Skip to main content

Stabilization and Characterization of Iron Oxide Superparamagnetic Core-Shell Nanoparticles for Biomedical Applications

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field. These applications require good NP stability at physiological conditions, close control over NP size, and controlled surface presentation of functionalities. Such performance can only be reached by densely grafted, polymer, sterically stabilized core-shell nanoparticles, where the polymer shell interaction with the environment determines the colloidal properties of the nanoparticle. A critical evaluation of different strategies to stabilize and functionalize superparamagnetic core-shell iron oxide nanoparticles in terms of physicochemical properties is necessary to ascertain that the desired performance can be reached in the final application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewin M, Carlesso N, Tung CH et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Google Scholar 

  2. Pittet MJ, Swirski FK, Reynolds F et al (2006) Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat Protoc 1:73–79

    Google Scholar 

  3. Wang DS, He JB, Rosenzweig N et al (2004) Superparamagnetic Fe2O3 Beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett 4:409–413

    Google Scholar 

  4. Halbreich A, Roger J, Pons JN et al (1998) Biomedical applications of maghemite ferrofluid. Biochimie 80:379–390

    Google Scholar 

  5. Pankhurst QA, Thanh NKT, Jones SK et al (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D-Appl Phys 42

    Google Scholar 

  6. Namdeo M, Saxena S, Tankhiwale R et al (2008) Magnetic nanoparticles for drug delivery applications. J Nanosci Nanotechnol 8:3247–3271

    Google Scholar 

  7. Weissleder R, Hahn PF, Stark DD et al (1987) MR imaging of splenic metastases – ferrite- enhanced detection in rats. Am J Roentgenol 149:723–726

    Google Scholar 

  8. Weissleder R, Elizondo G, Wittenberg J et al (1990) Ultrasmall superparamagnetic iron-oxide – characterization of a new class of contrast agents for Mr imaging. Radiology 175:489–493

    Google Scholar 

  9. McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251

    Google Scholar 

  10. Hutten A, Sudfeld D, Ennen I et al (2004) New magnetic nanoparticles for biotechnology. J Biotechnol 112:47–63

    Google Scholar 

  11. Duran JDG, Arias JL, Gallardo V et al (2008) Magnetic colloids as drug vehicles. J Pharm Sci 97:2948–2983

    Google Scholar 

  12. Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558

    Google Scholar 

  13. Louie A (2010) Multimodality imaging probes: design and challenges. Chem Rev 110:3146–3195

    Google Scholar 

  14. Wang YXJ, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331

    Google Scholar 

  15. Jung CW, Jacobs P (1995) Physical and chemical-properties of superparamagnetic iron-oxide Mr contrast agents – ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661–674

    Google Scholar 

  16. Lin MM, Kim DK, El Haj AJ et al (2008) Development of Superparamagnetic Iron Oxide Nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans Nanobioscience 7:298–305

    Google Scholar 

  17. Cengelli F, Maysinger D, Tschudi-Monnet F et al (2006) Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures. J Pharmacol Exp Ther 318:108–116

    Google Scholar 

  18. Pardoe H, Chua-anusorn W, St Pierre TG et al (2001) Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol. J Magn Magn Mater 225:41–46

    Google Scholar 

  19. Bautista MC, Bomati-Miguel O, Zhao X et al (2004) Comparative study of ferrofluids based on dextran-coated iron oxide and metal nanoparticles for contrast agents in magnetic resonance imaging. Nanotechnology 15:S154–S159

    Google Scholar 

  20. Basiruddin SK, Saha A, Pradhan N et al (2010) Advances in coating chemistry in deriving soluble functional nanoparticle. J Phys Chem C 114:11009–11017

    Google Scholar 

  21. Amstad E, Gillich T, Bilecka I et al (2009) Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups. Nano Lett 9:4042–4048

    Google Scholar 

  22. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Google Scholar 

  23. Jun YW, Lee JH, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47:5122–5135

    Google Scholar 

  24. Sun SH, Zeng H, Robinson DB et al (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273–279

    Google Scholar 

  25. Thunemann AF, Rolf S, Knappe P et al (2009) In situ analysis of a bimodal size distribution of superparamagnetic nanoparticles. Anal Chem 81:296–301

