Skip to main content

Genomics in the Sea Urchin: New Perspectives on a Perennial Model System

  • Chapter
  • First Online:
Genome Mapping and Genomics in Laboratory Animals

Part of the book series: Genome Mapping and Genomics in Animals ((MAPPANIMAL,volume 4))

  • 1023 Accesses

Abstract

The first genome sequenced from an echinoderm was completed from the purple sea urchin, Strongylocentrotus purpuratus, as part of the Sea Urchin Genome Project. Here, we describe how this resource has synergized with the long-standing repertoire of experimental techniques developed for the sea urchin over the last century to position the sea urchin as a key model organism for studying modern genome biology. The Sea Urchin Genome Project continues to advance studies in this phylum, as genomes from six additional echinoderms are currently at various stages of sequencing. These species were selected to cover a broad phylogenetic distribution and comprise a set of sequences for powerful comparative analyses. In combination with its rich catalog of experimental methods, the genome sequence provides a framework for addressing question in gene regulatory network biology within a deuterostome model that has close affinities to vertebrates. Furthermore, this invertebrate genome sequence samples an entirely new branch of animal phylogeny, and the biology implied by the complexity of what it encodes reveals unprecedented directions of animal evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agca C, Elhajj MC, Klein WH, Venuti JM (2011) Neurosensory and neuromuscular organization in tube feet of the sea urchin Strongylocentrotus purpuratus. J Comp Neurol 519:3566–3579

    Article  PubMed  Google Scholar 

  • Amore G, Casares F (2010) Size matters: the contribution of cell proliferation to the progression of the specification Drosophila eye gene regulatory network. Dev Biol 344:569–577

    Article  PubMed  CAS  Google Scholar 

  • Angerer LM, Angerer RC (2004) Disruption of gene function using antisense morpholinos. Methods Cell Biol 74:699–711

    Article  PubMed  CAS  Google Scholar 

  • Biermann CH, Kessing BD, Palumbi SR (2003) Phylogeny and development of marine model species: strongylocentrotid sea urchins. Evol Dev 5:360–371

    Article  PubMed  CAS  Google Scholar 

  • Bottjer DJ, Davidson EH, Peterson KJ, Cameron RA (2006) Paleogenomics of echinoderms. Science 314:956–960

    Article  PubMed  CAS  Google Scholar 

  • Bradham CA, Foltz KR, Beane WS, Arnone MI, Rizzo F, Coffman JA, Mushegian A, Goel M, Morales J, Geneviere AM, Lapraz F, Robertson AJ, Kelkar H, Loza-Coll M, Townley IK, Raisch M, Roux MM, Lepage T, Gache C, McClay DR, Manning G (2006) The sea urchin kinome: a first look. Dev Biol 300:180–193

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ, Cetta A, Davidson EH (1978) The single-copy DNA sequence polymorphism of the sea urchin Strongylocentrotus purpuratus. Cell 15:1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Brown CT, Xie Y, Davidson EH, Cameron RA (2005) Paircomp, FamilyRelationsII and Cartwheel: tools for interspecific sequence comparison. BMC Bioinformatics 6:70

    Article  PubMed  Google Scholar 

  • Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, Zheng X, Wang JY, Lee MM, Benfey P, Woolf PJ, Schiefelbein J (2012) A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet 8:e1002446

    Article  PubMed  CAS  Google Scholar 

  • Buckley KM, Rast JP (2011) Characterizing immune receptors from new genome sequences. Methods Mol Biol 748:273–298

    Article  PubMed  CAS  Google Scholar 

  • Buckley KM, Rast JP (2012) Dynamic evolution of toll-like receptor multigene families in echinoderms. Front in Immunol 3:136.

