Skip to main content

Noninvasive Cardiac Signal Analysis Using Data Decomposition Techniques

  • Chapter
  • First Online:
Modeling in Computational Biology and Biomedicine

Abstract

Analyzing electrocardiogram (ECG) recordings is crucial to gathering useful information about a patient’s heart condition in a noninvasive manner, with the consequent benefits in procedural time, cost and risk of complications relative to invasive diagnostic modalities. Signal processing can aid cardiologists to make informed decisions by revealing and quantifying underlying structures that may not be apparent in the observed data, especially when the redundancy inherent to the ECG leads hinders the expert’s analysis. This chapter considers two such ECG signal processing problems, namely, T-wave alternans detection and atrial activity estimation during atrial fibrillation. The redundancy present in the ECG can effectively be exploited by decomposing the observed data into interesting signals or components that are often easier to analyze than the original recording. These components can be determined as appropriate linear combinations of the observed data according to different criteria such as principal component analysis (PCA) and independent component analysis (ICA). While PCA relies on second-order statistics and yields uncorrelated components, ICA achieves independence through the use of higher-order statistics. The main concepts as well as some advantages, limitations and success stories of these popular decomposition techniques are illustrated on real ECG data from the above cardiac signal processing problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines. A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing, 45(2):434–444, February 1997.

    Google Scholar 

  2. A. Bollmann and F. Lombardi. Electrocardiology of atrial fibrillation. IEEE Engineering in Medicine and Biology Magazine, 25(6):15–23, November/December 2006.

    Google Scholar 

  3. P. Bonizzi, M. S. Guillem, A. M. Climent, J. Millet, V. Zarzoso, F. Castells, and O. Meste. Noninvasive assessment of the complexity and stationarity of the atrial wavefront patterns during atrial fibrillation. IEEE Transactions on Biomedical Engineering, 57(9):2147–2157, September 2010.

    Google Scholar 

  4. L. Burattini, W. Zareba, and R. Burattini. The effect of baseline wandering in automatic T-wave alternans detection from Holter recordings. In Proc. Computers in Cardiology, volume 33, pages 257–260, Valencia, Spain, Sept. 17–20, 2006.

    Google Scholar 

  5. F. Castells, P. Laguna, L. Sörnmo, A. Bollmann, and J. Millet Roig. Principal component analysis in ECG signal processing. EURASIP Journal on Advances in Signal Processing, 2007:21 pages, 2007.

    Google Scholar 

  6. F. Castells, J. J. Rieta, J. Millet, and V. Zarzoso. Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias. IEEE Transactions on Biomedical Engineering, 52(2):258–267, February 2005.

    Google Scholar 

  7. P. Comon. Independent Component Analysis. In J-L. Lacoume, editor, Higher Order Statistics, pages 29–38. Elsevier, Amsterdam, London, 1992.

    Google Scholar 

  8. P. Comon. Contrasts, independent component analysis, and blind deconvolution. Int. Journal Adapt. Control Sig. Proc., 18(3):225–243, April 2004.

    Google Scholar 

  9. P. Comon and C. Jutten, editors. Handbook of Blind Source Separation, Independent Component Analysis and Applications. Academic Press, Oxford, UK, 2010.

    Google Scholar 

  10. D. Donoho. On minimum entropy deconvolution. In Applied Time-Series Analysis II, pages 565–609. Academic Press, 1981.

    Google Scholar 

  11. V. Fuster, L. E. Rydén, D. S. Cannom, H. J. Crijns, A. B. Curtis, et al. ACC/AHA/ESC guidelines for the management of patients with atrial fibrillation – executive summary. Circulation, 114(7):700–752, 2006.

    Google Scholar 

  12. P. Jaïs, D. C. Shah, M. Hocini, L. Macle, K.-J. Choi, et al. Radiofrequency ablation for atrial fibrillation. European Heart Journal Supplements, 5(Supplement H):H34–H39, 2003.