    Google Scholar 

  26. Bonini M, Wiedemann A, Baglioni P (2006) Synthesis and characterization of magnetic nanoparticles coated with a uniform silica shell. Mater Sci Eng C-Biomim Supramol Syst 26:745–750

    Google Scholar 

  27. Butter K, Hoell A, Wiedenmann A et al (2004) Small-angle neutron and X-ray scattering of dispersions of oleic-acid-coated magnetic iron particles. J Appl Crystallogr 37:847–856

    Google Scholar 

  28. Degen P, Shukla A, Boetcher U et al (2008) Self-assembled ultra-thin coatings of octadecyltrichlorosilane (OTS) formed at the surface of iron oxide nanoparticles. Colloid Polym Sci 286:159–168

    Google Scholar 

  29. Cowles RJH (1999) Particle characterization for oil sand processing – 1: particle size measurements using a disc centrifuge. Pet Sci Technol 17:429–442

    Google Scholar 

  30. Roonasi P, Holmgren A (2009) A Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) study of oleate adsorbed on magnetite nano-particle surface. Appl Surf Sci 255:5891–5895

    Google Scholar 

  31. Chen S, Li Y, Guo C et al (2007) Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir 23:12669–12676

    Google Scholar 

  32. Zackrisson M, Stradner A, Schurtenberger P et al (2005) Small-angle neutron scattering on a core-shell colloidal system: a contrast-variation study. Langmuir 21:10835–10845

    Google Scholar 

  33. Dingenouts N, Seelenmeyer S, Deike I et al (2001) Analysis of thermosensitive core-shell colloids by small-angle neutron scattering including contrast variation. Phys Chem Chem Phys 3:1169–1174

    Google Scholar 

  34. Gelbrich T, Feyen M, Schmidt AM (2006) Magnetic thermoresponsive core-shell nanoparticles. Macromolecules 39:3469–3472

    Google Scholar 

  35. Mondini S, Ferretti AM, Puglisi A et al (2012) PEBBLES and PEBBLEJUGGLER: software for accurate, unbiased, and fast measurement and analysis of nanoparticle morphology from transmission electron microscopy (TEM) micrographs. Nanoscale 4:5356–5372

    Google Scholar 

  36. Zakharov P, Bhat S, Schurtenberger P et al (2006) Multiple-scattering suppression in dynamic light scattering based on a digital camera detection scheme. Appl Optics 45:1756–1764

    Google Scholar 

  37. Scheffold F, Mason TG (2009) Scattering from highly packed disordered colloids. J Phys Condens Matter 21:332102

    Google Scholar 

  38. Zhang QA, Thompson MS, Carmichael-Baranauskas AY et al (2007) Aqueous dispersions of magnetite nanoparticles complexed with copolyether dispersants: experiments and theory. Langmuir 23:6927–6936

    Google Scholar 

  39. Mefford OT, Vadala ML, Goff JD et al (2008) Stability of polydimethylsiloxane-magnetite nanoparticle dispersions against flocculation: interparticle interactions of polydisperse materials. Langmuir 24:5060–5069

    Google Scholar 

  40. Bevan MA, Petris SN, Chan DYC (2002) Solvent quality dependent continuum van der Waals attraction and phase behavior for colloids bearing nonuniform adsorbed polymer layers. Langmuir 18:7845–7852

    Google Scholar 

  41. Thanh NTK, Green LAW (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5:213–230

    Google Scholar 

  42. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21

    Google Scholar 

  43. Xiao ZP, Yang KM, Liang H et al (2010) Synthesis of magnetic, reactive, and thermoresponsive Fe3O4 nanoparticles via surface-initiated RAFT copolymerization of N-isopropylacrylamide and acrolein. J Polym Sci Part a-Polym Chem 48:542–550

    Google Scholar 

  44. Somaskandan K, Veres T, Niewczas M et al (2008) Surface protected and modified iron based core-shell nanoparticles for biological applications. New J Chem 32:201–209

