khademi M, Casemayou A, Lamouroux L, Duthoit C, Papapietro O, Sjoholm L, Bernard I, Lagrange D, Dahlman I, Lundmark F, Oturai AB, Soendergaard HB, Kemppinen A, Saarela J, Tienari PJ, Harbo HF, Spurkland A, Ramagopalan SV, Sadovnick DA, Ebers GC, Seddighzadeh M, Klareskog L, Alfredsson L, Padyukov L, Hillert J, Clanet M, Edan G, Fontaine B, Fournie GJ, Kockum I, Saoudi A, Olsson T (2009) A role for VAV1 in experimental autoimmune encephalomyelitis and multiple sclerosis. Sci Transl Med 1:10ra21

    PubMed  Google Scholar 

  • Jahoda CA, Kljuic A, O’Shaughnessy R, Crossley N, Whitehouse CJ, Robinson M, Reynolds AJ, Demarchez M, Porter RM, Shapiro L, Christiano AM (2004) The lanceolate hair rat phenotype results from a missense mutation in a calcium coordinating site of the desmoglein 4 gene. Genomics 83:747–756

    PubMed  CAS  Google Scholar 

  • James MR, Lindpaintner K (1997) Why map the rat? Trends Genet 13:171–173

    PubMed  CAS  Google Scholar 

  • Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391

    PubMed  CAS  Google Scholar 

  • Jirout M, Krenova D, Kren V, Breen L, Pravenec M, Schork NJ, Printz MP (2003) A new framework marker-based linkage map and SDPs for the rat HXB/BXH strain set. Mamm Genome 14:537–546

    PubMed  CAS  Google Scholar 

  • Jirout ML, Friese RS, Mahapatra NR, Mahata M, Taupenot L, Mahata SK, Kren V, Zidek V, Fischer J, Maatz H, Ziegler MG, Pravenec M, Hubner N, Aitman TJ, Schork NJ, O’Connor DT (2010) Genetic regulation of catecholamine synthesis, storage and secretion in the spontaneously hypertensive rat. Hum Mol Genet 19:2567–2580

    PubMed  CAS  Google Scholar 

  • Johannesson M, Hultqvist M, Holmdahl R (2006) Genetics of autoimmune diseases: a multistep process. Curr Top Microbiol Immunol 305:259–276

    PubMed  CAS  Google Scholar 

  • Johannesson M, Lopez-Aumatell R, Stridh P, Diez M, Tuncel J, Blazquez G, Martinez-Membrives E, Canete T, Vicens-Costa E, Graham D, Copley RR, Hernandez-Pliego P, Beyeen AD, Ockinger J, Fernandez-Santamaria C, Gulko PS, Brenner M, Tobena A, Guitart-Masip M, Gimenez-Llort L, Dominiczak A, Holmdahl R, Gauguier D, Olsson T, Mott R, Valdar W, Redei EE, Fernandez-Teruel A, Flint J (2009) A resource for the simultaneous high-resolution mapping of multiple quantitative trait loci in rats: the NIH heterogeneous stock. Genome Res 19:150–158

    PubMed  CAS  Google Scholar 

  • Johnson RJ, Segal MS, Srinivas T, Ejaz A, Mu W, Roncal C, Sanchez-Lozada LG, Gersch M, Rodriguez-Iturbe B, Kang DH, Acosta JH (2005) Essential hypertension, progressive renal disease, and uric acid: a pathogenetic link? J Am Soc Nephrol 16:1909–1919

    PubMed  CAS  Google Scholar 

  • Johnson MD, He L, Herman D, Wakimoto H, Wallace CA, Zidek V, Mlejnek P, Musilova A, Simakova M, Vorlicek J, Kren V, Viklicky O, Qi NR, Wang J, Seidman CE, Seidman J, Kurtz TW, Aitman TJ, Pravenec M (2009) Dissection of chromosome 18 blood pressure and salt-sensitivity quantitative trait loci in the spontaneously hypertensive rat. Hypertension 54:639–645

    PubMed  CAS  Google Scholar 

  • Jones HC, Chen GF, Yehia BR, Carter BJ, Akins EJ, Wolpin LC (2005) Single and multiple congenic strains for hydrocephalus in the H-Tx rat. Mamm Genome 16:251–261

    PubMed  Google Scholar 

  • Kacew S, Festing MF (1996) Role of rat strain in the differential sensitivity to pharmaceutical agents and naturally occurring substances. J Toxicol Environ Health 47:1–30

    PubMed  CAS  Google Scholar 

  • Kaisaki PJ, Delepine M, Woon PY, Sebag-Montefiore L, Wilder SP, Menzel S, Vionnet N, Marion E, Riveline JP, Charpentier G, Schurmans S, Levy JC, Lathrop M, Farrall M, Gauguier D (2004) Polymorphisms in type II SH2 domain-containing inositol 5-phosphatase (INPPL1, SHIP2) are associated with physiological abnormalities of the metabolic syndrome. Diabetes 53:1900–1904

    PubMed  CAS  Google Scholar 

  • Kawamata M, Ochiya T (2010) Generation of genetically modified rats from embryonic stem cells. Proc Natl Acad Sci USA 107:14223–14228

    PubMed  CAS  Google Scholar 

  • Kikuchi Y, Sudo A, Mitani H, Hino O (2004) Presence of a modifier gene(s) affecting early renal carcinogenesis in the Tsc2 mutant (Eker) rat model. Int J Oncol 24:75–80

    PubMed  CAS  Google Scholar 

  • Kim EY, Moudgil KD (2009) The determinants of susceptibility/resistance to adjuvant arthritis in rats. Arthritis Res Ther 11:239

    PubMed  Google Scholar 

  • Kim H, Panteleyev AA, Jahoda CA, Ishii Y, Christiano AM (2004) Genomic organization and analysis of the hairless gene in four hypotrichotic rat strains. Mamm Genome 15:975–981

    PubMed  CAS  Google Scholar 

  • Kindler-Röhrborn A, Kind AB, Koelsch BU, Fischer C, Rajewsky MF (2000) Suppression of ethylnitrosourea-induced schwannoma development involves elimination of neu/erbB-2 mutant premalignant cells in the resistant BDIV rat strain. Cancer Res 60:4756–4760

    PubMed  Google Scholar 

  • King-Herbert A, Thayer K (2006) NTP workshop: animal models for the NTP rodent cancer bioassay: stocks and strains–should we switch? Toxicol Pathol 34:802–805

    PubMed  Google Scholar 

  • Kitada K, Ishishita S, Tosaka K, Takahashi R, Ueda M, Keng VW, Horie K, Takeda J (2007) Transposon-tagged mutagenesis in the rat. Nat Methods 4:131–133

    PubMed  CAS  Google Scholar 

  • Koelsch BU, Winzen-Reichert B, Fischer C, Kutritz A, van den Berg L, Kindler-Rohrborn A (2011) Sex-biased suppression of chemically induced neural carcinogenesis in congenic BDIX.BDIV-Mss4a rats. Physiol Genomics 43:631–639

    PubMed  CAS  Google Scholar 

  • Koller DL, Liu L, Alam I, Sun Q, Econs MJ, Foroud T, Turner CH (2009) Epistasis between QTLs for bone density variation in Copenhagen x dark agouti F2 rats. Mamm Genome 20:180–186

    PubMed  Google Scholar 

  • Konno T, Rempel LA, Rumi MA, Graham AR, Asanoma K, Renaud SJ, Soares MJ (2011) Chromosome-substituted rat strains provide insights into the genetics of placentation. Physiol Genomics 43(15):930–941

    PubMed  CAS  Google Scholar 

  • Korbolina EE, Kozhevnikova OS, Stefanova NA, Kolosova NG (2012) Quantitative trait loci on chromosome 1 for cataract and AMD-like retinopathy in senescence-accelerated OXYS rats. Aging 4:1–11

    Google Scholar 

  • Korkola JE, Archer MC (1999) Resistance to mammary tumorigenesis in Copenhagen rats is associated with the loss of preneoplastic lesions. Carcinogenesis 20:221–227

    PubMed  CAS  Google Scholar 

  • Kose H, Bando Y, Izumi K, Yamada T, Matsumoto K (2007a) Epistasis between hyperglycemic QTLs revealed in a double congenic of the OLETF rat. Mamm Genome 18:609–615

    PubMed  Google Scholar 

  • Kose H, Sakai T, Tsukumo S, Wei K, Yamada T, Yasutomo K, Matsumoto K (2007b) Maturational arrest of thymocyte development is caused by a deletion in the receptor-like protein tyrosine phosphatase kappa gene in LEC rats. Genomics 89:673–677

    PubMed  CAS  Google Scholar 

  • Kota L, Osborne-Pellegrin M, Schulz H, Behmoaras J, Coutard M, Gong M, Hubner N (2007) Quantitative genetic basis of arterial phenotypes in the Brown Norway rat. Physiol Genomics 30:17–25

    PubMed  CAS  Google Scholar 

  • Kren V, Qi N, Krenova D, Zidek V, Sladka M, Jachymova M, Mikova B, Horky K, Bonne A, Van Lith HA, Van Zutphen BF, Lau YF, Pravenec M, St Lezin E (2001) Y-chromosome transfer induces changes in blood pressure and blood lipids in SHR. Hypertension 37:1147–1152

    PubMed  CAS  Google Scholar 

  • Kreutz R, Stock P, Struk B, Lindpaintner K (1996) The Y chromosome. Epistatic and ecogenetic interactions in genetic hypertension. Hypertension 28:895–897

    PubMed  CAS  Google Scholar 

  • Kreutz R, Struk B, Stock P, Hubner N, Ganten D, Lindpaintner K (1997) Evidence for primary genetic determination of heart rate regulation: chromosomal mapping of a genetic locus in the rat. Circulation 96:1078–1081