    Google Scholar 

  • Burke RD, Angerer LM, Elphick MR, Humphrey GW, Yaguchi S, Kiyama T, Liang S, Mu X, Agca C, Klein WH, Brandhorst BP, Rowe M, Wilson K, Churcher AM, Taylor JS, Chen N, Murray G, Wang D, Mellott D, Olinski R, Hallbook F, Thorndyke MC (2006) A genomic view of the sea urchin nervous system. Dev Biol 300:434–460

    Article  PubMed  CAS  Google Scholar 

  • Cai WW, Chen R, Gibbs RA, Bradley A (2001) A clone-array pooled shotgun strategy for sequencing large genomes. Genome Res 11:1619–1623

    Article  PubMed  CAS  Google Scholar 

  • Cameron RA, Fraser SE, Britten RJ, Davidson EH (1991) Macromere cell fates during sea urchin development. Development 113:1085–1091

    PubMed  CAS  Google Scholar 

  • Cameron RA, Rast JP, Brown CT (2004) Genomic resources for the study of sea urchin development. Methods Cell Biol 74:733–757

    Article  PubMed  CAS  Google Scholar 

  • Cameron RA, Chow SH, Berney K, Chiu TY, Yuan QA, Kramer A, Helguero A, Ransick A, Yun M, Davidson EH (2005) An evolutionary constraint: strongly disfavored class of change in DNA sequence during divergence of cis-regulatory modules. Proc Natl Acad Sci USA 1023:11769–11774.

    Article  Google Scholar 

  • Cameron RA, Samanta M, Yuan A, He D, Davidson E (2009) SpBase: the sea urchin genome database and web site. Nucleic Acids Res 37:D750–D754

    Article  PubMed  CAS  Google Scholar 

  • Cavaillon JM (2011) The historical milestones in the understanding of leukocyte biology initiated by Elie Metchnikoff. J Leukoc Biol 90:413–424

    Article  PubMed  CAS  Google Scholar 

  • Croce JC, Wu SY, Byrum C, Xu R, Duloquin L, Wikramanayake AH, Gache C, McClay DR (2006) A genome-wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus. Dev Biol 300:121–131

    Article  PubMed  CAS  Google Scholar 

  • Davidson EH (1986) Gene activity in early development, 3rd edn. Academic, Orlando, FL

    Google Scholar 

  • Davidson EH (2010) Emerging properties of animal gene regulatory networks. Nature 468:911–920

    Article  PubMed  CAS  Google Scholar 

  • Davidson EH, Cameron RA, Ransick A (1998) Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms. Development 125:3269–3290

    PubMed  CAS  Google Scholar 

  • Ebert TA (2008) Longevity and lack of senescence in the red sea urchin Strongylocentrotus franciscanus. Exp Gerontol 43:734–738

    Article  PubMed  Google Scholar 

  • Ebert TA, Southon JR (2003) Red sea urchins (Strongylocentrotus franciscanus) can live over 100 years: confirmation with A-bomb 14carbon. Fish Bull 101:915–922

    Google Scholar 

  • Eno CC, Bottger SA, Walker CW (2009) Methods for karyotyping and for localization of developmentally relevant genes on the chromosomes of the purple sea urchin, Strongylocentrotus purpuratus. Biol Bull 217:306–312

    PubMed  Google Scholar 

  • Ernst SG (2011) Offerings from an urchin. Dev Biol 358:285–294

    Article  PubMed  CAS  Google Scholar 

  • Ettensohn CA, Wessel GM, Wray GA (eds) (2004) Development of sea urchins, ascidians and other invertebrate deuterostomes: experimental approaches, vol 74, Methods in cell biology. Elsevier, London

    Google Scholar 

  • Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Guerra A, Aze A, Morales J, Mulner-Lorillon O, Cosson B, Cormier P, Bradham C, Adams N, Robertson AJ, Marzluff WF, Coffman JA, Geneviere AM (2006) The genomic repertoire for cell cycle control and DNA metabolism in S. purpuratus. Dev Biol 300:238–251

    Article  PubMed  CAS  Google Scholar 

  • Flytzanis CN, McMahon AP, Hough-Evans BR, Katula KS, Britten RJ, Davidson EH (1985) Persistence and integration of cloned DNA in postembryonic sea urchins. Dev Biol 108:431–442

    Article  PubMed  CAS  Google Scholar 

  • Fugmann SD, Messier C, Novack LA, Cameron RA, Rast JP (2006) An ancient evolutionary origin of the Rag1/2 gene locus. Proc Natl Acad Sci USA 103:3728–3733