    Google Scholar 

  45. Amstad E, Starmans LWE, Visbal MA et al Influence of the PEG Shell on the stability and magnetic properties of iron oxide nanoparticles (in preparation)

    Google Scholar 

  46. Gamarra LF, Amaro E, Alves S et al (2010) Characterization of the biocompatible magnetic colloid on the basis of Fe3O4 nanoparticles coated with dextran, used as contrast agent in magnetic resonance imaging. J Nanosci Nanotechnol 10:4145–4153

    Google Scholar 

  47. Ma HL, Qi XT, Maitani Y et al (2007) Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Int J Pharm 333:177–186

    Google Scholar 

  48. Park JH, Im KH, Lee SH et al (2005) Preparation and characterization of magnetic chitosan particles for hyperthermia application. J Magn Magn Mater 293:328–333

    Google Scholar 

  49. Mahmoudi M, Simchi A, Milani AS et al (2009) Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 336:510–518

    Google Scholar 

  50. Chastellain A, Petri A, Hofmann H (2004) Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles. J Colloid Interface Sci 278:353–360

    Google Scholar 

  51. Schopf B, Neuberger T, Schulze K et al (2005) Methodology description for detection of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (SPION) in synovial cells of sheep. J Magn Magn Mater 293:411–418

    Google Scholar 

  52. Santra S, Kaittanis C, Grimm J et al (2009) Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 5:1862–1868

    Google Scholar 

  53. Thunemann AF, Schutt D, Kaufner L et al (2006) Maghemite nanoparticles protectively coated with poly(ethylene imine) and poly(ethylene oxide)-block-poly(glutamic acid). Langmuir 22:2351–2357

    Google Scholar 

  54. Shubayev VI, Pisanic TR, Jin SH (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477

    Google Scholar 

  55. Mosqueira VCF, Legrand P, Morgat JL et al (2001) Biodistribution of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density. Pharm Res 18:1411–1419

    Google Scholar 

  56. Josephson L, Tung CH, Moore A et al (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjug Chem 10:186–191

    Google Scholar 

  57. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Google Scholar 

  58. Corot C, Robert P, Idee JM et al (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504

    Google Scholar 

  59. Du BY, Mei AX, Tao PJ et al (2009) Poly[N-isopropylacrylamide-Co-3-(trimethoxysilyl)-propylmethacrylate] coated aqueous dispersed thermosensitive Fe3O4 nanoparticles. J Phys Chem C 113:10090–10096

    Google Scholar 

  60. Wang SX, Zhou Y, Guan W et al (2008) One-step copolymerization modified magnetic nanoparticles via surface chain transfer free radical polymerization. Appl Surf Sci 254:5170–5174

    Google Scholar 

  61. Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25:677–710

    Google Scholar 

  62. Bae KH, Kim YB, Lee Y et al (2010) Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T-1- and T-2-weighted magnetic resonance imaging. Bioconjug Chem 21:505–512

    Google Scholar 

  63. Nagase K, Kobayashi J, Okano T (2009) Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering. J R Soc Interface 6:S293–S309

    Google Scholar 

  64. Knoll W, Advincula RC (eds) (2011) Functional polymer films, vol 2. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  65. Xie J, Xu CJ, Xu ZC et al (2006) Linking hydrophilic macromolecules to monodisperse magnetite (Fe3O4) nanoparticles via trichloro-s-triazine. Chem Mater 18:5401–5403

    Google Scholar 

  66. Xie J, Chen K, Lee H-Y et al (2008) Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin alpha(v)beta3-rich tumor cells. J Am Chem Soc 130:7542–7543

    Google Scholar 

  67. Xu CJ, Xu KM, Gu HW et al (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc 126:9938–9939

    Google Scholar 

  68. Gu HW, Yang ZM, Gao JH et al (2005) Heterodimers of nanoparticles: formation at a liquid-liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc 127:34–35

