Skip to main content

Deconvolution and Denoising for Confocal Microscopy

  • Chapter
  • First Online:
Modeling in Computational Biology and Biomedicine

Abstract

Fluorescence light microscopes, especially the confocal laser scanning microscopes, have become a powerful tool in life sciences for observing biological samples in order to detect the distribution of proteins or other molecules of interest. Using this tool, biologists can study cells and their sub-cellular structures, identify, and precisely localize cellular organelles and supra-molecular structures. The confocal microscope is a type of fluorescent light microscope that gives very good two-dimensional optical sections of three-dimensional specimens, rejects the background auto-fluorescence, and offers a good contrast. However, there are some inherent limitations in confocal images such as the blurring effects due to the diffraction limit of the optics, and the low signal levels. The aim of this chapter is to introduce the reader to the basics of the light and confocal microscopes, their imaging limitations, and the mathematics involved in the resolution and signal-to-noise ratio improvement methodologies. Although user-friendly restoration software packages are available in the market, image restoration by deconvolution remains a difficult task for many microscopist and choosing the right software is often a case of trial and error due to a lack of knowledge of the applied algorithm. It is with the objective of resolving this issue that the most recent developments are intuitively explained, with some concrete examples to explain the underlying principles. The current open problems in the field of microscopy and methodological challenges are mentioned towards the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The near field (or near-field), far field (or far-field), and the transition zone are regions of the electromagnetic radiation field scattering off an object. Certain characteristics of electromagnetic fields dominate at a large distance (or zone) from the scattering object, while a different characteristic can dominate at a shorter distance.

  2. 2.

    Molecules having two states, one fluorescent and the other non-fluorescent, and the ability to be switched from one state to the other by excitation with a shortwave light.

  3. 3.

    The numerical aperture of a lens measures its maximum light collection angle. It can be calculated as \(\mathrm{NA} = n\sin \alpha \), where n is the refractive index of the imaging medium between the objective lens and the coverglass, and α is the maximum semi-angle subtended by the incident light cone accepted by the lens.

  4. 4.

    Back-projected diameter is the diameter of a pinhole in the object space. It is equal to the ratio between the real physical diameter of the pinhole and the total magnification of the system.

  5. 5.

    Quantum efficiency for a photosensitive device measures the percentage of photons hitting the photoreactive surface that will produce an electron-hole pair. It is an accurate measurement of the device’s electrical sensitivity to light.

  6. 6.

    The quantum yield of a radiation-induced process is the number of times that a photon is emitted per photon absorbed by the system. This is essentially the emission efficiency of a given fluorophore.

  7. 7.

    A given problem is said to be ill-conditioned when it has a high condition number or the solution changes by a very significant amount in proportion to very small changes in the input data.

References

  1. D.A. Agard. Optical sectioning microscopy: cellular architecture in three dimensions. Ann. Rev. Biophys. Bioeng., 13:191–219, 1984.

    Google Scholar 

  2. D.A. Agard, Y. Hiraoka, P. Shaw, and J.W. Sedat. Fluorescence microscopy in three dimensions. Methods Cell Biol., 30:353–377, 1989.

    Google Scholar 

  3. G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, volume 147 of Applied Mathematical Sciences. Springer Verlag, 2006.

    Google Scholar 

  4. M.R. Banham and A.K. Katsaggelos. Digital image restoration. IEEE Sig. Proc. Mag., 14(2):24–41, March 1997.

    Google Scholar 

  5. J.M. Bardsley and J.J. Goldes. Regularization parameter selection methods for ill-posed poisson maximum likelihood estimation. Inverse Problems, 25(9):095005, 2009.

    Google Scholar 

  6. A. Beck and M. Teboulle. A fast iterative shrinkage thresholding algorithm for linear inverse problems. SIAM J. Imaging Sciences, 2(1):183–202, 2009.

    Google Scholar 

  7. D.S.C. Biggs and M. Andrews. Acceleration of iterative image restoration algorithms. Appl. Opt., 36(8):1766–1775, 1997.

    Google Scholar 

  8. M.J. Booth. Adaptive optics in microscopy. Philos. Transact. A Math. Phys. Eng. Sci., 365(1861):2829–2843, December 2007.

    Google Scholar 

  9. M.J. Booth, M.A. Neil, R. Juskaitis, and T. Wilson. Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci., 99(9):5788–5792, 2002.

