Skip to main content

Properties of DNA-Capped Nanoparticles

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties
  • 7121 Accesses

Abstract

DNA-capped nanoparticles are a new class of multifunctional materials by combining unique properties of nanomaterials and unique properties of DNA molecules. They can serve as building blocks to construct highly ordered superstructures with precise periodicity and complexity [1]. In particular, it is critical to develop methodologies to construct structurally well-defined assemblies (“artificial molecules” [2, 3], “artificial polymers” [4, 5], “supracrystals” [6–11]) to be used in future materials and devices. The structural diversity and sequence programmability of DNA make it a powerful tool for designing such future materials with unprecedented properties [12, 13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tan SJ et al (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276

    Google Scholar 

  2. Alivisatos AP et al (1996) Organization of “nanocrystal molecules” using DNA. Nature 382(6592):609–611

    Google Scholar 

  3. Maye MM et al (2010) Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat Nanotechnol 5:116–120

    Google Scholar 

  4. Nie Z et al (2007) Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat Mater 6(8):609–614

    Google Scholar 

  5. Liu K et al (2010) Step-growth polymerization of inorganic nanoparticles. Science 329(5988):197–200

    Google Scholar 

  6. Pileni M-P (2007) Self-assembly of inorganic nanocrystals: fabrication and collective intrinsic properties. Acc Chem Res 40(8):685–693

    Google Scholar 

  7. Heitsch AT et al (2010) GISAXS characterization of order in hexagonal monolayers of FePt nanocrystals. J Phys Chem C 114(34):14427–14432

    Google Scholar 

  8. Jones MR et al (2010) DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat Mater 9(11):913–917

    Google Scholar 

  9. Park SY et al (2008) DNA-programmable nanoparticle crystallization. Nature 451:553–556

    Google Scholar 

  10. Nykypanchuk D et al (2008) DNA-guided crystallization of colloidal nanoparticles. Nature 451:549–552

    Google Scholar 

  11. Cheng WL et al (2010) Probing in real time the soft crystallization of DNA-capped nanoparticles. Angew Chem Int Ed 49:380–384

    Google Scholar 

  12. Gao Y, Tang Z (2011) Design and application of inorganic nanoparticle superstructures: current status and future challenges. Small 7(15):2133–2146

    Google Scholar 

  13. Jones MR et al (2011) Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev 111(6):3736–3827

    Google Scholar 

  14. Schuller JA et al (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9(3):193–204

    Google Scholar 

  15. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem Phys Chem 1(1):18–52

    Google Scholar 

  16. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    Google Scholar 

  17. Anker JN et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Google Scholar 

  18. Maier SA et al (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2(4):229–232

    Google Scholar 

  19. Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41(12):1842–1851

    Google Scholar 

  20. Yavuz MS et al (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8(12):935–939

    Google Scholar 

  21. Grzelczak M et al (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791

    Google Scholar 

  22. Xia Y et al (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103

    Google Scholar 

  23. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    Google Scholar 

  24. Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17(22):6782–6786

    Google Scholar 

  25. Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131(47):17042–17043

    Google Scholar 

  26. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962

    Google Scholar 

  27. Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15(5):414–416

    Google Scholar 

  28. Millstone JE et al (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127(15):5312–5313

    Google Scholar 

  29. Liz-Marzán LM (2005) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32–41

    Google Scholar 

  30. Kelly KL et al (2002) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Google Scholar 

  31. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800

    Google Scholar 

  32. Mie G (1908) Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann Phys 330(3):377–445

    Google Scholar 

  33. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103(21):4212–4217

    Google Scholar 

  34. Wiley BJ et al (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110(32):15666–15675

    Google Scholar 

  35. Su KH et al (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3(8):1087–1090

    Google Scholar 

  36. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    Google Scholar 

  37. Brus LE (1984) Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80(9):4403–4409

    Google Scholar 

  38. Katari JEB, Colvin VL, Alivisatos AP (1994) X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J Phys Chem 98(15):4109–4117