    Google Scholar 

  69. Amstad E, Isa L, Reimhult E (2011) Nitrocatechol dispersants to tailor superparamagnetic Fe3O4 nanoparticles. Chimia 64:826

    Google Scholar 

  70. Isa L, Amstad E, Textor M et al (2010) Self-assembly of iron oxide-poly(ethylene glycol) core-shell nanoparticles at liquid-liquid interfaces. Chimia 64:145–149

    Google Scholar 

  71. Yu S, Chow GM (2004) Carboxyl group (-CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J Mater Chem 14:2781–2786

    Google Scholar 

  72. White MA, Johnson JA, Koberstein JT et al (2006) Toward the syntheses of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry. J Am Chem Soc 128:11356–11357

    Google Scholar 

  73. Song HT, Choi JS, Huh YM et al (2005) Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. J Am Chem Soc 127:9992–9993

    Google Scholar 

  74. Basly B, Felder-Flesch D, Perriat P et al (2010) Dendronized iron oxide nanoparticles as contrast agents for MRI. Chem Commun 46:985–987

    Google Scholar 

  75. Lalatonne Y, Paris C, Serfaty JM et al (2008) Bis-phosphonates – ultra small superparamagnetic iron oxide nanoparticles: a platform towards diagnosis and therapy. Chem Commun 22:2553–2555

    Google Scholar 

  76. Zhou Y, Wang SX, Ding BJ et al (2008) Modification of magnetite nanoparticles via surface-initiated atom transfer radical polymerization (ATRP). Chem Eng J 138:578–585

    Google Scholar 

  77. Forge D, Laurent S, Gossuin Y et al (2011) An original route to stabilize and functionalize magnetite nanoparticles for theranosis applications. J Magn Magn Mater 323:410–415

    Google Scholar 

  78. Sun CR, Du K, Fang C et al (2010) PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo. Acs Nano 4:2402–2410

    Google Scholar 

  79. Veiseh O, Gunn JW, Kievit FM et al (2009) Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small 5:256–264

    Google Scholar 

  80. Larsen EKU, Nielsen T, Wittenborn T et al (2009) Size-dependent accumulation of PEGylated Silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano 3:1947–1951

    Google Scholar 

  81. Dalsin JL, Lin LJ, Tosatti S et al (2005) Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Langmuir 21:640–646

    Google Scholar 

  82. Corbierre MK, Cameron NS, Lennox RB (2004) Polymer-stabilized gold nanoparticles with high grafting densities. Langmuir 20:2867–2873

    Google Scholar 

  83. Kim M, Chen YF, Liu YC et al (2005) Super-stable, high-quality Fe3O4 dendron-nanocrystals dispersible in both organic and aqueous solutions. Adv Mater 17:1429

    Google Scholar 

  84. Chen ZP, Zhang Y, Xu K et al (2008) Stability of hydrophilic magnetic nanoparticles under biologically relevant conditions. J Nanosci Nanotechnol 8:6260–6265

    Google Scholar 

  85. Haensch C, Chiper M, Ulbricht C et al (2008) Reversible supramolecular functionalization of surfaces: terpyridine ligands as versatile building blocks for noncovalent architectures. Langmuir 24:12981–12985

    Google Scholar 

  86. Waite JH, Tanzer ML (1981) Polyphenolic substance of mytilus-edulis – novel adhesive containing l-dopa and hydroxyproline. Science 212:1038–1040

    Google Scholar 

  87. Lynch MW, Valentine M, Hendrickson DN (1982) Mixed-valence semi-quinone catecholate iron complexes. J Am Chem Soc 104:6982–6989

    Google Scholar 

  88. Heistand RH, Roe AL, Que L (1982) Dioxygenase models – crystal-structures of [N, N′-(1,2-phenylene)bis(salicylideniminato)](catecholato-O)iron(III) and Mu-(1,4-benzenediolato-O, O′)-bis[N, N′-ethylenebis(salicylideniminato)iron(III)]. Inorg Chem 21:676–681