    PubMed  CAS  Google Scholar 

  • Krzywinski M, Wallis J, Gosele C, Bosdet I, Chiu R, Graves T, Hummel O, Layman D, Mathewson C, Wye N, Zhu B, Albracht D, Asano J, Barber S, Brown-John M, Chan S, Chand S, Cloutier A, Davito J, Fjell C, Gaige T, Ganten D, Girn N, Guggenheimer K, Himmelbauer H, Kreitler T, Leach S, Lee D, Lehrach H, Mayo M, Mead K, Olson T, Pandoh P, Prabhu AL, Shin H, Tanzer S, Thompson J, Tsai M, Walker J, Yang G, Sekhon M, Hillier L, Zimdahl H, Marziali A, Osoegawa K, Zhao S, Siddiqui A, de Jong PJ, Warren W, Mardis E, McPherson JD, Wilson R, Hubner N, Jones S, Marra M, Schein J (2004) Integrated and sequence-ordered BAC- and YAC-based physical maps for the rat genome. Genome Res 14:766–779

    PubMed  CAS  Google Scholar 

  • Ku CS, Loy EY, Pawitan Y, Chia KS (2010) The pursuit of genome-wide association studies: where are we now? J Hum Genet 55:195–206

    PubMed  CAS  Google Scholar 

  • Kunert MP, Drenjancevic-Peric I, Dwinell MR, Lombard JH, Cowley AW Jr, Greene AS, Kwitek AE, Jacob HJ (2006) Consomic strategies to localize genomic regions related to vascular reactivity in the Dahl salt-sensitive rat. Physiol Genomics 26:218–225

    PubMed  CAS  Google Scholar 

  • Kunert MP, Dwinell MR, Lombard JH (2010) Vascular responses in aortic rings of a consomic rat panel derived from the Fawn Hooded Hypertensive strain. Physiol Genomics 42A:244–258

    PubMed  CAS  Google Scholar 

  • Kuramoto T, Kuwamura M, Serikawa T (2004) Rat neurological mutations cerebellar vermis defect and hobble are caused by mutations in the netrin-1 receptor gene Unc5h3. Brain Res Mol Brain Res 122:103–108

    PubMed  CAS  Google Scholar 

  • Kuramoto T, Kuwamura M, Tokuda S, Izawa T, Nakane Y, Kitada K, Akao M, Guenet JL, Serikawa T (2011) A mutation in the gene encoding mitochondrial Mg(2) + channel MRS2 results in demyelination in the rat. PLoS Genet 7:e1001262

    PubMed  CAS  Google Scholar 

  • Kurz SG, Hansen KK, McLaughlin MT, Shivaswamy V, Schaffer BS, Gould KA, McComb RD, Meza JL, Shull JD (2008) Tissue-specific actions of the Ept1, Ept2, Ept6, and Ept9 genetic determinants of responsiveness to estrogens in the female rat. Endocrinology 149:3850–3859

    PubMed  CAS  Google Scholar 

  • Kuwamura M, Muraguchi T, Matsui T, Ueno M, Takenaka S, Yamate J, Kotani T, Kuramoto T, Guenet JL, Kitada K, Serikawa T (2005) Mutation at the Lmx1a locus provokes aberrant brain development in the rat. Brain Res Dev Brain Res 155:99–106

    PubMed  CAS  Google Scholar 

  • Kwitek AE, Tonellato PJ, Chen D, Gullings-Handley J, Cheng YS, Twigger S, Scheetz TE, Casavant TL, Stoll M, Nobrega MA, Shiozawa M, Soares MB, Sheffield VC, Jacob HJ (2001) Automated construction of high-density comparative maps between rat, human, and mouse. Genome Res 11:1935–1943

    PubMed  CAS  Google Scholar 

  • Kwitek AE, Gullings-Handley J, Yu J, Carlos DC, Orlebeke K, Nie J, Eckert J, Lemke A, Andrae JW, Bromberg S, Pasko D, Chen D, Scheetz TE, Casavant TL, Soares MB, Sheffield VC, Tonellato PJ, Jacob HJ (2004) High-density rat radiation hybrid maps containing over 24,000 SSLPs, genes, and ESTs provide a direct link to the rat genome sequence. Genome Res 14:750–757

    PubMed  CAS  Google Scholar 

  • Laaksonen R, Thelen KM, Paiva H, Matinheikki J, Vesalainen R, Janatuinen T, Knuuti J, Rontu R, von Bergmann K, Lutjohann D, Lehtimaki T (2006) Genetic variant of the SREBF-1 gene is significantly related to cholesterol synthesis in man. Atherosclerosis 185:206–209

    PubMed  CAS  Google Scholar 

  • Lagerholm S, Park HB, Luthman H, Grynpas M, McGuigan F, Swanberg M, Akesson K (2011) Identification of candidate gene regions in the rat by co-localization of QTLs for bone density, size, structure and strength. PLoS One 6:e22462

    PubMed  CAS  Google Scholar 

  • Lan H, Kendziorski CM, Haag JD, Shepel LA, Newton MA, Gould MN (2001) Genetic loci controlling breast cancer susceptibility in the Wistar-Kyoto rat. Genetics 157:331–339

    PubMed  CAS  Google Scholar 

  • Langer B, Dorsch M, Gartner K, Wedekind D, Kamino K, Hedrich HJ (2004) WKY/Ztm-ter: a new rat inbred strain on the WKY/Ztm genetic background with congenital teratomas. Lab Anim 38:425–431

    PubMed  CAS  Google Scholar 

  • Laragh JH, Brenner BM (eds) (1990) Hypertension: pathophysiology, diagnosis and managment. Raven Press, New York

    Google Scholar 

  • Lee SJ, Liu J, Westcott AM, Vieth JA, DeRaedt SJ, Yang S, Joe B, Cicila GT (2006) Substitution mapping in dahl rats identifies two distinct blood pressure quantitative trait loci within 1.12- and 1.25-mb intervals on chromosome 3. Genetics 174:2203–2213

    PubMed  CAS  Google Scholar 

  • Lella V, Stieber D, Riviere M, Szpirer J, Szpirer C (2007) Mammary cancer resistance and precocious mammary differentiation in the WKY rat: identification of 2 quantitative trait loci. Int J Cancer 121:1738–1743

    PubMed  CAS  Google Scholar 

  • Lepretre F, Cheyssac C, Amouyel P, Froguel P, Helbecque N (2004a) A promoter polymorphism in CD36 is associated with an atherogenic lipid profile in a French general population. Atherosclerosis 173:375–377

    PubMed  CAS  Google Scholar 

  • Lepretre F, Vasseur F, Vaxillaire M, Scherer PE, Ali S, Linton K, Aitman T, Froguel P (2004b) A CD36 nonsense mutation associated with insulin resistance and familial type 2 diabetes. Hum Mutat 24:104

    PubMed  Google Scholar 

  • Levan G (1974) Nomenclature for G-bands in rat chromosomes. Hereditas 77:37–52

    PubMed  CAS  Google Scholar 

  • Levan G, Szpirer J, Szpirer C, Klinga K, Hanson C, Islam MQ (1991) The gene map of the Norway rat (Rattus norvegicus) and comparative mapping with mouse and man. Genomics 10:699–718

    PubMed  CAS  Google Scholar 

  • Li TK, Lumeng L, Doolittle DP (1993) Selective breeding for alcohol preference and associated responses. Behav Genet 23:163–170

    PubMed  CAS  Google Scholar 

  • Li G, Guo Z, Higuchi K, Kawakubo M, Matsumoto K, Mori M (2005) A locus for eosinophilia in the MES rat is on chromosome 19. Mamm Genome 16:516–523

    PubMed  CAS  Google Scholar 

  • Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh CL, Pera MF, Ying QL (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299–1310

    PubMed  CAS  Google Scholar 

  • Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, Lalouel JM (1992) A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 355:262–265

    PubMed  CAS  Google Scholar 

  • Lindsey JR, Baker HJ (2006) Historical foundations. In: Suckow MA, Weisbroth SH, Franklin CL (eds) The laboratory rat, 2nd edn. Elsevier, Amsterdam, pp 1–52

    Google Scholar 

  • Liska F, Gosele C, Rivkin E, Tres L, Cardoso MC, Domaing P, Krejci E, Snajdr P, Lee-Kirsch MA, de Rooij DG, Kren V, Krenova D, Kierszenbaum AL, Hubner N (2009a) Rat hd mutation reveals an essential role of centrobin in spermatid head shaping and assembly of the head-tail coupling apparatus. Biol Reprod 81:1196–1205

    PubMed  CAS  Google Scholar 

  • Liska F, Snajdr P, Sedova L, Seda O, Chylikova B, Slamova P, Krejci E, Sedmera D, Grim M, Krenova D, Kren V (2009b) Deletion of a conserved noncoding sequence in Plzf intron leads to Plzf down-regulation in limb bud and polydactyly in the rat. Dev Dyn 238:673–684

    PubMed  CAS  Google Scholar 

  • Liu H, Higashi K, Hiai H (2005) Role of resistant Drh1 locus in chemical carcinogen-induced hepatocarcinogenesis in rats: analysis with a speed congenic strain. Cancer Sci 96:164–169

    PubMed  CAS  Google Scholar 

  • Llamas B, Jiang Z, Rainville ML, Picard S, Deschepper CF (2005) Distinct QTLs are linked to cardiac left ventricular mass in a sex-specific manner in a normotensive inbred rat inter-cross. Mamm Genome 16:700–711

    PubMed  CAS  Google Scholar 

  • Lopez-Aumatell R, Guitart-Masip M, Vicens-Costa E, Gimenez-Llort L, Valdar W, Johannesson M, Flint J, Tobena A, Fernandez-Teruel A (2008) Fearfulness in a large N/Nih genetically heterogeneous rat stock: differential profiles of timidity and defensive flight in males and females. Behav Brain Res 188:41–55

    PubMed  Google Scholar 

  • Lorentzen JC, Flornes L, Eklow C, Backdahl L, Ribbhammar U, Guo JP, Smolnikova M, Dissen E, Seddighzadeh M, Brookes AJ, Alfredsson L, Klareskog L, Padyukov L, Fossum S (2007) Association of arthritis with a gene complex encoding C-type lectin-like receptors. Arthritis Rheum 56:2620–2632

    PubMed  CAS  Google Scholar 

  • Lu LM, Shisa H, Tanuma J, Hiai H (1999) Propylnitrosourea-induced T-lylphomas in LEXF RI strains of rats: genetic analysis. Br J Cancer 80:855–861

    PubMed  CAS  Google Scholar 

  • Ma X, Bacci S, Mlynarski W, Gottardo L, Soccio T, Menzaghi C, Iori E, Lager RA, Shroff AR, Gervino EV, Nesto RW, Johnstone MT, Abumrad NA, Avogaro A, Trischitta V, Doria A (2004) A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Hum Mol Genet 13:2197–2205