    Article  PubMed  CAS  Google Scholar 

  • Gerhart SG (1983) Sea urchin cytogenetics. University of Calgary, Calgary, AB

    Google Scholar 

  • Heasman J, Kofron M, Wylie C (2000) Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev Biol 222(1):124–134

    Article  PubMed  CAS  Google Scholar 

  • Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300:349–365

    Article  PubMed  CAS  Google Scholar 

  • Hinegardner R (1974) Cellular DNA content of the echinodermata. Comp Biochem Physiol B 49:219–226

    Article  PubMed  CAS  Google Scholar 

  • Hinman VF, Nguyen AT, Cameron RA, Davidson EH (2003) Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proc Natl Acad Sci USA 100:13356–13361

    Article  PubMed  CAS  Google Scholar 

  • Howard EW, Newman LA, Oleksyn DW, Angerer RC, Angerer LM (2001) SpKrl: a direct target of beta-catenin regulation required for endoderm differentiation in sea urchin embryos. Development 128:365–375

    PubMed  CAS  Google Scholar 

  • Howard-Ashby M, Materna SC, Brown CT, Chen L, Cameron RA, Davidson EH (2006) Gene families encoding transcription factors expressed in early development of Strongylocentrotus purpuratus. Dev Biol 300:90–107

    Article  PubMed  CAS  Google Scholar 

  • Istrail S, Tarpine R, Schutter K, Aguiar D (2010) Practical computational methods for regulatory genomics: a cisGRN-Lexicon and cisGRN-browser for gene regulatory networks. Methods Mol Biol 674:369–399

    Article  PubMed  CAS  Google Scholar 

  • Janies DA, Voight JR, Daly M (2011) Echinoderm phylogeny including xyloplax, a progenetic asteroid. Syst Biol 60:420–438

    Article  PubMed  Google Scholar 

  • Kedes LH, Chang AC, Houseman D, Cohen SN (1975) Isolation of histone genes from unfractionated sea urchin DNA by subculture cloning in E. coli. Nature 255:533–538

    Article  PubMed  CAS  Google Scholar 

  • Lapraz F, Rottinger E, Duboc V, Range R, Duloquin L, Walton K, Wu SY, Bradham C, Loza MA, Hibino T, Wilson K, Poustka A, McClay D, Angerer L, Gache C, Lepage T (2006) RTK and TGF-beta signaling pathways genes in the sea urchin genome. Dev Biol 300:132–152

    Article  PubMed  CAS  Google Scholar 

  • Lee YH (2003) Molecular phylogenies and divergence times of sea urchin species of Strongylocentrotidae, Echinoida. Mol Biol Evol 20:1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Huang GM, Cameron RA, Graham G, Davidson EH, Hood L, Britten RJ (1999) EST analysis of gene expression in early cleavage-stage sea urchin embryos. Development 126:3857–3867

    PubMed  CAS  Google Scholar 

  • Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, Jenkins NA, Copeland NG (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65

    Article  PubMed  CAS  Google Scholar 

  • Lee PY, Nam J, Davidson EH (2007) Exclusive developmental functions of gatae cis-regulatory modules in the Strongylocentrorus purpuratus embryo. Dev Biol 307:434–445

    Article  PubMed  CAS  Google Scholar 

  • Lesser MP, Carleton KL, Bottger SA, Barry TM, Walker CW (2011) Sea urchin tube feet are photosensory organs that express a rhabdomeric-like opsin and PAX6. Proc Biol Sci 278:3371–3379

    Article  PubMed  CAS  Google Scholar 

  • Livingston BT, Killian CE, Wilt F, Cameron A, Landrum MJ, Ermolaeva O, Sapojnikov V, Maglott DR, Buchanan AM, Ettensohn CA (2006) A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Dev Biol 300:335–348

    Article  PubMed  CAS  Google Scholar 

  • Love AC, Lee AE, Andrews ME, Raff RA (2008) Co-option and dissociation in larval origins and evolution: the sea urchin larval gut. Evol Dev 10:74–88

    Article  PubMed  CAS  Google Scholar 

  • Materna SC, Oliveri P (2008) A protocol for unraveling gene regulatory networks. Nat Protoc 3:1876–1887

    Article  PubMed  CAS  Google Scholar 

  • Materna SC, Nam J, Davidson EH (2010) High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development. Gene Expr Patterns 10:177–184