    Google Scholar 

  89. Attia AS, Bhattacharya S, Pierpont CG (1995) Potential for redox isomerism by quinone complexes of Iron(Iii). – studies on complexes of the Fe-III(N-N)(Dbsq)(Dbcat) series with 2,2′-bipyridine and N, N, N′, N′-tetramethylethylenediamine coligands. Inorg Chem 34:4427–4433

    Google Scholar 

  90. Grillo VA, Hanson GR, Wang DM et al (1996) Synthesis, x-ray structural determination, and magnetic susceptibility, Mossbauer, and EPR studies of (Ph(4)P)(2)[Fe-2(Cat)(4)(H2O)(2)]·6H(2)O, a catecholato-bridged dimer of iron(III). Inorg Chem 35:3568–3576

    Google Scholar 

  91. Girerd JJ, Boillot ML, Blain G et al (2008) An EPR investigation of the electronic structure of pseudo-octahedral and spin crossover catecholato-iron(III) complexes in the low-spin state. Inorg Chim Acta 361:4012–4016

    Google Scholar 

  92. Kalyanaraman B, Felix CC, Sealy RC (1985) Semiquinone anion radicals of catechol(amine)S, catechol estrogens, and their metal-ion complexes. Environ Health Perspect 64:185–198

    Google Scholar 

  93. Cox DD, Que L (1988) Functional models for catechol 1,2-dioxygenase – the role of the Iron(III) center. J Am Chem Soc 110:8085–8092

    Google Scholar 

  94. Emerson JP, Kovaleva EG, Farquhar ER et al (2008) Swapping metals in Fe- and Mn-dependent dioxygenases: evidence for oxygen activation without a change in metal redox state. Proc Natl Acad Sci U S A 105:7347–7352

    Google Scholar 

  95. Shultz MD, Reveles JU, Khanna SN et al (2007) Reactive nature of dopamine as a surface functionalization agent in iron oxide nanoparticles. J Am Chem Soc 129:2482–2487

    Google Scholar 

  96. Goldmann AS, Schodel C, Walther A et al (2010) Biomimetic mussel adhesive inspired clickable anchors applied to the functionalization of Fe3O4 nanoparticles. Macromol Rapid Commun 31:1608–1615

    Google Scholar 

  97. Galpin JR, Tielens LGM, Veldink GA et al (1976) Interaction of some catechol derivatives with iron atom of soybean lipoxygenase. FEBS Lett 69:179–182

    Google Scholar 

  98. Kawabata T, Schepkin V, Haramaki N et al (1996) Iron coordination by catechol derivative antioxidants. Biochem Pharmacol 51:1569–1577

    Google Scholar 

  99. Crisponi G, Remelli M (2008) Iron chelating agents for the treatment of iron overload. Coord Chem Rev 252:1225–1240

    Google Scholar 

  100. Nurchi VM, Pivetta T, Lachowicz JI et al (2009) Effect of substituents on complex stability aimed at designing new iron(III) and aluminum(III) chelators. J Inorg Biochem 103:227–236

    Google Scholar 

  101. Amstad E, Fischer H, Gehring AU et al (2011) Magnetic decoupling of surface Fe(3+) in magnetite nanoparticles upon Nitrocatechol-anchored dispersant binding. Chem A Eur J 17:7396–7398

    Google Scholar 

  102. Amstad E, Gehring AU, Fischer H et al (2011) Influence of electronegative substituents on the binding affinity of catechol-derived anchors to Fe(3)O(4) nanoparticles. J Phys Chem C 115:683–691

    Google Scholar 

  103. Fritz G, Schadler V, Willenbacher N et al (2002) Electrosteric stabilization of colloidal dispersions. Langmuir 18:6381–6390

    Google Scholar 

  104. Gast AP (1996) Structure, interactions, and dynamics in tethered chain systems. Langmuir 12:4060–4067

    Google Scholar 

  105. Witten TA, Pincus PA (1986) Colloid stabilization by long grafted polymers. Macromolecules 19:2509–2513

    Google Scholar 

  106. Vincent B, Edwards J, Emmett S et al (1986) Depletion flocculation in dispersions of sterically-stabilized particles (soft spheres). Colloid Surf 18:261–281