    PubMed  CAS  Google Scholar 

  • MacMurray AJ, Moralejo DH, Kwitek AE, Rutledge EA, Van Yserloo B, Gohlke P, Speros SJ, Snyder B, Schaefer J, Bieg S, Jiang J, Ettinger RA, Fuller J, Daniels TL, Pettersson A, Orlebeke K, Birren B, Jacob HJ, Lander ES, Lernmark A (2002) Lymphopenia in the BB rat model of type 1 diabetes is due to a mutation in a novel immune-associated nucleotide (Ian)-related gene. Genome Res 12:1029–1039

    PubMed  CAS  Google Scholar 

  • Manjanatha MG, Shelton S, Bishop ME, Lyn-Cook LE, Aidoo A (2006) Dietary effects of soy isoflavones daidzein and genistein on 7,12-dimethylbenz[a]anthracene-induced mammary mutagenesis and carcinogenesis in ovariectomized Big Blue transgenic rats. Carcinogenesis 27:2555–2564

    PubMed  CAS  Google Scholar 

  • Mao JH, Balmain A (2003) Genomic approaches to identification of tumour-susceptibility genes using mouse models. Curr Opin Genet Dev 13:14–19

    PubMed  CAS  Google Scholar 

  • Maratou K, Behmoaras J, Fewings C, Srivastava P, D’Souza Z, Smith J, Game L, Cook T, Aitman T (2011) Characterization of the macrophage transcriptome in glomerulonephritis-susceptible and -resistant rat strains. Genes Immun 12:78–89

    PubMed  CAS  Google Scholar 

  • Marcano AC, Burke B, Gungadoo J, Wallace C, Kaisaki PJ, Woon PY, Farrall M, Clayton D, Brown M, Dominiczak A, Connell JM, Webster J, Lathrop M, Caulfield M, Samani N, Gauguier D, Munroe PB (2007) Genetic association analysis of inositol polyphosphate phosphatase-like 1 (INPPL1, SHIP2) variants with essential hypertension. J Med Genet 44:603–605

    PubMed  CAS  Google Scholar 

  • Marion E, Kaisaki PJ, Pouillon V, Gueydan C, Levy JC, Bodson A, Krzentowski G, Daubresse JC, Mockel J, Behrends J, Servais G, Szpirer C, Kruys V, Gauguier D, Schurmans S (2002) The gene INPPL1, encoding the lipid phosphatase SHIP2, is a candidate for type 2 diabetes in rat and man. Diabetes 51:2012–2017

    PubMed  CAS  Google Scholar 

  • Mashimo T, Yanagihara K, Tokuda S, Voigt B, Takizawa A, Nakajima R, Kato M, Hirabayashi M, Kuramoto T, Serikawa T (2008) An ENU-induced mutant archive for gene targeting in rats. Nat Genet 40:514–515

    PubMed  CAS  Google Scholar 

  • Mashimo T, Takizawa A, Voigt B, Yoshimi K, Hiai H, Kuramoto T, Serikawa T (2010) Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS One 5:e8870

    PubMed  Google Scholar 

  • Matsuyama M, Kato K, Higo-Moriguchi K, Yamada T, Kuramoto T, Kuroda M (2008) Establishment of thymoma-prone congenic rat strain, ACI.BUF/Mna-Tsr1/Tsr1. J Cancer Res Clin Oncol 134:789–792

    PubMed  Google Scholar 

  • Mattapallil MJ, Sahin A, Silver PB, Sun SH, Chan CC, Remmers EF, Hejtmancik JF, Caspi RR (2008) Common genetic determinants of uveitis shared with other autoimmune disorders. J Immunol 180:6751–6759

    PubMed  CAS  Google Scholar 

  • Mattson DL, Dwinell MR, Greene AS, Kwitek AE, Roman RJ, Cowley AW Jr, Jacob HJ (2007) Chromosomal mapping of the genetic basis of hypertension and renal disease in FHH rats. Am J Physiol Renal Physiol 293:F1905–F1914

    PubMed  CAS  Google Scholar 

  • McBride MW, Graham D, Delles C, Dominiczak AF (2006) Functional genomics in hypertension. Curr Opin Nephrol Hypertens 15:145–151

    PubMed  CAS  Google Scholar 

  • McCarthy LC, Bihoreau MT, Kiguwa SL, Browne J, Watanabe TK, Hishigaki H, Tsuji A, Kiel S, Webber C, Davis ME, Knights C, Smith A, Critcher R, Huxtall P, Hudson JR Jr, Ono T, Hayashi H, Takagi T, Nakamura Y, Tanigami A, Goodfellow PN, Lathrop GM, James MR (2000) A whole-genome radiation hybrid panel and framework map of the rat genome. Mamm Genome 11:791–795

    PubMed  CAS  Google Scholar 

  • McDermott-Roe C, Ye J, Ahmed R, Sun XM, Serafin A, Ware J, Bottolo L, Muckett P, Canas X, Zhang J, Rowe GC, Buchan R, Lu H, Braithwaite A, Mancini M, Hauton D, Marti R, Garcia-Arumi E, Hubner N, Jacob H, Serikawa T, Zidek V, Papousek F, Kolar F, Cardona M, Ruiz-Meana M, Garcia-Dorado D, Comella JX, Felkin LE, Barton PJ, Arany Z, Pravenec M, Petretto E, Sanchis D, Cook SA (2011) Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature 478:114–118

    PubMed  CAS  Google Scholar 

  • McKusick VA, Ruddle FH (1991) Editorial comments. Genomics 10:512–513

    Google Scholar 

  • Meng HC, Griffiths MM, Remmers EF, Kawahito Y, Li W, Neisa R, Cannon GW, Wilder RL, Gulko PS (2004) Identification of two novel female-specific non-major histocompatibility complex loci regulating collagen-induced arthritis severity and chronicity, and evidence of epistasis. Arthritis Rheum 50:2695–2705

    PubMed  CAS  Google Scholar 

  • Millwood IY, Bihoreau MT, Gauguier D, Hyne G, Levy ER, Kreutz R, Lathrop GM, Monaco AP (1997) A gene-based genetic linkage and comparative map of the rat X chromosome. Genomics 40:253–261

    PubMed  CAS  Google Scholar 

  • Miyaoka K, Kuwasako T, Hirano K, Nozaki S, Yamashita S, Matsuzawa Y (2001) CD36 deficiency associated with insulin resistance. Lancet 357:686–687

    PubMed  CAS  Google Scholar 

  • Moisan MP, Ramos A (2010) Rat genomics applied to psychiatric research. Methods Mol Biol 597:357–388

    PubMed  Google Scholar 

  • Moisan MP, Courvoisier H, Bihoreau MT, Gauguier D, Hendley ED, Lathrop M, James MR, Mormede P (1996) A major quantitative trait locus influences hyperactivity in the WKHA rat. Nat Genet 14:471–473

    PubMed  CAS  Google Scholar 

  • Momose S, Kobayashi T, Mitani H, Hirabayashi M, Ito K, Ueda M, Nabeshima Y, Hino O (2002) Identification of the coding sequences responsible for Tsc2-mediated tumor suppression using a transgenic rat system. Hum Mol Genet 11:2997–3006

    PubMed  CAS  Google Scholar 

  • Monti J, Fischer J, Paskas S, Heinig M, Schulz H, Gosele C, Heuser A, Fischer R, Schmidt C, Schirdewan A, Gross V, Hummel O, Maatz H, Patone G, Saar K, Vingron M, Weldon SM, Lindpaintner K, Hammock BD, Rohde K, Dietz R, Cook SA, Schunck WH, Luft FC, Hubner N (2008) Soluble epoxide hydrolase is a susceptibility factor for heart failure in a rat model of human disease. Nat Genet 40:529–537

    PubMed  CAS  Google Scholar 

  • Moore JH (2003) The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered 56:73–82

    PubMed  Google Scholar 

  • Moore CJ, Tricomi WA, Gould MN (1988) Comparison of 7,12-dimethylbenz[a]anthracene metabolism and DNA binding in mammary epithelial cells from three rat strains with differing susceptibilities to mammary carcinogenesis. Carcinogenesis 9:2099–2102

    PubMed  CAS  Google Scholar 

  • Mori M, Li G, Abe I, Nakayama J, Guo Z, Sawashita J, Ugawa T, Nishizono S, Serikawa T, Higuchi K, Shumiya S (2006) Lanosterol synthase mutations cause cholesterol deficiency-associated cataracts in the Shumiya cataract rat. J Clin Invest 116:395–404

    PubMed  CAS  Google Scholar 

  • Mori M, Fu X, Chen L, Zhang G, Higuchi K (2009) Hereditary pancreatitis model WBN/Kob rat strain has a unique haplotype in the Pdwk1 region on chromosome 7. Exp Anim 58:409–413

    PubMed  CAS  Google Scholar 

  • Morrissey C, Grieve IC, Heinig M, Atanur S, Petretto E, Pravenec M, Hubner N, Aitman TJ (2011) Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat. Physiol Genomics 43:1207–1218

    PubMed  CAS  Google Scholar 

  • Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, Auvil L, Beever JE, Chowdhary BP, Galibert F, Gatzke L, Hitte C, Meyers SN, Milan D, Ostrander EA, Pape G, Parker HG, Raudsepp T, Rogatcheva MB, Schook LB, Skow LC, Welge M, Womack JE, O’Brien SJ, Pevzner PA, Lewin HA (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613–617

    PubMed  CAS  Google Scholar 

  • Myers RD, Robinson DE, West MW, Biggs TA, McMillen BA (1998) Genetics of alcoholism: rapid development of a new high-ethanol-preferring (HEP) strain of female and male rats. Alcohol 16:343–357

    PubMed  CAS  Google Scholar 

  • Nakagama H, Ochiai M, Ubagai T, Tajima R, Fujiwara K, Sugimura T, Nagao M (2002) A rat colon cancer model induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, PhIP. Mutat Res 506–507:137–144

    PubMed  Google Scholar 

  • Nestor Kalinoski AL, Ramdath RS, Langenderfer KM, Sikanderkhel S, Deraedt S, Welch M, Park JL, Pringle T, Joe B, Cicila GT, Allison DC (2010) Neointimal hyperplasia and vasoreactivity are controlled by genetic elements on rat chromosome 3. Hypertension 55:555–561