    Article  PubMed  CAS  Google Scholar 

  • McClay DR (2011) Evolutionary crossroads in developmental biology: sea urchins. Development 138:2639–2648

    Article  PubMed  CAS  Google Scholar 

  • McMahon AP, Flytzanis CN, Hough-Evans BR, Katula KS, Britten RJ, Davidson EH (1985) Introduction of cloned DNA into sea urchin egg cytoplasm: replication and persistence during embryogenesis. Dev Biol 108:420–430

    Article  PubMed  CAS  Google Scholar 

  • Messier-Solek C, Buckley KM, Rast JP (2010) Highly diversified innate receptor systems and new forms of animal immunity. Semin Immunol 22:39–47

    Article  PubMed  CAS  Google Scholar 

  • Millot N (1975) The photosensitivity of echinoids. Adv Mar Biol 13:1–52

    Article  Google Scholar 

  • Morris RL, Hoffman MP, Obar RA, McCafferty SS, Gibbons IR, Leone AD, Cool J, Allgood EL, Musante AM, Judkins KM, Rossetti BJ, Rawson AP, Burgess DR (2006) Analysis of cytoskeletal and motility proteins in the sea urchin genome assembly. Dev Biol 300:219–237

    Article  PubMed  CAS  Google Scholar 

  • Nam J, Davidson EH (2012) Barcoded DNA-tag reporters for multiplex cis-regulatory analysis. Plos One 7:e35934.

    Article  PubMed  CAS  Google Scholar 

  • Nam J, Dong P, Tarpine R, Istrail S, Davidson EH (2010) Functional cis-regulatory genomics for systems biology. Proc Natl Acad Sci USA 107:3930–3935

    Article  PubMed  CAS  Google Scholar 

  • Oliver TA, Garfield DA, Manier MK, Haygood R, Wray GA, Palumbi SR (2010) Whole-genome positive selection and habitat-driven evolution in a shallow and a deep-sea urchin. Genome Biol Evol 2:800–814

    Article  PubMed  Google Scholar 

  • Oliveri P, Walton KD, Davidson EH, McClay DR (2006) Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo. Development 133:4173–4181

    Article  PubMed  CAS  Google Scholar 

  • Pespeni MH, Garfield DA, Manier MK, Palumbi SR (2012) Genome-wide polymorphisms show unexpected targets of natural selection. Proc Biol Sci 279(1732):1412–1420

    Article  PubMed  Google Scholar 

  • Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–258

    Article  PubMed  CAS  Google Scholar 

  • Pisani D, Feuda R, Peterson KJ, Smith AB (2012) Resolving phylogenetic signal from noise when divergence is rapid: a new look at the old problem of echinoderm class relationships. Mol Phylogenet Evol 62:27–34

    Article  PubMed  Google Scholar 

  • Poustka AJ, Groth D, Hennig S, Thamm S, Cameron A, Beck A, Reinhardt R, Herwig R, Panopoulou G, Lehrach H (2003) Generation, annotation, evolutionary analysis, and database integration of 20,000 unique sea urchin EST clusters. Genome Res 13:2736–2746

    Article  PubMed  Google Scholar 

  • Raible F, Tessmar-Raible K, Arboleda E, Kaller T, Bork P, Arendt D, Arnone MI (2006) Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev Biol 300:461–475

    Article  PubMed  CAS  Google Scholar 

  • Range R, Lapraz F, Quirin M, Marro S, Besnardeau L, Lepage T (2007) Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1. Development 134:3649–3664

    Article  PubMed  CAS  Google Scholar 

  • Range RC, Glenn TD, Miranda E, McClay DR (2008) LvNumb works synergistically with Notch signaling to specify non-skeletal mesoderm cells in the sea urchin embryo. Development 135:2445–2454

    Article  PubMed  CAS  Google Scholar 

  • Ransick A (2004) Detection of mRNA by in situ hybridization and RT-PCR. Methods Cell Biol 74:601–620

    Article  PubMed  CAS  Google Scholar 

  • Rast JP, Cameron RA, Poustka AJ, Davidson EH (2002) brachyury Target genes in the early sea urchin embryo isolated by differential macroarray screening. Dev Biol 246:191–208