    Google Scholar 

  107. Degennes PG (1980) Conformations of polymers attached to an interface. Macromolecules 13:1069–1075

    Google Scholar 

  108. Milner ST, Witten TA, Cates ME (1988) Theory of the grafted polymer brush. Macromolecules 21:2610–2619

    Google Scholar 

  109. Zhulina EB, Borisov OV, Priamitsyn VA (1990) Theory of steric stabilization of colloid dispersions by grafted polymers. J Colloid Interface Sci 137:495–511

    Google Scholar 

  110. Shim DFK, Cates ME (1989) Finite extensibility and density saturation effects in the polymer brush. Journal De Physique 50:3535–3551

    Google Scholar 

  111. Alexander S (1977) Polymer adsorption on small spheres – scaling approach. Journal De Physique 38:977–981

    Google Scholar 

  112. Birshtein TM, Zhulina EB (1984) Conformations of star-branched macromolecules. Polymer 25:1453–1461

    Google Scholar 

  113. Dan N, Tirrell M (1992) Polymers tethered to curved interfaces – a self-consistent-field analysis. Macromolecules 25:2890–2895

    Google Scholar 

  114. Ball RC, Marko JF, Milner ST et al (1991) Polymers grafted to a convex surface. Macromolecules 24:693–703

    Google Scholar 

  115. Toral R, Chakrabarti A (1993) Monte-Carlo study of polymer-chains end-grafted onto a spherical interface. Phys Rev E 47:4240–4246

    Google Scholar 

  116. Li H, Witten TA (1994) Polymers grafted to convex surfaces – a variational approach. Macromolecules 27:449–457

    Google Scholar 

  117. Martin JI, Wang ZG (1995) Polymer brushes – scaling, compression forces, interbrush penetration, and solvent size effects. J Phys Chem 99:2833–2844

    Google Scholar 

  118. Lin EK, Gast AP (1996) Self consistent field calculations of interactions between chains tethered to spherical interfaces. Macromolecules 29:390–397

    Google Scholar 

  119. Lo Verso F, Egorov SA, Milchev A et al (2010) Spherical polymer brushes under good solvent conditions: molecular dynamics results compared to density functional theory. J Chem Phys 133:184901

    Google Scholar 

  120. Lo Verso F, Yelash L, Egorov SA et al (2011) Interactions between polymer brush-coated spherical nanoparticles: the good solvent case. J Chem Phys 135:214902

    Google Scholar 

  121. Gillich T, Acikgoz C, Isa L et al (2013) PEG-stabilized core-shell nanoparticles: impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation. ACS Nano 7:316–329

    Google Scholar 

  122. Isa L, Calzolari DCE, Pontoni D et al (2013) Core-shell nanoparticle monolayers at planar liquid-liquid interfaces: effects of polymer architecture on the interface microstructure. Soft Matter 9:3789–3797

    Google Scholar 

  123. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Google Scholar 

  124. Jeon SI, Lee JH, Andrade JD et al (1991) Protein surface interactions in the presence of polyethylene oxide 1. Simplified theory. J Colloid Interface Sci 142:149–158

    Google Scholar 

  125. Bhat R, Timasheff SN (1992) Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols. Protein Sci 1:1133–1143

    Google Scholar 

  126. Feldman K, Hahner G, Spencer ND et al (1999) Probing resistance to protein adsorption of oligo(ethylene glycol)-terminated self-assembled monolayers by scanning force microscopy. J Am Chem Soc 121:10134–10141

    Google Scholar 

  127. Wang RLC, Kreuzer HJ, Grunze M (1997) Molecular conformation and solvation of oligo(ethylene glycol)-terminated self-assembled monolayers and their resistance to protein adsorption. J Phys Chem B 101:9767–9773

    Google Scholar 

  128. Roosjen A, de Vries J, van der Mei HC et al (2005) Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids. J Biomed Mater Res B Appl Biomater 73B:347–354

    Google Scholar 

  129. Shen MC, Martinson L, Wagner MS et al (2002) PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. J Biomater Sci Polym Ed 13:367–390