    Google Scholar 

  39. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Google Scholar 

  40. Peng ZA, Peng X (2000) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123(1):183–184

    Google Scholar 

  41. Talapin DV et al (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine − trioctylphosphine oxide − trioctylphospine mixture. Nano Lett 1(4):207–211

    Google Scholar 

  42. Qu L, Peng ZA, Peng X (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Lett 1(6):333–337

    Google Scholar 

  43. Bruchez M et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Google Scholar 

  44. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Google Scholar 

  45. Medintz IL et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Google Scholar 

  46. Sargent EH (2005) Infrared quantum dots. Adv Mater 17(5):515–522

    Google Scholar 

  47. Biju V, Itoh T, Ishikawa M (2010) Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chem Soc Rev 39(8):3031–3056

    Google Scholar 

  48. Laurent S et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Google Scholar 

  49. Reddy LH et al (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878

    Google Scholar 

  50. Haun JB et al (2010) Magnetic nanoparticle biosensors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(3):291–304

    Google Scholar 

  51. Yang D et al (2010) Novel DNA materials and their applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(6):648–669

    Google Scholar 

  52. LaBean TH, Li H (2007) Constructing novel materials with DNA. Nano Today 2(2):26–35

    Google Scholar 

  53. Winfree E et al (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693):539–544

    Google Scholar 

  54. Reishus D et al (2005) Self-assembly of DNA double-double crossover complexes into high-density, doubly connected, planar structures. J Am Chem Soc 127(50):17590–17591

    Google Scholar 

  55. Liu Y et al (2005) Aptamer-directed self-assembly of protein arrays on a DNA nanostructure. Angew Chem Int Ed 44(28):4333–4338

    Google Scholar 

  56. Yan H et al (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415(6867):62–65

    Google Scholar 

  57. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302

    Google Scholar 

  58. Han D et al (2011) DNA origami with complex curvatures in three-dimensional space. Science 332(6027):342–346

    Google Scholar 

  59. Luo D (2003) The road from biology to materials. Materials Today 6(11):38–43

    Google Scholar 

  60. Zanchet D et al (2002) Electrophoretic and structural studies of DNA-directed Au nanoparticle groupings. J Phys Chem B 106(45):11758–11763

    Google Scholar 

  61. Zanchet D et al (2000) Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett 1(1):32–35

    Google Scholar 

  62. Xu X et al (2006) Asymmetric functionalization of gold nanoparticles with oligonucleotides. J Am Chem Soc 128(29):9286–9287

    Google Scholar 

  63. Maye MM et al (2009) Stepwise surface encoding for high-throughput assembly of nanoclusters. Nat Mater 8(5):388–391

    Google Scholar 

  64. Nie Z et al (2008) “Supramolecular” assembly of gold nanorods end-terminated with polymer “pom-poms”: effect of pom-pom structure on the association modes. J Am Chem Soc 130(11):3683–3689

    Google Scholar 

  65. Mirkin CA et al (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609

    Google Scholar 

  66. Loweth CJ et al (1999) DNA-based assembly of gold nanocrystals. Angew Chem Int Ed 38(12):1808–1812

    Google Scholar 

  67. Lim D-K et al (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9(1):60–67

    Google Scholar 

  68. Chen W et al (2009) Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett 9(5):2153–2159

    Google Scholar 

  69. Macfarlane RJ et al (2010) Establishing the design rules for DNA-mediated colloidal crystallization. Angew Chem Int Ed 49(27):4589–4592

    Google Scholar 

  70. Macfarlane RJ et al (2011) Nanoparticle superlattice engineering with DNA. Science 334(6053):204–208

    Google Scholar 

  71. Auyeung E et al (2012) Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach. Nat Nanotechnol 7(1):24–28

    Google Scholar 

  72. Sonnichsen C et al (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23(6):741–745

    Google Scholar 

  73. Sebba D, LaBean T, Lazarides A (2008) Plasmon coupling in binary metal core-satellite assemblies. Appl Phys B 93(1):69–78