    Article  PubMed  CAS  Google Scholar 

  • Rast JP, Smith LC, Loza-Coll M, Hibino T, Litman GW (2006) Genomic insights into the immune system of the sea urchin. Science 314:952–956

    Article  PubMed  CAS  Google Scholar 

  • Ririe TO, Fernandes JS, Sternberg PW (2008) The Caenorhabditis elegans vulva: a post-embryonic gene regulatory network controlling organogenesis. Proc Natl Acad Sci USA 105:20095–20099

    Article  PubMed  CAS  Google Scholar 

  • Rizzo F, Fernandez-Serra M, Squarzoni P, Archimandritis A, Arnone MI (2006) Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus). Dev Biol 300:35–48

    Article  PubMed  CAS  Google Scholar 

  • Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate toll-like receptors. Proc Natl Acad Sci USA 102:9577–9582

    Article  PubMed  CAS  Google Scholar 

  • Robertson AJ, Coluccio A, Knowlton P, Dickey-Sims C, Coffman JA (2008) Runx expression is mitogenic and mutually linked to Wnt activity in blastula-stage sea urchin embryos. PLoS One 3:e3770

    Article  PubMed  Google Scholar 

  • Romano LA, Wray GA (2003) Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation. Development 130:4187–4199

    Article  PubMed  CAS  Google Scholar 

  • Samanta MP, Tongprasit W, Istrail S, Cameron RA, Tu Q, Davidson EH, Stolc V (2006) The transcriptome of the sea urchin embryo. Science 314:960–962

    Article  PubMed  CAS  Google Scholar 

  • Sandelin A, Wasserman WW, Lenhard B (2004) ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res 32:W249–W252

    Article  PubMed  CAS  Google Scholar 

  • Smith J (2008) A protocol describing the principles of cis-regulatory analysis in the sea urchin. Nat Protoc 3:710–718

    Article  PubMed  CAS  Google Scholar 

  • Smith LC, Chang L, Britten RJ, Davidson EH (1996) Sea urchin genes expressed in activated coelomocytes are identified by expressed sequence tags. Complement homologues and other putative immune response genes suggest immune system homology within the deuterostomes. J Immunol 156:593–602

    PubMed  CAS  Google Scholar 

  • Smith MM, Cruz Smith L, Cameron RA, Urry LA (2008) The larval stages of the sea urchin, Strongylocentrotus purpuratus. J Morphol 269(6):713–733

    Article  PubMed  Google Scholar 

  • Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Belle R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Geneviere AM, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W, Tu Q, Bergeron KF, Brandhorst BP, Whittle J, Berney K, Bottjer DJ, Calestani C, Peterson K, Chow E, Yuan QA, Elhaik E, Graur D, Reese JT, Bosdet I, Heesun S, Marra MA, Schein J, Anderson MK, Brockton V, Buckley KM, Cohen AH, Fugmann SD, Hibino T, Loza-Coll M, Majeske AJ, Messier C, Nair SV, Pancer Z, Terwilliger DP, Agca C, Arboleda E, Chen N, Churcher AM, Hallbook F, Humphrey GW, Idris MM, Kiyama T, Liang S, Mellott D, Mu X, Murray G, Olinski RP, Raible F, Rowe M, Taylor JS, Tessmar-Raible K, Wang D, Wilson KH, Yaguchi S, Gaasterland T, Galindo BE, Gunaratne HJ, Juliano C, Kinukawa M, Moy GW, Neill AT, Nomura M, Raisch M, Reade A, Roux MM, Song JL, Su YH, Townley IK, Voronina E, Wong JL, Amore G, Branno M, Brown ER, Cavalieri V, Duboc V, Duloquin L, Flytzanis C, Gache C, Lapraz F, Lepage T, Locascio A, Martinez P, Matassi G, Matranga V, Range R, Rizzo F, Rottinger E, Beane W, Bradham C, Byrum C, Glenn T, Hussain S, Manning G, Miranda E, Thomason R, Walton K, Wikramanayke A, Wu SY, Xu R, Brown CT, Chen L, Gray RF, Lee PY, Nam J, Oliveri P, Smith J, Muzny D, Bell S, Chacko J, Cree A, Curry S, Davis C, Dinh H, Dugan-Rocha S, Fowler J, Gill R, Hamilton C, Hernandez J, Hines S, Hume J, Jackson L, Jolivet A, Kovar C, Lee S, Lewis L, Miner G, Morgan M, Nazareth LV, Okwuonu G, Parker D, Pu LL, Thorn R, Wright R (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–952