    Google Scholar 

  130. Konradi R, Pidhatika B, Muhlebach A et al (2008) Poly-2-methyl-2-oxazoline: a peptide-like polymer for protein-repellent surfaces. Langmuir 24:613–616

    Google Scholar 

  131. Pasche S, De Paul SM, Voros J et al (2003) Poly(l-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium oxide surfaces: a quantitative study of the influence of polymer interfacial architecture on resistance to protein adsorption by ToF-SIMS and in situ OWLS. Langmuir 19:9216–9225

    Google Scholar 

  132. Michel R, Pasche S, Textor M et al (2005) Influence of PEG architecture on protein adsorption and conformation. Langmuir 21:12327–12332

    Google Scholar 

  133. Szleifer I (1997) Protein adsorption on surfaces with grafted polymers: a theoretical approach. Biophys J 72:595–612

    Google Scholar 

  134. Zahr AS, Davis CA, Pishko MV (2006) Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir 22:8178–8185

    Google Scholar 

  135. Gessner A, Paulke BR, Muller RH et al (2006) Protein rejecting properties of PEG-grafted nanoparticles: Influence of PEG-chain length and surface density evaluated by two-dimensional electrophoresis and bicinchoninic acid (BCA)-proteinassay. Pharmazie 61:293–297

    Google Scholar 

  136. Kenworthy AK, Hristova K, Needham D et al (1995) Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached Poly(ethylene glycol). Biophys J 68:1921–1936

    Google Scholar 

  137. Vittaz M, Bazile D, Spenlehauer G et al (1996) Effect of PEO surface density on long-circulating PLA-PEO nanoparticles which are very low complement activators. Biomaterials 17:1575–1581

    Google Scholar 

  138. Storm G, Belliot SO, Daemen T et al (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17:31–48

    Google Scholar 

  139. Klibanov AL, Maruyama K, Torchilin VP et al (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237

    Google Scholar 

  140. Mori A, Klibanov AL, Torchilin VP et al (1991) Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes invivo. FEBS Lett 284:263–266

    Google Scholar 

  141. Decuzzi P, Pasqualini R, Arap W et al (2009) Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 26:235–243

    Google Scholar 

  142. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478

    Google Scholar 

  143. Gbadamosi JK, Hunter AC, Moghimi SM (2002) PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance. FEBS Lett 532:338–344

    Google Scholar 

  144. Tiefenauer LX, Tschirky A, Kuhne G et al (1996) In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn Reson Imaging 14:391–402

    Google Scholar 

  145. Harper GR, Davies MC, Davis SS et al (1991) Steric stabilization of microspheres with grafted polyethylene oxide reduces phagocytosis by rat Kupffer cells-invitro. Biomaterials 12:695–704

    Google Scholar 

  146. Lacava LM, Garcia VAP, Kuckelhaus S et al (2004) Long-term retention of dextran-coated magnetite nanoparticles in the liver and spleen. J Magn Magn Mater 272:2434–2435

    Google Scholar 

  147. Berkowit A, Schuele WJ, Flanders PJ (1968) Influence of crystallite size on magnetic properties of acicular gamma-Fe2O3 particles. J Appl Phys 39:1261

    Google Scholar 

  148. Dutta P, Pai S, Seehra MS et al (2009) Size dependence of magnetic parameters and surface disorder in magnetite nanoparticles. J Appl Phys 105:7B501

    Google Scholar 

  149. Krycka KL, Booth RA, Hogg CR et al (2010) Core-shell magnetic morphology of structurally uniform magnetite nanoparticles. Phys Rev Lett 104:207203

    Google Scholar 

  150. Vidal-Vidal J, Rivas J, Lopez-Quintela MA (2006) Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloid SurfA Physicochem Eng Asp 288:44–51

    Google Scholar 

  151. Jun YW, Huh YM, Choi JS et al (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127:5732–5733

    Google Scholar 

  152. Cheon J, Lee JH (2008) Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 41:1630–1640

    Google Scholar 

  153. Josephson L, Perez JM, Weissleder R (2001) Magnetic nanosensors for the detection of oligonucleotide sequences. Angew Chem Int Ed 40:3204–3206