    Google Scholar 

  10. M. Born and E. Wolf. Principles of Optics. Cambridge U. Press, 1999.

    Google Scholar 

  11. A.C. Bovik, editor. Handbook of image and video processing. Elsevier Academic Press, Amsterdam [u.a.], 2005.

    Google Scholar 

  12. L.M. Bregman. The method of successive projection for finding a common point of convex sets (Theorems for determining common point of convex sets by method of successive projection). Soviet Mathematics, 6:688–692, 1965.

    Google Scholar 

  13. P. Campisi and K. Egiazarian, editors. Blind Image Deconvolution: Theory and Applications. CRC Press, 2007.

    Google Scholar 

  14. M.B. Cannell, A. McMorland, and C. Soeller. Image enhancement by deconvolution. In J. B. Pawley, editor, Handbook of Biological Confocal Microscopy, chapter 25, pages 488–500. Springer, 3rd edition, 2006.

    Google Scholar 

  15. W.A. Carrington, K.E. Fogarty, and F.S. Fay. 3D Fluorescence Imaging of Single Cells Using Image Restoration. In J. K. Foskett and S. Grinstein, editors, Noninvasive techniques in cell biology, pages 53–72. Wiley-Liss, 1990.

    Google Scholar 

  16. T.F. Chan and J. Shen. Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM Publisher, 2005.

    Google Scholar 

  17. P. Charbonnier, L. Blanc-Féraud, and M. Barlaud. An adaptive reconstruction method involving discontinuities. In IEEE Int. Conf. Acoust. Speech Signal Process., volume 5, pages 491–494, Minneapolis, MN, USA, April 1993.

    Google Scholar 

  18. C. Chaux, L. Blanc-Féraud, and J. Zerubia. Wavelet-based restoration methods: application to 3D confocal microscopy images. In Proc. SPIE, volume 6701, San Diego, USA, August 2007.

    Google Scholar 

  19. C. Chaux, J.-C. Pesquet, and N. Pustelnik. Nested iterative algorithms for convex constrained image recovery problems. SIAM Journal on Imaging Sciences, 2(2):730–762, 2009.

    Google Scholar 

  20. P.-C. Cheng, B.-L. Lin, F.-J. Kao, M. Gu, M.-G. Xu, X. Gan, M.-K. Huang, and Y.-S. Wang. Multi-photon fluorescence microscopy - The response of plant cells to high intensity illumination. Micron, 32:661–670, 2001.

    Google Scholar 

  21. J.-A. Conchello and J.W. Lichtman. Optical Sectioning Microscopy. Nature Methods, 2(12):920–931, 2005.

    Google Scholar 

  22. J. Boutet de Monvel, S. Le Calvez, and M. Ulfendahl. Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ. Biophys. J., 80(5):2455–2470, 2001.

    Google Scholar 

  23. N. Dey, L. Blanc-Féraud, C. Zimmer, Z. Kam, P. Roux, J.-C. Olivo-Marin, and J. Zerubia. Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc. Res. Tech., 69:260–266, 2006.

    Google Scholar 

  24. N. Dey, L. Blanc-Féraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia. 3D microscopy deconvolution using richardson-lucy algorithm with total variation regularization. Research Report 5272, Inria, France, July 2004.

    Google Scholar 

  25. A. Diaspro, G. Chirico, C. Usai, P. Romoino, and J. Dobrucki. Photobleaching. In J. B. Pawley, editor, Handbook of Biological Confocal Microscopy, chapter 39, pages 690–702. Springer, 3rd edition, 2006.

    Google Scholar 

  26. F. Difato, F. Mazzone, S. Scaglione, M. Fato, F. Beltrame, L. Kubínová, J. Janácek, P. Ramoino, G. Vicidomini, and A. Diaspro. Improvement in volume estimation from confocal sections after image deconvolution. Microscopy Research and Technique, 64(2):151–155, 2004.

    Google Scholar 

  27. F.-X. Dupé, M.J. Fadili, and J.-L. Starck. A proximal iteration for deconvolving Poisson noisy images using sparse representations. IEEE Trans. Image Proc., 18(2):310–321, 2009.

    Google Scholar 

  28. A. Egner, M. Schrader, and S.W. Hell. Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton and 4Pi-microscopy. Opt. Comm., 153:211–217, August 1998.

    Google Scholar 

  29. A. Erhardt, G. Zinser, D. Komitowski, and J. Bille. Reconstructing 3-D light-microscopic images by digital image processing. Appl. Opt., 24:194–200, 1985.