    PubMed  Google Scholar 

  • Neumann ID, Wegener G, Homberg JR, Cohen H, Slattery DA, Zohar J, Olivier JD, Mathe AA (2011) Animal models of depression and anxiety: what do they tell us about human condition? Prog Neuropsychopharmacol Biol Psychiatry 35:1357–1375

    PubMed  CAS  Google Scholar 

  • Newman ZL, Printz MP, Liu S, Crown D, Breen L, Miller-Randolph S, Flodman P, Leppla SH, Moayeri M (2010) Susceptibility to anthrax lethal toxin-induced rat death is controlled by a single chromosome 10 locus that includes rNlrp1. PLoS Pathog 6:e1000906

    PubMed  Google Scholar 

  • Nilsson S, Helou K, Walentinsson A, Szpirer C, Nerman O, Stahl F (2001) Rat-mouse and rat-human comparative maps based on gene homology and high-resolution zoo-FISH. Genomics 74:287–298

    PubMed  CAS  Google Scholar 

  • Nissenbaum J, Shpigler H, Pisante A, DelCanho S, Minert A, Seltzer Z, Devor M, Darvasi A (2008) Pain2: a neuropathic pain QTL identified on rat chromosome 2. Pain 135:92–97

    PubMed  CAS  Google Scholar 

  • Nobrega MA, Woods LC, Fleming S, Jacob HJ (2009) Distinct genetic regulation of progression of diabetes and renal disease in the Goto-Kakizaki rat. Physiol Genomics 39:38–46

    PubMed  CAS  Google Scholar 

  • Noguchi J, Kobayashi E, Akiyama K, Kawai Y, Ozawa M, Ohnuma K, Kikuchi K, Kaneko H, Kunieda T (2004) Fine mapping of a region of rat chromosome 12 close to the aspermia (as) locus and comparison with the human orthologous regions. Exp Anim 53:429–435

    PubMed  CAS  Google Scholar 

  • Nohra R, Beyeen AD, Guo JP, Khademi M, Sundqvist E, Hedreul MT, Sellebjerg F, Smestad C, Oturai AB, Harbo HF, Wallstrom E, Hillert J, Alfredsson L, Kockum I, Jagodic M, Lorentzen J, Olsson T (2010) RGMA and IL21R show association with experimental inflammation and multiple sclerosis. Genes Immun 11:279–293

    PubMed  CAS  Google Scholar 

  • O’Meara CC, Lazar J, Hoffman M, Moreno C, Jacob HJ (2011) Refined mapping of the renal failure RF-3 quantitative trait locus. J Am Soc Nephrol 22:518–525

    PubMed  Google Scholar 

  • Ogawa K, Tanuma J, Hirano M, Hirayama Y, Semba I, Shisa H, Kitano M (2006) Selective loss of resistant alleles at p15INK4B and p16INK4A genes in chemically-induced rat tongue cancers. Oral Oncol 42:710–717

    PubMed  CAS  Google Scholar 

  • Ohno Y, Ishihara S, Mashimo T, Sofue N, Shimizu S, Imaoku T, Tsurumi T, Sasa M, Serikawa T (2011) Scn1a missense mutation causes limbic hyperexcitability and vulnerability to experimental febrile seizures. Neurobiol Dis 41:261–269

    PubMed  CAS  Google Scholar 

  • Oiso N, Riddle SR, Serikawa T, Kuramoto T, Spritz RA (2004) The rat Ruby (R) locus is Rab38: identical mutations in Fawn-hooded and Tester-Moriyama rats derived from an ancestral Long Evans rat sub-strain. Mamm Genome 15:307–314

    PubMed  CAS  Google Scholar 

  • Okey AB, Franc MA, Moffat ID, Tijet N, Boutros PC, Korkalainen M, Tuomisto J, Pohjanvirta R (2005) Toxicological implications of polymorphisms in receptors for xenobiotic chemicals: the case of the aryl hydrocarbon receptor. Toxicol Appl Pharmacol 207:43–51

    PubMed  Google Scholar 

  • Olofsson P, Holmberg J, Tordsson J, Lu S, Akerstrom B, Holmdahl R (2003a) Positional identification of Ncf1 as a gene that regulates arthritis severity in rats. Nat Genet 33:25–32

    PubMed  CAS  Google Scholar 

  • Olofsson P, Wernhoff P, Holmberg J, Holmdahl R (2003b) Two-loci interaction confirms arthritis-regulating quantitative trait locus on rat chromosome 6. Genomics 82:652–659

    PubMed  CAS  Google Scholar 

  • Olsson LM, Lindqvist AK, Kallberg H, Padyukov L, Burkhardt H, Alfredsson L, Klareskog L, Holmdahl R (2007) A case–control study of rheumatoid arthritis identifies an associated single nucleotide polymorphism in the NCF4 gene, supporting a role for the NADPH-oxidase complex in autoimmunity. Arthritis Res Ther 9:R98

    PubMed  Google Scholar 

  • Owen KR, McCarthy MI (2007) Genetics of type 2 diabetes. Curr Opin Genet Dev 17:239–244

    PubMed  CAS  Google Scholar 

  • Paigen K, Labarca C, Watson G (1979) A regulatory locus for mouse beta-glucuronidase induction, Gur, controls messenger RNA activity. Science 203:554–556

    PubMed  CAS  Google Scholar 

  • Palijan A, Dutil J, Deng AY (2003) Quantitative trait loci with opposing blood pressure effects demonstrating epistasis on Dahl rat chromosome 3. Physiol Genomics 15:1–8

    PubMed  CAS  Google Scholar 

  • Pandey J, Wendell DL (2006) Angiogenesis and capillary maturation phenotypes associated with the Edpm3 locus on rat chromosome 3. Mamm Genome 17:49–57

    PubMed  CAS  Google Scholar 

  • Pandey J, Gould KA, McComb RD, Shull JD, Wendell DL (2005) Localization of Eutr2, a locus controlling susceptibility to DES-induced uterine inflammation and pyometritis, to RNO5 using a congenic rat strain. Mamm Genome 16:865–872

    PubMed  CAS  Google Scholar 

  • Patra B, Overstreet DH, Rezvani AH, Cleves M, Parsian A (2007) Analysis of alcohol-related phenotypes in F2 progeny derived from FH/Wjd and ACI/N rat strains reveals independent measures and sex differences. Behav Brain Res 177:37–44

    PubMed  CAS  Google Scholar 

  • Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Hofler H, Fend F, Graw J, Atkinson MJ (2006) Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 103:15558–15563

    PubMed  CAS  Google Scholar 

  • Perantoni AO, Rice JM, Reed CD, Watatani M, Wenk ML (1987) Activated neu oncogene sequences in primary tumors of the peripheral nervous system induced in rats by transplacental exposure to ethylnitrosourea. Proc Natl Acad Sci USA 84:6317–6321

    PubMed  CAS  Google Scholar 

  • Peters LL, Robledo RF, Bult CJ, Churchill GA, Paigen BJ, Svenson KL (2007) The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 8:58–69

    PubMed  CAS  Google Scholar 

  • Petretto E, Mangion J, Dickens NJ, Cook SA, Kumaran MK, Lu H, Fischer J, Maatz H, Kren V, Pravenec M, Hubner N, Aitman TJ (2006a) Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet 2:e172

    PubMed  Google Scholar 

  • Petretto E, Mangion J, Pravanec M, Hubner N, Aitman TJ (2006b) Integrated gene expression profiling and linkage analysis in the rat. Mamm Genome 17:480–489

    PubMed  CAS  Google Scholar 

  • Petretto E, Sarwar R, Grieve I, Lu H, Kumaran MK, Muckett PJ, Mangion J, Schroen B, Benson M, Punjabi PP, Prasad SK, Pennell DJ, Kiesewetter C, Tasheva ES, Corpuz LM, Webb MD, Conrad GW, Kurtz TW, Kren V, Fischer J, Hubner N, Pinto YM, Pravenec M, Aitman TJ, Cook SA (2008) Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat Genet 40:546–552

    PubMed  CAS  Google Scholar 

  • Piessevaux G, Lella V, Riviere M, Stieber D, Dreze P, Szpirer J, Szpirer C (2009) Contrasting epistatic interactions between rat quantitative trait loci controlling mammary cancer development. Mamm Genome 20:43–52

    PubMed  Google Scholar 

  • Pollard M, Suckow MA (2005) Hormone-refractory prostate cancer in the Lobund-Wistar rat. Exp Biol Med 230:520–526

    CAS  Google Scholar 

  • Pravenec M (2010) Use of rat genomics for investigating the metabolic syndrome. Methods Mol Biol 597:415–426

    PubMed  CAS  Google Scholar 

  • Pravenec M, Kurtz TW (2007) Molecular genetics of experimental hypertension and the metabolic syndrome: from gene pathways to new therapies. Hypertension 49:941–952

    PubMed  CAS  Google Scholar 

  • Pravenec M, Kurtz TW (2010) Recent advances in genetics of the spontaneously hypertensive rat. Curr Hypertens Rep 12:5–9

    PubMed  Google Scholar 

  • Pravenec M, Simonet L, Kren V, Kunes J, Levan G, Szpirer J, Szpirer C, Kurtz T (1991) The rat renin gene: assignment to chromosome 13 and linkage to the regulation of blood pressure. Genomics 9:466–472

    PubMed  CAS  Google Scholar 

  • Pravenec M, Simonet L, Kren V, St Lezin E, Levan G, Szpirer J, Szpirer C, Kurtz T (1992) Assignment of rat linkage group V to chromosome 19 by single-strand conformation polymorphism analysis of somatic cell hybrids. Genomics 12:350–356

    PubMed  CAS  Google Scholar 

  • Pravenec M, Gauguier D, Schott JJ, Buard J, Kren V, Bila V, Szpirer C, Szpirer J, Wang JM, Huang H, St Lezin E, Spence MA, Flodman P, Printz M, Lathrop GM, Vergnaud G, Kurtz TW (1996) A genetic linkage map of the rat derived from recombinant inbred strains. Mamm Genome 7:117–127