    Google Scholar 

  154. Berret JF, Schonbeck N, Gazeau F et al (2006) Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging. J Am Chem Soc 128:1755–1761

    Google Scholar 

  155. Seo SB, Yang J, Lee TI et al (2008) Enhancement of magnetic resonance contrast effect using ionic magnetic clusters. J Colloid Interface Sci 319:429–434

    Google Scholar 

  156. Brown KA, Vassiliou CC, Issadore D et al (2010) Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation. J Magn Magn Mater 322:3122–3126

    Google Scholar 

  157. Matsumoto Y, Jasanoff A (2008) T-2 relaxation induced by clusters of superparamagnetic nanoparticles: Monte Carlo simulations. Magn Reson Imaging 26:994–998

    Google Scholar 

  158. LaConte LEW, Nitin N, Zurkiya O et al (2007) Coating thickness of magnetic iron oxide nanoparticles affects R-2 relaxivity. J Magn Reson Imaging 26:1634–1641

    Google Scholar 

  159. Duan HW, Kuang M, Wang XX et al (2008) Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity. J Phys Chem C 112:8127–8131

    Google Scholar 

  160. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374

    Google Scholar 

  161. Buscher K, Helm CA, Gross C et al (2004) Nanoparticle composition of a ferrofluid and its effects on the magnetic properties. Langmuir 20:2435–2444

    Google Scholar 

  162. Rovers SA, Dietz C, van der Poel LAM et al (2010) Influence of distribution on the heating of superparamagnetic iron oxide nanoparticles in Poly(methyl methacrylate) in an alternating magnetic field. J Phys Chem C 114:8144–8149

    Google Scholar 

  163. Tsourkas A, Shinde-Patil VR, Kelly KA et al (2005) In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconjug Chem 16:576–581

    Google Scholar 

  164. Kelly KA, Allport JR, Tsourkas A et al (2005) Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 96:327–336

    Google Scholar 

  165. Montet X, Funovics M, Montet-Abou K et al (2006) Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem 49:6087–6093

    Google Scholar 

  166. Martin AL, Hickey JL, Ablack AL et al (2010) Synthesis of bombesin-functionalized iron oxide nanoparticles and their specific uptake in prostate cancer cells. J Nanopart Res 12:1599–1608

    Google Scholar 

  167. Yigit MV, Mazumdar D, Kim HK et al (2007) Smart “Turn-on” magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. Chembiochem 8:1675–1678

    Google Scholar 

  168. Cutler JI, Zheng D, Xu XY et al (2010) Polyvalent oligonucleotide iron oxide nanoparticle “Click” conjugates. Nano Lett 10:1477–1480

    Google Scholar 

  169. Veiseh O, Kievit FM, Fang C et al (2010) Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials 31:8032–8042

    Google Scholar 

  170. Cho EC, Glaus C, Chen JY et al (2010) Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med 16:561–573

    Google Scholar 

  171. Gindy ME, Prud’homme RK (2009) Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin Drug Deliv 6:865–878

    Google Scholar 

  172. Sun C, Lee JSH, Zhang MQ (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    Google Scholar 

  173. Huang J, Bu LH, Xie J et al (2011) Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4:7151–7160

    Google Scholar 

  174. Yu MK, Park J, Jeong YY et al (2010) Integrin-targeting thermally cross-linked superparamagnetic iron oxide nanoparticles for combined cancer imaging and drug delivery. Nanotechnology 21:415102

    Google Scholar 

  175. Jarrett BR, Gustafsson B, Kukis DL et al (2008) Synthesis of Cu-64-labeled magnetic nanoparticles for multimodal imaging. Bioconjug Chem 19:1496–1504

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Reimhult .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimhult, E., Amstad, E. (2014). Stabilization and Characterization of Iron Oxide Superparamagnetic Core-Shell Nanoparticles for Biomedical Applications. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_19

Download citation

Publish with us

Policies and ethics