    Google Scholar 

  74. Sharma J et al (2009) Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323(5910):112–116

    Google Scholar 

  75. Hinds S et al (2005) Nucleotide-directed growth of semiconductor nanocrystals. J Am Chem Soc 128(1):64–65

    Google Scholar 

  76. Tikhomirov G et al (2011) DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat Nanotechnol 6(8):485–490

    Google Scholar 

  77. Cheng WL et al (2009) Free-standing nanoparticle superlattice sheets controlled by DNA. Nature materials 8(6):519–525

    Google Scholar 

  78. Cheng WL et al (2008) Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets. Nat Nanotechnol 3(11):682–690

    Google Scholar 

  79. Campolongo MJ et al (2011) Crystalline Gibbs monolayers of DNA-capped nanoparticles at the Air–liquid interface. ACS Nano 5(10):7978–7985

    Google Scholar 

  80. Pal S et al (2010) DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. Angew Chem Int Ed 49(15):2700–2704

    Google Scholar 

  81. Le JD et al (2004) DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett 4(12):2343–2347

    Google Scholar 

  82. Zheng J et al (2006) Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett 6(7):1502–1504

    Google Scholar 

  83. Mastroianni AJ, Claridge SA, Alivisatos AP (2009) Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc 131(24):8455–8459

    Google Scholar 

  84. Aldaye FA, Sleiman HF (2007) Dynamic DNA templates for discrete gold nanoparticle assemblies: control of geometry, modularity, write/erase and structural switching. J Am Chem Soc 129(14):4130–4131

    Google Scholar 

  85. Pinheiro AV et al (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6(12):763–772

    Google Scholar 

  86. Pal S et al (2011) DNA directed self-assembly of anisotropic plasmonic nanostructures. J Am Chem Soc 133(44):17606–17609

    Google Scholar 

  87. Hung AM, Noh H, Cha JN (2010) Recent advances in DNA-based directed assembly on surfaces. Nanoscale 2(12):2530–2537

    Google Scholar 

  88. Gates BD et al (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105(4):1171–1196

    Google Scholar 

  89. Perl A, Reinhoudt DN, Huskens J (2009) Microcontact printing: limitations and achievements. Adv Mater 21(22):2257–2268

    Google Scholar 

  90. Salaita K, Wang Y, Mirkin CA (2007) Applications of dip-pen nanolithography. Nat Nanotechnol 2(3):145–155

    Google Scholar 

  91. Maune HT et al (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5(1):61–66

    Google Scholar 

  92. Noh H et al (2009) 50 nm DNA nanoarrays generated from uniform oligonucleotide films. ACS Nano 3(8):2376–2382

    Google Scholar 

  93. Hung AM et al (2010) Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat Nanotechnol 5(2):121–126

    Google Scholar 

  94. Kershner RJ et al (2009) Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat Nanotechnol 4(9):557–561

    Google Scholar 

  95. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685–1706

    Google Scholar 

  96. Chen Y et al (2013) Mechanically strong, optically transparent, giant metal superlattice nanomembranes from ultrathin gold nanowires. Adv Mater 25(1):80–85

    Google Scholar 

  97. Ng KC et al (2012) Free-standing plasmonic-nanorod super lattice sheets. ACS Nano 6(1):925–934

    Google Scholar 

  98. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562

    Google Scholar 

  99. Cheng WL, Dong SJ, Wang EK (2004) Two- and three-dimensional Au nanoparticle/CoTMPyP self-assembled nanostructured materials: film structure, tunable electrocatalytic activity, and plasmonic properties. J Phys Chem B 108(50):19146–19154