    PubMed  CAS  Google Scholar 

  • Pravenec M, Landa V, Zidek V, Musilova A, Kren V, Kazdova L, Aitman TJ, Glazier AM, Ibrahimi A, Abumrad NA, Qi N, Wang JM, St Lezin EM, Kurtz TW (2001) Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat Genet 27:156–158

    PubMed  CAS  Google Scholar 

  • Pravenec M, Wallace C, Aitman TJ, Kurtz TW (2003) Gene expression profiling in hypertension research: a critical perspective. Hypertension 41:3–8

    PubMed  CAS  Google Scholar 

  • Pravenec M, Hyakukoku M, Houstek J, Zidek V, Landa V, Mlejnek P, Miksik I, Dudova-Mothejzikova K, Pecina P, Vrbacky M, Drahota Z, Vojtiskova A, Mracek T, Kazdova L, Oliyarnyk O, Wang J, Ho C, Qi N, Sugimoto K, Kurtz T (2007) Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains. Genome Res 17:1319–1326

    PubMed  CAS  Google Scholar 

  • Pravenec M, Churchill PC, Churchill MC, Viklicky O, Kazdova L, Aitman TJ, Petretto E, Hubner N, Wallace CA, Zimdahl H, Zidek V, Landa V, Dunbar J, Bidani A, Griffin K, Qi N, Maxova M, Kren V, Mlejnek P, Wang J, Kurtz TW (2008a) Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat Genet 40:952–954

    PubMed  CAS  Google Scholar 

  • Pravenec M, Kazdova L, Landa V, Zidek V, Mlejnek P, Simakova M, Jansa P, Forejt J, Kren V, Krenova D, Qi N, Wang JM, Chan D, Aitman TJ, Kurtz TW (2008b) Identification of mutated Srebf1 as a QTL influencing risk for hepatic steatosis in the spontaneously hypertensive rat. Hypertension 51:148–153

    PubMed  CAS  Google Scholar 

  • Quan X, Laes JF, Stieber D, Riviere M, Russo J, Wedekind D, Coppieters W, Farnir F, Georges M, Szpirer J, Szpirer C (2006) Genetic identification of distinct loci controlling mammary tumor multiplicity, latency, and aggressiveness in the rat. Mamm Genome 17:310–321

    PubMed  CAS  Google Scholar 

  • Quan L, Stassen AP, Ruivenkamp CA, van Wezel T, Fijneman RJ, Hutson A, Kakarlapudi N, Hart AA, Demant P (2011) Most lung and colon cancer susceptibility genes are pair-wise linked in mice, humans and rats. PLoS One 6:e14727

    PubMed  CAS  Google Scholar 

  • Radcliffe RA, Bludeau P, Asperi W, Fay T, Deng XS, Erwin VG, Deitrich RA (2006) Confirmation of quantitative trait loci for ethanol sensitivity and neurotensin receptor density in crosses derived from the inbred high and low alcohol sensitive selectively bred rat lines. Psychopharmacology (Berl) 188:343–354

    CAS  Google Scholar 

  • Radcliffe RA, Erwin VG, Bludeau P, Deng X, Fay T, Floyd KL, Deitrich RA (2009) A major QTL for acute ethanol sensitivity in the alcohol tolerant and non-tolerant selected rat lines. Genes Brain Behav 8:611–625

    PubMed  CAS  Google Scholar 

  • Ramos A, Moisan MP, Chaouloff F, Mormede C, Mormede P (1999) Identification of female-specific QTLs affecting an emotionality-related behavior in rats. Mol Psychiatry 4:453–462

    PubMed  CAS  Google Scholar 

  • Rangel-Filho A, Sharma M, Datta YH, Moreno C, Roman RJ, Iwamoto Y, Provoost AP, Lazar J, Jacob HJ (2005) RF-2 gene modulates proteinuria and albuminuria independently of changes in glomerular permeability in the fawn-hooded hypertensive rat. J Am Soc Nephrol 16:852–856

    PubMed  CAS  Google Scholar 

  • Rapp JP (2000) Genetic analysis of inherited hypertension in the rat. Physiol Rev 80:135–172

    PubMed  CAS  Google Scholar 

  • Rapp JP, Joe B (2012) Use of contiguous congenic strains in analyzing compound QTLs. Physiol Genomics 44(2):117–120

    PubMed  CAS  Google Scholar 

  • Richter CP (1954) The effects of domestication and selection on the behavior of the Norway rat. J Natl Cancer Inst 15:727–738

    PubMed  CAS  Google Scholar 

  • Rintisch C, Ameri J, Olofsson P, Luthman H, Holmdahl R (2008) Positional cloning of the Igl genes controlling rheumatoid factor production and allergic bronchitis in rats. Proc Natl Acad Sci USA 105:14005–14010

    PubMed  CAS  Google Scholar 

  • Rintisch C, Kelkka T, Norin U, Lorentzen JC, Olofsson P, Holmdahl R (2010) Finemapping of the arthritis QTL Pia7 reveals co-localization with Oia2 and the APLEC locus. Genes Immun 11:239–245

    PubMed  CAS  Google Scholar 

  • Ritter M, Bouloy M, Vialat P, Janzen C, Haller O, Frese M (2000) Resistance to rift valley fever virus in Rattus norvegicus: genetic variability within certain ‘inbred’ strains. J Gen Virol 81:2683–2688

    PubMed  CAS  Google Scholar 

  • Robinson R (1987) Genetic linkage in the Norway rat. Genetica 74:137–142

    PubMed  CAS  Google Scholar 

  • Robinson TJ, Ruiz-Herrera A, Froenicke L (2006) Dissecting the mammalian genome–new insights into chromosomal evolution. Trends Genet 22:297–301

    PubMed  CAS  Google Scholar 

  • Rocchi M, Archidiacono N, Schempp W, Capozzi O, Stanyon R (2012) Centromere repositioning in mammals. Heredity (Edinb) 108:59–67

    CAS  Google Scholar 

  • Rolstad B (2001) The athymic nude rat: an animal experimental model to reveal novel aspects of innate immune responses? Immunol Rev 184:136–144

    PubMed  CAS  Google Scholar 

  • Roshani L, Mallon P, Sjostrand E, Wedekind D, Szpirer J, Szpirer C, Hedrich HJ, Klinga-Levan K (2005) Genetic analysis of susceptibility to endometrial adenocarcinoma in the BDII rat model. Cancer Genet Cytogenet 158:137–141

    PubMed  CAS  Google Scholar 

  • Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, Lappegard K, Seifried E, Scharrer I, Tuddenham EG, Muller CR, Strom TM, Oldenburg J (2004) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427:537–541

    PubMed  CAS  Google Scholar 

  • Rubattu S, Volpe M, Kreutz R, Ganten U, Ganten D, Lindpaintner K (1996) Chromosomal mapping of quantitative trait loci contributing to stroke in a rat model of complex human disease. Nat Genet 13:429–434

    PubMed  CAS  Google Scholar 

  • Rudolf G, Bihoreau MT, Godfrey RF, Wilder SP, Cox RD, Lathrop M, Marescaux C, Gauguier D (2004) Polygenic control of idiopathic generalized epilepsy phenotypes in the genetic absence rats from Strasbourg (GAERS). Epilepsia 45:301–308

    PubMed  Google Scholar 

  • Ruiz-Opazo N, Tonkiss J (2006) Genome-wide scan for quantitative trait loci influencing spatial navigation and social recognition memory in Dahl rats. Physiol Genomics 26:145–151

    PubMed  CAS  Google Scholar 

  • Russo J, Gusterson BA, Rogers AE, Russo IH, Wellings SR, van Zwieten MJ (1990) Comparative study of human and rat mammary tumorigenesis. Lab Invest 62:244–278

    PubMed  CAS  Google Scholar 

  • Russo J, Mailo D, Hu YF, Balogh G, Sheriff F, Russo IH (2005) Breast differentiation and its implication in cancer prevention. Clin Cancer Res 11:931s–936s

    PubMed  CAS  Google Scholar 

  • Samuelson DJ, Aperavich BA, Haag JD, Gould MN (2005) Fine mapping reveals multiple loci and a possible epistatic interaction within the mammary carcinoma susceptibility quantitative trait locus, Mcs5. Cancer Res 65:9637–9642

    PubMed  CAS  Google Scholar 

  • Samuelson DJ, Hesselson SE, Aperavich BA, Zan Y, Haag JD, Trentham-Dietz A, Hampton JM, Mau B, Chen KS, Baynes C, Khaw KT, Luben R, Perkins B, Shah M, Pharoah PD, Dunning AM, Easton DF, Ponder BA, Gould MN (2007) Rat Mcs5a is a compound quantitative trait locus with orthologous human loci that associate with breast cancer risk. Proc Natl Acad Sci USA 104:6299–6304

    PubMed  CAS  Google Scholar 

  • Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302

    PubMed  CAS  Google Scholar 

  • Schaffer BS, Lachel CM, Pennington KL, Murrin CR, Strecker TE, Tochacek M, Gould KA, Meza JL, McComb RD, Shull JD (2006) Genetic bases of estrogen-induced tumorigenesis in the rat: mapping of loci controlling susceptibility to mammary cancer in a Brown Norway x ACI intercross. Cancer Res 66:7793–7800

    PubMed  CAS  Google Scholar 

  • Schmale H, Richter D (1984) Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature 308:705–709

    PubMed  CAS  Google Scholar 

  • Sebkhi A, Zhao L, Lu L, Haley CS, Nunez DJ, Wilkins MR (1999) Genetic determination of cardiac mass in normotensive rats: results from an F344xWKY cross. Hypertension 33:949–953

    PubMed  CAS  Google Scholar 

  • Sell S (1993) The role of determined stem-cells in the cellular lineage of hepatocellular carcinoma. Int J Dev Biol 37:189–201

    PubMed  CAS  Google Scholar 

  • Sell S (2007) Stem cells in hepatocarcinogenesis – the liver is the exception that proves the rule. Cell Sci Rev 3:302–341

    Google Scholar 

  • Serikawa T (2004) Colourful history of Japan’s rat resources. Nature 429:15

    PubMed  CAS  Google Scholar 

  • Shankar RR, Charchar FJ, Eckert GJ, Saha C, Tu W, Dominiczak AF, Pratt JH (2007) Studies of an association in boys of blood pressure and the Y chromosome. Am J Hypertens 20:27–31