    Google Scholar 

  30. M. Figueiredo and J. Bioucas-Dias. Restoration of Poissonian images using alternating direction optimization. IEEE Transactions on Image Processing, 19(12):3133–3145, 2010.

    Google Scholar 

  31. M.A.T. Figueiredo and R.D. Nowak. An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process., 12(8):906–916, August 2003.

    Google Scholar 

  32. J.W. Goodman. Introduction to Fourier Optics. Roberts & Company Publishers, 2004.

    Google Scholar 

  33. B.M. Hanser, M.G. Gustafsson, D.A. Agard, and J.W. Sedat. Phase retrieval for high-numerical-aperture optical systems. Opt. Lett., 28(10):801–803, May 2003.

    Google Scholar 

  34. S.W. Hell. Far-field optical nanoscopy. Single Molecule Spectroscopy in Chemistry, Physics and Biology, 96(7):365–398, 2009.

    Google Scholar 

  35. Y. Hiraoka, J.W. Sedat, and D.A. Agard. Determination of three-dimensional imaging properties of a light microscope system. Biophys. J., 57:325–333, February 1990.

    Google Scholar 

  36. T.J. Holmes. Maximum-likelihood image restoration adapted for noncoherent optical imaging. J. Opt. Soc. Am. A, 5:666–673, May 1988.

    Google Scholar 

  37. S. Inoué. Foundations of Confocal Scanned Imaging in Light Microscopy. In J. B. Pawley, editor, Handbook of Biological Confocal Microscopy, chapter 1, pages 1–19. Springer, 3rd edition, 2006.

    Google Scholar 

  38. Z. Kam, B. Hanser, M.G.L. Gustafsson, D.A. Agard, and J.W. Sedat. Computational adaptive optics for live three-dimensional biological imaging. Proc. Natl. Acad. Sci., 98(7):3790–3795, 2001.

    Google Scholar 

  39. Z. Kam, P. Kner, D. Agard, and J.W. Sedat. Modelling the application of adaptive optics to wide-field microscope live imaging. J. Microsc., 226:33–42, 2007.

    Google Scholar 

  40. X. Lai, Z. Lin, E.S. Ward, and R.J. Ober. Noise suppression of point spread functions and its influence on deconvolution of three-dimensional fluorescence microscopy image sets. J. Microsc., 217(1):93–108, 2005.

    Google Scholar 

  41. L. Landmann and P. Marbet. Colocalization analysis yields superior results after image restoration. Microscopy Research and Technique, 64(2):103–112, 2004.

    Google Scholar 

  42. A. Levin, Y. Weiss, F. Durand, and W.T. Freeman. Understanding and evaluating blind deconvolution algorithms. In Proc. IEEE Comp. Vis. and Pat. Recog., Miami, FL, USA, June 2009. to appear.

    Google Scholar 

  43. J.W. Lichtman and J.-A. Conchello. Fluorescence Microscopy. Nature Methods, 2(12):910–919, 2005.

    Google Scholar 

  44. L.B. Lucy. An iterative technique for the rectification of observed distributions. Astron. J., 79:745–754, 1974.

    Google Scholar 

  45. J.G. McNally, T. Karpova, J. Cooper, and J.A. Conchello. Three-Dimensional Imaging by Deconvolution Microscopy. Methods, 19:373–385, 1999.

    Google Scholar 

  46. J.G. McNally, C. Preza, J.Á. Conchello, and L.J. Thomas Jr. Artifacts in computational optical-sectioning microscopy. J. Opt. Soc. Am. A, 11:1056–1067, March 1994.

    Google Scholar 

  47. E.S. Meinel. Origins of linear and nonlinear recursive restoration algorithms. J. Opt. Soc. Am. A, 3(6):787–799, 1986.

    Google Scholar 

  48. K. Miller. Least squares methods for ill-posed problems with a prescribed bound. SIAM J. Math. Anal., 1(1):52–74, 1970.

    Google Scholar 

  49. M. Minsky. Memoir on inventing the confocal scanning microscope. Scanning, 10:128–138, 1988.

    Google Scholar 

  50. J.R. Monck, A.F. Oberhauser, T.J. Keating, and J.M. Fernandez. Thin-section ratiometric Ca2+ images obtained by optical sectioning of fura-2 loaded mast cells. J. Cell Biol., 116(3):745–759, 1992.