    Google Scholar 

  13. K. T. Konings, C. J. Kirchhof, J. R. Smeets, H. J. Wellens, O. C. Penn, and M. A. Allessie. High-density mapping of electrically induced atrial fibrillation in humans. Circulation, 89(4):1665–1680, April 1994.

    Google Scholar 

  14. J. Malmivuo and R. Plonsey. Bioelectromagnetism: Principles and Applications. Oxford University Press, New York, 1995.

    Google Scholar 

  15. J. P. Martínez and S. Olmos. Methodological principles of T wave alternans analysis: a unified framework. IEEE Transactions on Biomedical Engineering, 52(4):599–613, April 2005.

    Google Scholar 

  16. O. Meste, D. Janusek, and R. Maniewski. Analysis of the T wave alternans phenomenon with ECG amplitude modulation and baseline wander. In Proc. Computers in Cardiology, volume 34, pages 565–568, Durham, NC, Sept. 30–Oct. 3, 2007.

    Google Scholar 

  17. O. Meste and N. Serfaty. QRST cancellation using Bayesian estimation for the auricular fibrillation analysis. In Proc. 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 7083–7086, Shanghai, China, Sept. 1–4, 2005.

    Google Scholar 

  18. R. Phlypo, V. Zarzoso, and I. Lemahieu. Atrial activity estimation from atrial fibrillation ECGs by blind source extraction based on a conditional maximum likelihood approach. Medical & Biological Engineering & Computing, 48(5):483–488, May 2010.

    Google Scholar 

  19. R. Phlypo, V. Zarzoso, and I. Lemahieu. Source extraction by maximizing the variance in the conditional distribution tails. IEEE Transactions on Signal Processing, 58(1):305–316, January 2010.

    Google Scholar 

  20. J. J. Rieta, F. Castells, C. Sánchez, V. Zarzoso, and J. Millet. Atrial activity extraction for atrial fibrillation analysis using blind source separation. IEEE Transactions on Biomedical Engineering, 51(7):1176–1186, July 2004.

    Google Scholar 

  21. J. J. Rieta, V. Zarzoso, J. Millet-Roig, R. García-Civera, and R. Ruiz-Granell. Atrial activity extraction based on blind source separation as an alternative to QRST cancellation for atrial fibrillation analysis. In Proc. Computers in Cardiology, volume 27, pages 69–72, Boston, MA, Sept. 24–27, 2000.

    Google Scholar 

  22. M. Stridh and L. Sörnmo. Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation. IEEE Transactions on Biomedical Engineering, 48(1):105–111, January 2001.

    Google Scholar 

  23. J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, December 2000.

    Google Scholar 

  24. B. Widrow, J. R. Glover, J. M. McCool, et al. Adaptive noise cancelling: principles and applications. Proceedings of the IEEE, 63(12):1692–1716, December 1975.

    Google Scholar 

  25. V. Zarzoso. Extraction of ECG characteristics using source separation techniques: exploiting statistical independence and beyond. In A. Naït-Ali, editor, Advanced Biosignal Processing, chapter 2, pages 15–47. Springer, Berlin, 2009.

    Google Scholar 

  26. V. Zarzoso and P. Comon. Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size. IEEE Transactions on Neural Networks, 21(2):248–261, February 2010.

    Google Scholar 

  27. V. Zarzoso, R. Phlypo, O. Meste, and P. Comon. Signal extraction in multisensor biomedical recordings. In P. Verdonck, editor, Advances in Biomedical Engineering, chapter 3, pages 95–143. Elsevier BV, Oxford, UK, 2009.

    Google Scholar 

Download references

Acknowledgements

Part of the work summarized in this chapter is supported by the French National Research Agency under contract ANR 2010 JCJC 0303 01 “PERSIST”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Zarzoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zarzoso, V., Meste, O., Comon, P., Latcu, D.G., Saoudi, N. (2013). Noninvasive Cardiac Signal Analysis Using Data Decomposition Techniques. In: Cazals, F., Kornprobst, P. (eds) Modeling in Computational Biology and Biomedicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31208-3_3

Download citation

Publish with us

Policies and ethics