    PubMed  CAS  Google Scholar 

  • Shao H, Burrage LC, Sinasac DS, Hill AE, Ernest SR, O’Brien W, Courtland HW, Jepsen KJ, Kirby A, Kulbokas EJ, Daly MJ, Broman KW, Lander ES, Nadeau JH (2008) Genetic architecture of complex traits: large phenotypic effects and pervasive epistasis. Proc Natl Acad Sci USA 105:19910–19914

    PubMed  CAS  Google Scholar 

  • Shepel LA, Lan H, Haag JD, Brasic GM, Gheen ME, Simon JS, Hoff P, Newton MA, Gould MN (1998) Genetic identification of multiple loci that control breast cancer susceptibility in the rat. Genetics 149:289–299

    PubMed  CAS  Google Scholar 

  • Shimoyama M, Smith JR, Hayman T, Laulederkind S, Lowry T, Nigam R, Petri V, Wang SJ, Dwinell M, Jacob H (2011) RGD: a comparative genomics platform. Hum Genomics 5:124–129

    PubMed  CAS  Google Scholar 

  • Shisa H, Lu L, Katoh H, Kawarai A, Tanuma J, Matsushima Y, Hiai H (1997) The LEXF: a new set of rat recombinant inbred strains between LE/Stm and F344. Mamm Genome 8:324–327

    PubMed  CAS  Google Scholar 

  • Shull JD (2002) Hormonal carcinogenesis. In: Bertino JR (ed) Encyclopedia of cancer, vol 2. Academic, San Diego, CA, pp 417–428

    Google Scholar 

  • Shull JD (2007) The rat oncogenome: comparative genetics and genomics of rat models of mammary carcinogenesis. Breast Dis 28:69–86

    PubMed  CAS  Google Scholar 

  • Shull JD, Lachel CM, Strecker TE, Spady TJ, Tochacek M, Pennington KL, Murrin CR, Meza JL, Schaffer BS, Flood LA, Gould KA (2006) Genetic bases of renal agenesis in the ACI rat: mapping of Renag1 to chromosome 14. Mamm Genome 17:751–759

    PubMed  CAS  Google Scholar 

  • Shull JD, Lachel CM, Murrin CR, Pennington KL, Schaffer BS, Strecker TE, Gould KA (2007) Genetic control of estrogen action in the rat: mapping of QTLs that impact pituitary lactotroph hyperplasia in a BN x ACI intercross. Mamm Genome 18:657–669

    PubMed  CAS  Google Scholar 

  • Sieberts SK, Schadt EE (2007) Moving toward a system genetics view of disease. Mamm Genome 18:389–401

    PubMed  Google Scholar 

  • Silva GJ, Pereira AC, Krieger EM, Krieger JE (2007) Genetic mapping of a new heart rate QTL on chromosome 8 of spontaneously hypertensive rats. BMC Med Genet 8:17

    PubMed  Google Scholar 

  • Smits BM, van Zutphen BF, Plasterk RH, Cuppen E (2004) Genetic variation in coding regions between and within commonly used inbred rat strains. Genome Res 14:1285–1290

    PubMed  CAS  Google Scholar 

  • Smits BM, Peters TA, Mul JD, Croes HJ, Fransen JA, Beynon AJ, Guryev V, Plasterk RH, Cuppen E (2005) Identification of a rat model for usher syndrome type 1B by N-ethyl-N-nitrosourea mutagenesis-driven forward genetics. Genetics 170:1887–1896

    PubMed  CAS  Google Scholar 

  • Smits BM, Cuppen E, Gould MN (2012) Target-selected ENU mutagenesis to develop cancer models in the rat. In: Green JE, Ried T (eds) Genetically engineered mice for cancer research. Springer, NewYork, pp 113–131

    Google Scholar 

  • Solberg Woods LC, Holl K, Tschannen M, Valdar W (2010) Fine-mapping a locus for glucose tolerance using heterogeneous stock rats. Physiol Genomics 41:102–108

    PubMed  Google Scholar 

  • Solberg LC, Baum AE, Ahmadiyeh N, Shimomura K, Li R, Turek FW, Churchill GA, Takahashi JS, Redei EE (2004) Sex- and lineage-specific inheritance of depression-like behavior in the rat. Mamm Genome 15:648–662

    PubMed  Google Scholar 

  • Spady TJ, Harvell DM, Snyder MC, Pennington KL, McComb RD, Shull JD (1998) Estrogen-induced tumorigenesis in the Copenhagen rat: disparate susceptibilities to development of prolactin-producing pituitary tumors and mammary carcinomas. Cancer Lett 124:95–103

    PubMed  CAS  Google Scholar 

  • Spence JP, Liang T, Liu L, Johnson PL, Foroud T, Carr LG, Shekhar A (2009) From QTL to candidate gene: a genetic approach to alcoholism research. Curr Drug Abuse Rev 2:127–134

    PubMed  CAS  Google Scholar 

  • Staessen JA, Bianchi G (2005) Adducin and hypertension. Pharmacogenomics 6:665–669

    PubMed  CAS  Google Scholar 

  • Steen RG, Kwitek-Black AE, Glenn C, Gullings-Handley J, Van Etten W, Atkinson OS, Appel D, Twigger S, Muir M, Mull T, Granados M, Kissebah M, Russo K, Crane R, Popp M, Peden M, Matise T, Brown DM, Lu J, Kingsmore S, Tonellato PJ, Rozen S, Slonim D, Young P, Jacob HJ et al (1999) A high-density integrated genetic linkage and radiation hybrid map of the laboratory rat. Genome Res 9:AP1–AP8, insert

    PubMed  CAS  Google Scholar 

  • Stieber D, Piessevaux G, Riviere M, Laes JF, Quan X, Szpirer J, Szpirer C (2007) Isolation of two regions on rat chromosomes 5 and 18 affecting mammary cancer susceptibility. Int J Cancer 120:1678–1683

    PubMed  CAS  Google Scholar 

  • Strecker TE, Spady TJ, Schaffer BS, Gould KA, Kaufman AE, Shen F, McLaughlin MT, Pennington KL, Meza JL, Shull JD (2005) Genetic bases of estrogen-induced pituitary tumorigenesis: identification of genetic loci determining estrogen-induced pituitary growth in reciprocal crosses between the ACI and Copenhagen rat strains. Genetics 169:2189–2197

    PubMed  CAS  Google Scholar 

  • Stridh P, Thessen Hedreul M, Beyeen AD, Adzemovic MZ, Laaksonen H, Gillett A, Ockinger J, Marta M, Lassmann H, Becanovic K, Jagodic M, Olsson T (2010) Fine-mapping resolves Eae23 into two QTLs and implicates ZEB1 as a candidate gene regulating experimental neuroinflammation in rat. PLoS One 5:e12716

    PubMed  Google Scholar 

  • Strom M, Al Nimer F, Lindblom R, Nyengaard JR, Piehl F (2011) Naturally occurring genetic variability in expression of Gsta4 is associated with differential survival of axotomized rat motoneurons. Neuromolecular Med 14(1):15–29

    PubMed  Google Scholar 

  • Swanberg M, Lidman O, Padyukov L, Eriksson P, Akesson E, Jagodic M, Lobell A, Khademi M, Borjesson O, Lindgren CM, Lundman P, Brookes AJ, Kere J, Luthman H, Alfredsson L, Hillert J, Klareskog L, Hamsten A, Piehl F, Olsson T (2005) MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat Genet 37:486–494

    PubMed  CAS  Google Scholar 

  • Swen JJ, Huizinga TW, Gelderblom H, de Vries EG, Assendelft WJ, Kirchheiner J, Guchelaar HJ (2007) Translating pharmacogenomics: challenges on the road to the clinic. PLoS Med 4:e209

    PubMed  Google Scholar 

  • Szpirer C, Szpirer J (2007) Mammary cancer susceptibility: human genes and rodent models. Mamm Genome 18:817–831

    PubMed  Google Scholar 

  • Szpirer J, Levan G, Thorn M, Szpirer C (1984) Gene mapping in the rat by mouse-rat somatic cell hybridization: synteny of the albumin and alpha-fetoprotein genes and assignment to chromosome 14. Cytogenet Cell Genet 38:142–149

    PubMed  CAS  Google Scholar 

  • Szpirer C, Tissir F, Riviere M, Levan G, Szpirer J (1994) Assignment of rat Jun family genes to chromosome 19 (Junb), chromosome 5q31-33 (Jun), and chromosome 16 (Jund). Mamm Genome 5:361–364

    PubMed  CAS  Google Scholar 

  • Szpirer C, Szpirer J, Van Vooren P, Tissir F, Simon JS, Koike G, Jacob HJ, Lander ES, Helou K, Klinga-Levan K, Levan G (1998) Gene-based anchoring of the rat genetic linkage and cytogenetic maps: new regional localizations, orientation of the linkage groups, and insights into mammalian chromosome evolution. Mamm Genome 9:721–734

    PubMed  CAS  Google Scholar 

  • Szpirer C, Riviere M, VanVooren P, Moisan MP, Haller O, Szpirer J (2005) Chromosome evolution of MMU16 and RNO11: conserved synteny associated with gene order rearrangements explicable by intrachromosomal recombinations and neocentromere emergence. Cytogenet Genome Res 108:322–327

    PubMed  CAS  Google Scholar 

  • Szpirer C, Lella V, Rivière M, De Mees C, Szpirer J (2010) Association between resistance to mammary cancer development and upregulation of DNA damage response genes. Open Cancer J 3:124–129

    CAS  Google Scholar 

  • Tabakoff B, Saba L, Printz M, Flodman P, Hodgkinson C, Goldman D, Koob G, Richardson HN, Kechris K, Bell RL, Hubner N, Heinig M, Pravenec M, Mangion J, Legault L, Dongier M, Conigrave KM, Whitfield JB, Saunders J, Grant B, Hoffman PL (2009) Genetical genomic determinants of alcohol consumption in rats and humans. BMC Biol 7:70

    PubMed  Google Scholar 

  • Tachibana M, Lu L, Hiai H, Tamura A, Matsushima Y, Shisa H (2006) Quantitative trait loci determining weight reduction of testes and pituitary by diethylstilbesterol in LEXF and FXLE recombinant inbred strain rats. Exp Anim 55:91–95