    Google Scholar 

  51. N. Moreno, S. Bougourd, J. Haseloff, and J. A. Feijò. Imaging Plant Cells. In J. B. Pawley, editor, Handbook of Biological Confocal Microscopy, chapter 44, pages 769–787. Springer, 3rd edition, 2006.

    Google Scholar 

  52. P. Pankajakshan. Blind Deconvolution for Confocal Laser Scanning Microscopy. PhD thesis, Université de Nice-Sophia Antipolis, December 2009.

    Google Scholar 

  53. P. Pankajakshan, L. Blanc-Féraud, Z. Kam, and J. Zerubia. Point-spread function retrieval in fluorescence microscopy. In Proc. IEEE International Symposium on Biomedical Imaging, pages 1095–1098, Boston, USA, July 2009.

    Google Scholar 

  54. P. Pankajakshan, B. Zhang, L. Blanc-Féraud, Z. Kam, J.-C. Olivo-Marin, and J. Zerubia. Blind deconvolution for thin-layered confocal imaging. Appl. Opt., 48(22):4437–4448, 2009.

    Google Scholar 

  55. G.H. Patterson. Fluorescence microscopy below the diffraction limit. Seminars in cell & developmental biology, 20(8):886–893, 2009. Imaging in Cell and Developmental Biology; Planar Cell Polarity.

    Google Scholar 

  56. J.B. Pawley. Fundamental limits in confocal microscopy. In J. B. Pawley, editor, Handbook of Biological Confocal Microscopy, chapter 2, pages 20–42. Springer, 3rd edition, 2006.

    Google Scholar 

  57. J.B. Pawley, editor. Handbook of Biological Confocal Microscopy. Springer, 3rd edition, 2006.

    Google Scholar 

  58. J.B. Pawley. Points, pixels, and gray levels: digitizing image data. In J. B. Pawley, editor, Handbook of Biological Confocal Microscopy, chapter 4, pages 59–79. Springer, 3rd edition, 2006.

    Google Scholar 

  59. M. Platani, I. Goldberg, J.R. Swedlow, and A.I. Lamond. In Vivo analysis of Cajal body movement, separation and joining in live human cells. J.Cell.Biol., 151:1561–1574, 2000.

    Google Scholar 

  60. C. Preza, M.I. Miller, L.J. Thomas Jr., and J.G. McNally. Regularized linear method for reconstruction of three-dimensional microscopic objects from optical sections. J. Opt. Soc. Am. A, 9(2):219–228, 1992.

    Google Scholar 

  61. E.H. Ratzlaff and A. Grinvald. A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging. J Neurosci. Methods., 36:127–137, 1991.

    Google Scholar 

  62. W.H. Richardson. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. A, 62(1):55–59, January 1972.

    Google Scholar 

  63. L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Phys. D., 60:259–268, 1992.

    Google Scholar 

  64. P. Sarder and A. Nehorai. Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process. Mag., 23(3):32–45, May 2006.

    Google Scholar 

  65. B.A. Scalettar, J.R. Sweldow, J.W. Sedat, and D.A. Agard. Dispersion, aberration and deconvolution in multi-wavelength fluorescence images. J. Microsc., 182:50–60, 1996.

    Google Scholar 

  66. L. Schermelleh, R. Heintzmann, and H. Leonhardt. A guide to super-resolution fluorescence microscopy. J. Cell Biol., 190:165–175, 2010.

    Google Scholar 

  67. F. Sedarat, E. Lin, E.D.W. Moore, and G. F.Tibbits. Deconvolution of confocal images of dihydropyridine and ryanodine receptors in developing cardiomyocytes. J. Appl. Physiol., 97:1098–1103, 2004.

    Google Scholar 

  68. J.W. Shaevitz and D.A. Fletcher. Enhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function. J. Opt. Soc. Am. A, 24(9):2622–2627, 2007.

    Google Scholar 

  69. S.L. Shaw. Imaging the live plant cell. The Plant Journal, 45(4):573–598, 2006.

    Google Scholar 

  70. C.J.R. Sheppard. Depth of field in optical microscopy. J. Microsc., 149:73–75, 1988.

    Google Scholar 

  71. L. Sherman, J.Y. Ye, O. Albert, and T.B. Norris. Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror. J. Microsc., 206(1):65–71, 2002.