    Google Scholar 

  100. Elghanian R et al (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081

    Google Scholar 

  101. Storhoff JJ et al (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120(9):1959–1964

    Google Scholar 

  102. Pavlov V et al (2004) Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 126(38):11768–11769

    Google Scholar 

  103. Huang CC et al (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77(17):5735–5741

    Google Scholar 

  104. Liu J, Lu Y (2005) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed Engl 45(1):90–94

    Google Scholar 

  105. Liu JW, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125(22):6642–6643

    Google Scholar 

  106. Li HX, Rothberg LJ (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126(35):10958–10961

    Google Scholar 

  107. Wang ZD, Lee JH, Lu Y (2008) Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater 20(17):3263–3267

    Google Scholar 

  108. Li HX, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 101(39):14036–14039

    Google Scholar 

  109. Li HX, Rothberg L (2005) Detection of specific sequences in RNA using differential adsorption of single-stranded oligonucleotides on gold nanoparticles. Anal Chem 77(19):6229–6233

    Google Scholar 

  110. Liu CW et al (2008) Detection of mercury(II) based on Hg(2+)-DNA complexes inducing the aggregation of gold nanoparticles. Chem Commun 19:2242–2244

    Google Scholar 

  111. Wang LH et al (2006) Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun 36:3780–3782

    Google Scholar 

  112. Zhang J et al (2008) Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 4(8):1196–1200

    Google Scholar 

  113. Wei H et al (2007) Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun 36:3735–3737

    Google Scholar 

  114. Zhao WA et al (2007) Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. Chembiochem 8(7):727–731

    Google Scholar 

  115. Reynolds RA, Mirkin CA, Letsinger RL (2000) A gold nanoparticle/latex microsphere-based colorimetric oligonucleotide detection method. Pure Appl Chem 72(1–2):229–235

    Google Scholar 

  116. Storhoff JJ et al (2005) Labels and detection methods. In: Microarray technology and its applications. Springer, Berlin/Heidelberg, pp 147–179

    Google Scholar 

  117. Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289(5485):1757–1760

    Google Scholar 

  118. Hacker GW (1989) Colloidal gold: principles, methods, and applications, vol 1. Academic, San Diego

    Google Scholar 

  119. Zehbe I et al (1997) Sensitive in situ hybridization with catalyzed reporter deposition, streptavidin-nanogold, and silver acetate autometallography – detection of single-copy human papillomavirus. Am J Pathol 150(5):1553–1561

    Google Scholar 

  120. Petry R, Schmitt M, Popp J (2003) Raman spectroscopy – a prospective tool in the life sciences. Chemphyschem 4(1):14–30

    Google Scholar 

  121. Graham D et al (2008) Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat Nanotechnol 3(9):548–551

    Google Scholar 

  122. Kneipp K, Kneipp H, Kneipp J (2006) Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatess – from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc Chem Res 39(7):443–450

    Google Scholar 

  123. Li JF et al (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464(7287):392–395

    Google Scholar 

  124. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Google Scholar 

  125. Han MY et al (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19(7):631–635

    Google Scholar 

  126. Kneipp K et al (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99(10):2957–2976

    Google Scholar 

  127. Macaskill A et al (2007) Quantitative surface-enhanced resonance Raman scattering of phthalocyanine-labelled oligonucleotides. Nucleic Acids Res 35(6):e42

    Google Scholar 

  128. Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540

    Google Scholar 

  129. Faulds K et al (2004) SERRS as a more sensitive technique for the detection of labelled oligonucleotides compared to fluorescence. Analyst 129(7):567–568

    Google Scholar 

  130. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16(1–2):19–44

    Google Scholar 

  131. Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295(5559):1503–1506

    Google Scholar 

  132. Ozsoz M et al (2003) Electrochemical genosensor based on colloidal gold nanoparticles for the detection of factor V Leiden mutation using disposable pencil graphite electrodes. Anal Chem 75(9):2181–2187

    Google Scholar 

  133. Cai H et al (2002) Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Anal Chim Acta 469(2):165–172

    Google Scholar 

  134. Wang J et al (2003) Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 75(15):3941–3945

    Google Scholar 

  135. Baca AJ et al (2004) Attachment of ferrocene-capped gold nanoparticle-streptavidin conjugates onto electrode surfaces covered with biotinylated biomolecules for enhanced voltammetric analysis. Electroanalysis 16(1–2):73–80