    PubMed  CAS  Google Scholar 

  • Tanuma J, Hirano M, Hirayama Y, Semba I, Ogawa K, Shisa H, Hiai H, Kitano M (2005) Genetic predisposition to 4NQO-induced tongue carcinogenesis in the rat. Med Princ Pract 14:297–305

    PubMed  Google Scholar 

  • The International Consortium for Blood Pressure Genome-Wide Association Studies (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478:103–109

    Google Scholar 

  • The International Multiple Sclerosis Genetics Consortium, The Wellcome Trust Case Control Consortium 2 (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219

    Google Scholar 

  • The STAR Consortium (2008) SNP and haplotype mapping for genetic analysis in the rat. Nat Genet 40:560–566

    Google Scholar 

  • The Welcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Google Scholar 

  • Thomas MA, Chen CF, Jensen-Seaman MI, Tonellato PJ, Twigger SN (2003) Phylogenetics of rat inbred strains. Mamm Genome 14:61–64

    PubMed  Google Scholar 

  • Thompson HJ, Singh M (2000) Rat models of premalignant breast disease. J Mammary Gland Biol Neoplasia 5:409–420

    PubMed  CAS  Google Scholar 

  • Togashi Y, Kobayashi T, Momose S, Ueda M, Okimoto K, Hino O (2006) Transgenic rescue from embryonic lethality and renal carcinogenesis in the Nihon rat model by introduction of a wild-type Bhd gene. Oncogene 25:2885–2889

    PubMed  CAS  Google Scholar 

  • Tokuda S, Kuramoto T, Tanaka K, Kaneko S, Takeuchi IK, Sasa M, Serikawa T (2007) The ataxic groggy rat has a missense mutation in the P/Q-type voltage-gated Ca2+ channel alpha1A subunit gene and exhibits absence seizures. Brain Res 1133:168–177

    PubMed  CAS  Google Scholar 

  • Tong C, Li P, Wu NL, Yan Y, Ying QL (2010) Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature 467:211–213

    PubMed  CAS  Google Scholar 

  • Torres VE, Harris PC (2007) Polycystic kidney disease: genes, proteins, animal models, disease mechanisms and therapeutic opportunities. J Intern Med 261:17–31

    PubMed  CAS  Google Scholar 

  • Tripodi G, Florio M, Ferrandi M, Modica R, Zimdahl H, Hubner N, Ferrari P, Bianchi G (2004) Effect of Add1 gene transfer on blood pressure in reciprocal congenic strains of Milan rats. Biochem Biophys Res Commun 324:562–568

    PubMed  CAS  Google Scholar 

  • Tsuji AB, Sugyo A, Sudo H, Sagara M, Ishikawa A, Ohtsuki M, Kimura T, Ogiu T, Miyagishi M, Taira K, Imai T, Harada YN (2006) Defective repair of radiation-induced DNA damage is complemented by a CHORI-230-65 K18 BAC clone on rat chromosome 4. Genomics 87:236–242

    PubMed  CAS  Google Scholar 

  • Turnbull C, Hodgson S (2005) Genetic predisposition to cancer. Clin Med 5:491–498

    PubMed  Google Scholar 

  • Twigger SN, Pruitt KD, Fernandez-Suarez XM, Karolchik D, Worley KC, Maglott DR, Brown G, Weinstock G, Gibbs RA, Kent J, Birney E, Jacob HJ (2008) What everybody should know about the rat genome and its online resources. Nat Genet 40:523–527

    PubMed  CAS  Google Scholar 

  • Umeda T, Takashima N, Nakagawa R, Maekawa M, Ikegami S, Yoshikawa T, Kobayashi K, Okanoya K, Inokuchi K, Osumi N (2010) Evaluation of Pax6 mutant rat as a model for autism. PLoS One 5:e15500

    PubMed  CAS  Google Scholar 

  • Ushijima T, Yamamoto M, Suzui M, Kuramoto T, Yoshida Y, Nomoto T, Tatematsu M, Sugimura T, Nagao M (2000) Chromosomal mapping of genes controlling development, histological grade, depth of invasion, and size of rat stomach carcinomas. Cancer Res 60:1092–1096

    PubMed  CAS  Google Scholar 

  • Van Dijk SJ, Specht PA, Lazar J, Jacob HJ, Provoost AP (2006) Synergistic QTL interactions between Rf-1 and Rf-3 increase renal damage susceptibility in double congenic rats. Kidney Int 69:1369–1376

    PubMed  Google Scholar 

  • van Es N, Schulz A, Ijpelaar D, van der Wal A, Kuhn K, Schutten S, Kossmehl P, Nyengaard JR, de Heer E, Kreutz R (2011) Elimination of severe albuminuria in aging hypertensive rats by exchange of 2 chromosomes in double-consomic rats. Hypertension 58:219–224

    PubMed  Google Scholar 

  • Van Wesenbeeck L, Odgren PR, MacKay CA, D’Angelo M, Safadi FF, Popoff SN, Van Hul W, Marks SC Jr (2002) The osteopetrotic mutation toothless (tl) is a loss-of-function frameshift mutation in the rat Csf1 gene: evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification. Proc Natl Acad Sci USA 99:14303–14308

    PubMed  Google Scholar 

  • Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, MacKay CA, Van Hul E, Timmermans JP, Vanhoenacker F, Jacobs R, Peruzzi B, Teti A, Helfrich MH, Rogers MJ, Villa A, Van Hul W (2007) Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest 117:919–930

    PubMed  Google Scholar 

  • Veillet AL, Haag JD, Remfert JL, Meilahn AL, Samuelson DJ, Gould MN (2011) Mcs5c: a mammary carcinoma susceptibility locus located in a gene desert that associates with tenascin C expression. Cancer Prev Res (Phila) 4:97–106

    CAS  Google Scholar 

  • Vendruscolo LF, Terenina-Rigaldie E, Raba F, Ramos A, Takahashi RN, Mormede P (2006) Evidence for a female-specific effect of a chromosome 4 locus on anxiety-related behaviors and ethanol drinking in rats. Genes Brain Behav 5:441–450

    PubMed  CAS  Google Scholar 

  • Voigt B, Kuramoto T, Mashimo T, Tsurumi T, Sasaki Y, Hokao R, Serikawa T (2008) Evaluation of LEXF/FXLE rat recombinant inbred strains for genetic dissection of complex traits. Physiol Genomics 32:335–342

    PubMed  CAS  Google Scholar 

  • von Horsten S, Schmitt I, Nguyen HP, Holzmann C, Schmidt T, Walther T, Bader M, Pabst R, Kobbe P, Krotova J, Stiller D, Kask A, Vaarmann A, Rathke-Hartlieb S, Schulz JB, Grasshoff U, Bauer I, Vieira-Saecker AM, Paul M, Jones L, Lindenberg KS, Landwehrmeyer B, Bauer A, Li XJ, Riess O (2003) Transgenic rat model of Huntington’s disease. Hum Mol Genet 12:617–624

    Google Scholar 

  • Vorhees CV, Reed TM, Schilling MA, Fisher JE, Moran MS, Cappon GD, Nebert DW (1998) CYP2D1 polymorphism in methamphetamine-treated rats: genetic differences in neonatal mortality and effects on spatial learning and acoustic startle. Neurotoxicol Teratol 20:265–273

    PubMed  CAS  Google Scholar 

  • Wallis RH, Collins SC, Kaisaki PJ, Argoud K, Wilder SP, Wallace KJ, Ria M, Ktorza A, Rorsman P, Bihoreau MT, Gauguier D (2008) Pathophysiological, genetic and gene expression features of a novel rodent model of the cardio-metabolic syndrome. PLoS One 3:e2962

    PubMed  Google Scholar 

  • Wallis RH, Wang K, Marandi L, Hsieh E, Ning T, Chao GY, Sarmiento J, Paterson AD, Poussier P (2009) Type 1 diabetes in the BB rat: a polygenic disease. Diabetes 58:1007–1017

    PubMed  CAS  Google Scholar 

  • Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, Kubly V, Cunningham JM, Bacallao R, Ishibashi M, Milliner DS, Torres VE, Harris PC (2002) The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 30:259–269

    PubMed  Google Scholar 

  • Watanabe TK, Bihoreau MT, McCarthy LC, Kiguwa SL, Hishigaki H, Tsuji A, Browne J, Yamasaki Y, Mizoguchi-Miyakita A, Oga K, Ono T, Okuno S, Kanemoto N, Takahashi E, Tomita K, Hayashi H, Adachi M, Webber C, Davis M, Kiel S, Knights C, Smith A, Critcher R, Miller J, Thangarajah T, Day PJ, Hudson JR Jr, Irie Y, Takagi T, Nakamura Y, Goodfellow PN, Lathrop GM, Tanigami A, James MR (1999) A radiation hybrid map of the rat genome containing 5,255 markers. Nat Genet 22:27–36

    PubMed  CAS  Google Scholar 

  • Watanabe TK, Suzuki M, Yamasaki Y, Okuno S, Hishigaki H, Ono T, Oga K, Mizoguchi-Miyakita A, Tsuji A, Kanemoto N, Wakitani S, Takagi T, Nakamura Y, Tanigami A (2005) Mutated G-protein-coupled receptor GPR10 is responsible for the hyperphagia/dyslipidaemia/obesity locus of Dmo1 in the OLETF rat. Clin Exp Pharmacol Physiol 32:355–366

    PubMed  CAS  Google Scholar 

  • Ways JA, Smith BM, Barbato JC, Ramdath RS, Pettee KM, DeRaedt SJ, Allison DC, Koch LG, Lee SJ, Cicila GT (2007) Congenic strains confirm aerobic running capacity quantitative trait loci on rat chromosome 16 and identify possible intermediate phenotypes. Physiol Genomics 29:91–97

    PubMed  CAS  Google Scholar 

  • Weiss H, Arndt T, Jorns A, Lenzen S, Cuppen E, Hedrich HJ, Tiedge M, Wedekind D (2008) The mutation of the LEW.1AR1-iddm rat maps to the telomeric end of rat chromosome 1. Mamm Genome 19:292–297

    PubMed  CAS  Google Scholar 

  • Welsch CW (1985) Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins. Cancer Res 45:3415–3443