    Google Scholar 

  72. J.B. Sibarita. Deconvolution microscopy. Advances in Biochemical Engineering and Biotechnology, 92:201–243, 2005.

    Google Scholar 

  73. J.-L. Starck and A. Bijaoui. Filtering and deconvolution by the wavelet transform. Signal Process., 35(3):195–211, 1994.

    Google Scholar 

  74. E.H.K. Stelzer. Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy. J. Microsc., 189:15–24, January 1998.

    Google Scholar 

  75. P.A. Stokseth. Properties of a defocused optical system. J. Opt. Soc. Am. A, 59:1314–1321, october 1969.

    Google Scholar 

  76. Y. Sun, P. Davis, E.A. Kosmacek, F. Ianzini, and M.A. Mackey. An open-source deconvolution software package for 3-D quantitative fluorescence microscopy imaging. J. Microsc., 236(3):180–193, 2009.

    Google Scholar 

  77. T. Suzuki, T. Matsuzaki, H. Hagiwara, T. Aoki, and K. Takata. Recent Advances in Fluorescent Labeling Techniques for Fluorescence Microscopy. Acta Histochem. Cytochem., 40:131–137, 2007.

    Google Scholar 

  78. J.R. Swedlow, K. Hu, P.D. Andrews, D.S. Roos, and J.M. Murray. Measuring tubulin content in Toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy. Proc. Soc. Natl. Acad. Sci., 99(4):2014–2019, February 2002.

    Google Scholar 

  79. A.N. Tikhonov and V.A. Arsenin. Solution of Ill-posed Problems. Winston and Sons, 1977.

    Google Scholar 

  80. T. Tommasi, A. Diaspro, and B. Bianco. 3-D reconstruction in optical microscopy by a frequency-domain approach. Signal Process., 32(3):357–366, 1993.

    Google Scholar 

  81. R.Y. Tsien, L. Ernst, and A. Waggonnr. Fluorophores for confocal microscopy: photophysics and photochemistry. In J. B. Pawley, editor, Handbook of Biological Confocal Microscopy, chapter 39, pages 690–702. Springer, 3rd edition, 2006.

    Google Scholar 

  82. G.M.P. van Kempen, L.J. van Vliet, P.J. Verveer, and H.T.M. van Der Voort. A quantitative comparison of image restoration methods for confocal microscopy. J. Microsc., 12:354–365, March 1997.

    Google Scholar 

  83. P.J. Verveer, M.J. Gemkow, and T.M. Jovin. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy. J. Microsc., 193:50–61, 1999.

    Google Scholar 

  84. R.M. Willett, I. Jermyn, R.D. Nowak, and J. Zerubia. Wavelet-based superresolution in astronomy. In F. Ochsenbein, M.G. Allen, and D. Egret, editors, Proc. Astronomical Data Analysis Software and Systems, volume 314 of Astronomical Society of the Pacific, pages 107–116, Strasbourg, France, July 2003.

    Google Scholar 

  85. K.I. Willig, J. Keller, M. Bossi, and S.W. Hell. STED microscopy resolves nanoparticle assemblies. New J. Phys., 8:106–113, 2006.

    Google Scholar 

  86. R. Zanella, P. Boccacci, L. Zanni, and M. Bertero. Efficient gradient projection methods for edge-preserving removal of poisson noise. Inverse Problems, 25(4):045010, 2009.

    Google Scholar 

  87. B. Zhang, J. Zerubia, and J.C. Olivo-Marin. Gaussian approximations of fluorescence microscope point-spread function models. Appl. Opt., 46(10):1819–1829, 2007.

    Google Scholar 

Download references

Acknowledgements

Part of the results presented in this chapter was funded by the P2R Franco-Israeli collaborative research program and the ANR DIAMOND project. The authors gratefully acknowledge Prof. Zvi Kam (Weizmann Institute of Sciences, Israel) and Dr. Jean-Christophe Olivo-Marin (Institut Pasteur, Paris, France) for several interesting discussions. Additionally, our sincere gratitude goes to the editors, and Prof. James B. Pawley (Department of Zoology, University of Wisconsin, Madison, USA) Dr. Francois Orieux (Paris Institute of Astrophysics, France) for their detailed reviews and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Pankajakshan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pankajakshan, P., Engler, G., Blanc-Féraud, L., Zerubia, J. (2013). Deconvolution and Denoising for Confocal Microscopy. In: Cazals, F., Kornprobst, P. (eds) Modeling in Computational Biology and Biomedicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31208-3_4

Download citation

Publish with us

Policies and ethics