    Article  PubMed  Google Scholar 

  • Su YH, Li E, Geiss GK, Longabaugh WJ, Kramer A, Davidson EH (2009) A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo. Dev Biol 329:410–421

    Article  PubMed  CAS  Google Scholar 

  • Sweet H, Amemiya S, Ransick A, Minokawa T, McClay DR, Wikramanayake A, Kuraishi R, Kiyomoto M, Nishida H, Henry J (2004) Blastomere isolation and transplantation. Methods Cell Biol 74:243–271

    Article  PubMed  Google Scholar 

  • Tu Q, Brown CT, Davidson EH, Oliveri P (2006) Sea urchin Forkhead gene family: phylogeny and embryonic expression. Dev Biol 300:49–62

    Article  PubMed  CAS  Google Scholar 

  • Tu Q, Cameron RA, Worley KC, Gibbs RA, Davidson EH (2012) Gene structure in the sea urchin Strongylocentrotus purpuratus based on transcriptome analysis. Genome Res. (epub ahead of print)

    Google Scholar 

  • Ullrich-Luter EM, Dupont S, Arboleda E, Hausen H, Arnone MI (2011) Unique system of photoreceptors in sea urchin tube feet. Proc Natl Acad Sci USA 108:8367–8372

    Article  PubMed  Google Scholar 

  • Wada H, Satoh N (1994) Phylogenetic relationships among extant classes of echinoderms, as inferred from sequences of 18S rDNA, coincide with relationships deduced from the fossil record. J Mol Evol 38:41–49

    Article  PubMed  CAS  Google Scholar 

  • Wei Z, Angerer RC, Angerer LM (2006) A database of mRNA expression patterns for the sea urchin embryo. Dev Biol 300:476–484

    Article  PubMed  CAS  Google Scholar 

  • Wray GA, Raff RA (1989) Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma. Dev Biol 132:458–470

    Article  PubMed  CAS  Google Scholar 

  • Yaguchi S, Yaguchi J, Angerer RC, Angerer LM, Burke RD (2010) TGFbeta signaling positions the ciliary band and patterns neurons in the sea urchin embryo. Dev Biol 347:71–81

    Article  PubMed  CAS  Google Scholar 

  • Yerramilli D, Johnsen S (2010) Spatial vision in the purple sea urchin Strongylocentrotus purpuratus (Echinoidea). J Exp Biol 213:249–255

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–5983

    Article  PubMed  CAS  Google Scholar 

  • Yuh CH, Bolouri H, Davidson EH (2001) Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. Development 128:617–629

    PubMed  CAS  Google Scholar 

  • Yuh CH, Brown CT, Livi CB, Rowen L, Clarke PJ, Davidson EH (2002) Patchy interspecific sequence similarities efficiently identify positive cis-regulatory elements in the sea urchin. Dev Biol 246:148–161

    Article  PubMed  CAS  Google Scholar 

  • Yuh CH, Dorman ER, Howard ML, Davidson EH (2004) An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network. Dev Biol 269:536–551

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Mahairas G, Illies M, Cameron RA, Davidson EH, Ettensohn CA (2001) A large-scale analysis of mRNAs expressed by primary mesenchyme cells of the sea urchin embryo. Development 128:2615–2627

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank R. Andrew Cameron and members of the wider sea urchin community for enlightening discussions. This work is supported by grants from the Canadian Institutes for Health Research (MOP74667) and the Natural Sciences and Engineering Research Council of Canada (NSERC 312221) to JPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Rast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buckley, K.M., Rast, J.P. (2012). Genomics in the Sea Urchin: New Perspectives on a Perennial Model System. In: Denny, P., Kole, C. (eds) Genome Mapping and Genomics in Laboratory Animals. Genome Mapping and Genomics in Animals, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31316-5_1

Download citation

Publish with us

Policies and ethics