    Google Scholar 

  136. Li D et al (2007) Amplified electrochemical detection of DNA through Au nanoparticles on electrodes and the incorporation into the DNA-crosslinked structure. Chem Commun 34:3544–3546

    Google Scholar 

  137. Nam JM, Stoeva SI, Mirkin CA (2004) Bio-bar-code-based DNA detection with PCR-like sensitivity. J Am Chem Soc 126(19):5932–5933

    Google Scholar 

  138. Zhang CY et al (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4(11):826–831

    Google Scholar 

  139. Crooke ST (2004) Progress in antisense technology. Annu Rev Med 55:61–95

    Google Scholar 

  140. Lebedeva I, Stein CA (2001) Antisense oligonucleotides: promise and reality. Annu Rev Pharmacol Toxicol 41:403–419

    Google Scholar 

  141. Lv H et al (2006) Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 114(1):100–109

    Google Scholar 

  142. Patel PC et al (2008) Peptide antisense nanoparticles. Proc Natl Acad Sci USA 105(45):17222–17226

    Google Scholar 

  143. Seferos DS et al (2007) Locked nucleic acid-nanoparticle conjugates. Chembiochem 8(11):1230–1232

    Google Scholar 

  144. Rosi NL et al (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312(5776):1027–1030

    Google Scholar 

  145. Seferos DS et al (2009) Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett 9(1):308–311

    Google Scholar 

  146. Prigodich AE et al (2009) Nano-flares for mRNA regulation and detection. ACS Nano 3(8):2147–2152

    Google Scholar 

  147. Jin R et al (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 125(6):1643–1654

    Google Scholar 

  148. Ryser HJ (1968) Uptake of protein by mammalian cells: an underdeveloped area. The penetration of foreign proteins into mammalian cells can be measured and their functions explored. Science 159(3813):390–396

    Google Scholar 

  149. Giljohann DA et al (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7(12):3818–3821

    Google Scholar 

  150. Ng PS, Bergstrom DE (2005) Alternative nucleic acid analogues for programmable assembly: hybridization of LNA to PNA. Nano Lett 5(1):107–111

    Google Scholar 

  151. He XX et al (2003) Bioconjugated nanoparticles for DNA protection from cleavage. J Am Chem Soc 125(24):7168–7169

    Google Scholar 

  152. Han G, Martin CT, Rotello VM (2006) Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents. Chem Biol Drug Des 67(1):78–82

    Google Scholar 

  153. Amiji MM (2004) Polymeric gene delivery: principles and applications. CRC Press, Boca Raton

    Google Scholar 

  154. Massich MD et al (2009) Regulating immune response using polyvalent nucleic acid-gold nanoparticle conjugates. Mol Pharm 6(6):1934–1940

    Google Scholar 

  155. Clift MJ et al (2008) The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol Appl Pharmacol 232(3):418–427

    Google Scholar 

  156. Goodman CM et al (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900

    Google Scholar 

  157. Hauck TS, Ghazani AA, Chan WC (2008) Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4(1):153–159

    Google Scholar 

  158. Alkilany AM et al (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6):701–708

    Google Scholar 

  159. Seferos DS et al (2007) Nano-flares: probes for transfection and mRNA detection in living cells. J Am Chem Soc 129(50):15477–15479

    Google Scholar 

  160. Wang K et al (2009) Molecular engineering of DNA: molecular beacons. Angew Chem Int Ed Engl 48(5):856–870

    Google Scholar 

  161. Mirkin CA (2010) The polyvalent gold nanoparticle conjugate-materials synthesis, biodiagnostics, and intracellular gene regulation. MRS Bulletin 35(7):532–539

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, W., Chen, Y., Cheng, W. (2014). Properties of DNA-Capped Nanoparticles. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_54

Download citation

Publish with us

Policies and ethics