    PubMed  CAS  Google Scholar 

  • Wendell DL, Daun SB, Stratton MB, Gorski J (2000) Different functions of QTL for estrogen-dependent tumor growth of the rat pituitary. Mamm Genome 11:855–861

    PubMed  CAS  Google Scholar 

  • Wendt N, Schulz A, Siegel AK, Weiss J, Wehland M, Sietmann A, Kossmehl P, Grimm D, Stoll M, Kreutz R (2007) Rat chromosome 19 transfer from SHR ameliorates hypertension, salt-sensitivity, cardiovascular and renal organ damage in salt-sensitive Dahl rats. J Hypertens 25:95–102

    PubMed  CAS  Google Scholar 

  • Wilder SP, Bihoreau MT, Argoud K, Watanabe TK, Lathrop M, Gauguier D (2004) Integration of the rat recombination and EST maps in the rat genomic sequence and comparative mapping analysis with the mouse genome. Genome Res 14:758–765

    PubMed  CAS  Google Scholar 

  • Wilke RA, Lin DW, Roden DM, Watkins PB, Flockhart D, Zineh I, Giacomini KM, Krauss RM (2007) Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov 6:904–916

    PubMed  CAS  Google Scholar 

  • Winzen B, Koelsch B, Fischer C, Kindler-Rohrborn A (2009) Genetic basis of sex-specific resistance to neuro-oncogenesis in (BDIX x BDIV) F(2) rats. Mamm Genome 20:741–748

    PubMed  CAS  Google Scholar 

  • Wood GA, Sarma DS, Archer MC (1999) Resistance to the promotion of glutathione S-transferase 7-7-positive liver lesions in Copenhagen rats. Carcinogenesis 20:1169–1175

    PubMed  CAS  Google Scholar 

  • Wood GA, Korkola JE, Archer MC (2002) Tissue-specific resistance to cancer development in the rat: phenotypes of tumor-modifier genes. Carcinogenesis 23:1–9

    PubMed  Google Scholar 

  • Woon PY, Osoegawa K, Kaisaki PJ, Zhao B, Catanese JJ, Gauguier D, Cox R, Levy ER, Lathrop GM, Monaco AP, de Jong PJ (1998) Construction and characterization of a 10-fold genome equivalent rat P1-derived artificial chromosome library. Genomics 50:306–316

    PubMed  CAS  Google Scholar 

  • Woon PY, Kaisaki PJ, Braganca J, Bihoreau MT, Levy JC, Farrall M, Gauguier D (2007) Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci USA 104:14412–14417

    PubMed  CAS  Google Scholar 

  • Worley KC, Weinstock GM, Gibbs RA (2008) Rats in the genomic era. Physiol Genomics 32:273–282

    PubMed  CAS  Google Scholar 

  • Worthey EA, Stoddard AJ, Jacob HJ (2010) Sequencing of the rat genome and databases. Methods Mol Biol 597:33–53

    PubMed  CAS  Google Scholar 

  • Wu J, Forbes JR, Chen HS, Cox DW (1994) The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nat Genet 7:541–545

    PubMed  CAS  Google Scholar 

  • Xiao B, Harada Y, Kawakami K, Nabika T (2011) A 1.8-Mbp fragment on chromosome 1 affects sympathetic response to stress: evaluation in reciprocal congenic strains between stroke-prone spontaneously hypertensive rat and Wistar-Kyoto rat. J Hypertens 29:257–265

    PubMed  CAS  Google Scholar 

  • Xiong Q, Jiao Y, Hasty KA, Stuart JM, Postlethwaite A, Kang AH, Gu W (2008) Genetic and molecular basis of quantitative trait loci of arthritis in rat: genes and polymorphisms. J Immunol 181:859–864

    PubMed  CAS  Google Scholar 

  • Yagil Y, Yagil C (2010) Genomic research in rat models of kidney disease. Methods Mol Biol 597:427–444

    PubMed  CAS  Google Scholar 

  • Yamashita S, Suzuki S, Nomoto T, Kondo Y, Wakazono K, Tsujino Y, Sugimura T, Shirai T, Homma Y, Ushijima T (2005a) Linkage and microarray analyses of susceptibility genes in ACI/Seg rats: a model for prostate cancers in the aged. Cancer Res 65:2610–2616

    PubMed  CAS  Google Scholar 

  • Yamashita S, Wakazono K, Nomoto T, Tsujino Y, Kuramoto T, Ushijima T (2005b) Expression quantitative trait loci analysis of 13 genes in the rat prostate. Genetics 171:1231–1238

    PubMed  CAS  Google Scholar 

  • Yan Y, Zeng ZZ, Higashi S, Denda A, Konishi Y, Onishi S, Ueno H, Higashi K, Hiai H (2002) Resistance of DRH strain rats to chemical carcinogenesis of liver: genetic analysis of later progression stage. Carcinogenesis 23:189–196

    PubMed  CAS  Google Scholar 

  • Yao H, Cui ZH, Masuda J, Nabika T (2007) Congenic removal of a QTL for blood pressure attenuates infarct size produced by middle cerebral artery occlusion in hypertensive rats. Physiol Genomics 30:69–73

    PubMed  CAS  Google Scholar 

  • Yasue M, Serikawa T, Yamada J (1991) Chromosomal assignments of 23 biochemical loci of the rat by using rat x mouse somatic cell hybrids. Cytogenet Cell Genet 57:142–148

    PubMed  CAS  Google Scholar 

  • Yeung RS, Hino O, Vilensky M, Buetow K, Szpirer C, Szpirer J, Klinga-Levan K, Levan G, Knudson AG (1993) Assignment of 22 loci in the rat by somatic hybrid and linkage analysis. Mamm Genome 4:585–588

    PubMed  CAS  Google Scholar 

  • Yeung RS, Gu H, Lee M, Dundon TA (2001) Genetic identification of a locus, Mot1, that affects renal tumor size in the rat. Genomics 78:108–112

    PubMed  CAS  Google Scholar 

  • Yokoi N, Hayashi C, Fujiwara Y, Wang HY, Seino S (2007) Genetic reconstitution of autoimmune type 1 diabetes with two major susceptibility genes in the rat. Diabetes 56:506–512

    PubMed  CAS  Google Scholar 

  • Yokoi N, Fujiwara Y, Wang HY, Kitao M, Hayashi C, Someya T, Kanamori M, Oiso Y, Tajima N, Yamada Y, Seino Y, Ikegami H, Seino S (2008) Identification and functional analysis of CBLB mutations in type 1 diabetes. Biochem Biophys Res Commun 368:37–42

    PubMed  CAS  Google Scholar 

  • Yokoyama M, Amano S, Tsuji A, Sasahara M, Serikawa T, Ihara N, Matsuda M, Hazama F, Handa J (2001) Genetic analysis of cataract in Ihara epileptic rat. Mamm Genome 12:207–211

    PubMed  CAS  Google Scholar 

  • Yoshida MC, Masuda R, Sasaki M, Takeichi N, Kobayashi H, Dempo K, Mori M (1987) New mutation causing hereditary hepatitis in the laboratory rat. J Hered 78:361–365

    PubMed  CAS  Google Scholar 

  • Yoshida M, Harada Y, Kaidzu S, Ohira A, Masuda J, Nabika T (2005) New genetic model rat for congenital cataracts due to a connexin 46 (Gja3) mutation. Pathol Int 55:732–737

    PubMed  CAS  Google Scholar 

  • Zeng ZZ, Higashi S, Kitayama W, Denda A, Yan Y, Matsuo K, Konishi Y, Hiai H, Higashi K (2000) Genetic resistance to chemical carcinogen-induced preneoplastic hepatic lesions in DRH strain rats. Cancer Res 60:2876–2881

    PubMed  CAS  Google Scholar 

  • Zhang ZX, Kumar V, Rivera RT, Pasion SG, Chisholm J, Biswas DK (1989) Suppression of prolactin gene expression in GH cells correlates with site-specific DNA methylation. DNA 8:605–613

    PubMed  CAS  Google Scholar 

  • Zhang Z, Borecki I, Nguyen L, Ma D, Smith K, Huettner PC, Mutch DG, Herzog TJ, Gibb RK, Powell MA, Grigsby PW, Massad LS, Hernandez E, Judson PL, Swisher EM, Crowder S, Li J, Gerhard DS, Rader JS (2007) CD83 gene polymorphisms increase susceptibility to human invasive cervical cancer. Cancer Res 67:11202–11208

    PubMed  CAS  Google Scholar 

  • Zhao S, Shetty J, Hou L, Delcher A, Zhu B, Osoegawa K, de Jong P, Nierman WC, Strausberg RL, Fraser CM (2004) Human, mouse, and rat genome large-scale rearrangements: stability versus speciation. Genome Res 14:1851–1860

    PubMed  CAS  Google Scholar 

  • Zhou H, Huang C, Chen H, Wang D, Landel CP, Xia PY, Bowser R, Liu YJ, Xia XG (2010) Transgenic rat model of neurodegeneration caused by mutation in the TDP gene. PLoS Genet 6:e1000887

    PubMed  Google Scholar 

  • Zimdahl H, Nyakatura G, Brandt P, Schulz H, Hummel O, Fartmann B, Brett D, Droege M, Monti J, Lee YA, Sun Y, Zhao S, Winter EE, Ponting CP, Chen Y, Kasprzyk A, Birney E, Ganten D, Hubner N (2004) A SNP map of the rat genome generated from cDNA sequences. Science 303:807

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Recent work done in the laboratory of CS was supported by the Fund for Scientific Medical Research (FRSM, 3.4517.05), the Fund for Collective Fundamental Research (FRFC, 2.4565.04), the National Fund for Scientific Research (FNRS, Télévie, 7.4620.07 and 7.4530.06), and the FP6 programme EURATools. CS is a Honorary Research Director of the FNRS (Belgium). Recent work in the laboratory of GL was supported by the Swedish Cancer Society, the Swedish Medical Research Council (VR), and the Nilsson-Ehle Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Szpirer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Szpirer, C., Levan, G. (2012). Rat Genome Mapping and Genomics. In: Denny, P., Kole, C. (eds) Genome Mapping and Genomics in Laboratory Animals. Genome Mapping and Genomics in Animals, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31316-5_9

Download citation

Publish with us

Policies and ethics