Skip to main content

Exercise Physiology of Zebrafish: Swimming Effects on Skeletal and Cardiac Muscle Growth, on the Immune System, and the Involvement of the Stress Axis

  • Chapter
  • First Online:
Swimming Physiology of Fish

Abstract

Recently, we have established zebrafish as a novel exercise model and demonstrated the stimulation of growth by exercise. Exercise may also induce cardiac hypertrophy and cardiomyocyte proliferation in zebrafish making it an important model to study vertebrate heart regeneration and improved robustness of fish in aquaculture. Moreover, zebrafish has been recently recognized as a valuable model for immunological studies since they possess an adaptive and innate immune system similar to mammals. Given the beneficial effects of exercise on mammalian immune function, zebrafish can be used to investigate exercise-induced stimulation of immune function. Current studies are aimed to demonstrate the mechanisms behind the beneficial exercise effects of enhanced skeletal and cardiac muscle growth and immune functioning and to assess the role of the cortisol stress response at the base of these beneficial exercise effects. As such, zebrafish can be used as an exercise model with implications in basic, biomedical, and applied sciences, such as aquaculture.

Wageningen Aquaculture is a consortium of IMARES (Institute for Marine Resources & Ecosystem Studies) and AFI (Aquaculture and Fisheries Group, Wageningen University), both part of Wageningen University & Research Centre (WUR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alderman SL, Bernier NJ (2009) Ontogeny of the corticotropin-releasing factor system in zebrafish. Gen Comp Endocrinol 164:61–69

    Article  PubMed  CAS  Google Scholar 

  • Alsop D, Vijayan MM (2008) Development of the corticosteroid stress axis and receptor expression in zebrafish. Am J Physiol Regul Integr Comp Physiol 294:R711–R719

    Article  PubMed  CAS  Google Scholar 

  • Alsop D, Vijayan M (2009) The zebrafish stress axis: molecular fallout from the teleost-specific genome duplication event. Gen Comp Endocrinol 161:62–66

    Article  PubMed  CAS  Google Scholar 

  • Amaral IPG, Johnston IA (2011) Insulin-like growth factor (IGF) signalling and genome wide transcriptional regulation in fast muscle of zebrafish following a single-satiating meal . J Exp Biol 214:2125–2139

    Article  PubMed  CAS  Google Scholar 

  • Anttila K, Järvilehto M, Mänttäri S (2008) The swimming performance of brown trout and whitefish: the effects of exercise on Ca2 + handling and oxidative capacity of swimming muscles. J Comp Physiol 178B:465–475

    Google Scholar 

  • Barnes PJ (2005) Molecular mechanisms and cellular effects of glucocorticosteroids. Immunol Allergy Clin North Am. 25:451–468

    Article  PubMed  Google Scholar 

  • Barrett R, Chappell C, Quick M, Fleming A (2006) A rapid, high content, in vivo model of glucocorticoid-induced osteoporosis. Biotechnol J 1:651–655

    Article  PubMed  CAS  Google Scholar 

  • Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE, Guillemin K (2006) Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev Biol 297:374–386

    Article  PubMed  CAS  Google Scholar 

  • Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  PubMed  CAS  Google Scholar 

  • Bersell K, Arab S, Haring B, Kühn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257–270

    Article  PubMed  CAS  Google Scholar 

  • Biga PR, Goetz FW (2006) Zebrafish and giant danio as models for muscle growth: determinate vs. indeterminate growth as determined by morphometric analysis. Am J Physiol Regul Integr Comp Physiol 291:R1327–R1337

    Article  PubMed  CAS  Google Scholar 

  • Boesgaard L, Nielsen ME, Rosenkilde P (1993) Moderate exercise decreases plasma cortisol levels in Atlantic salmon (Salmo salar). Comp Biochem Physiol 106A:641–643

    Article  Google Scholar 

  • Boström P, Mann N, Wu J, Quintero PA, Plovie ER, Panáková D, Gupta RK, Xiao C, MacRae CA, Rosenzweig A, Spiegelman BM (2010) C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143:1072–1083

    Article  PubMed  Google Scholar 

  • Bruunsgaard H (2005) Physical activity and modulation of systemic low-level inflammation. J Leukoc Biol 78:819–835

    Article  PubMed  CAS  Google Scholar 

  • Castro V, Grisdale-Helland B, Helland SJ, Kristensen T, Jørgensen SM, Helgerud J, Claireaux G, Farrell AP, Krasnov A, Takle H (2011) Aerobic training stimulates growth and promotes disease resistance in Atlantic salmon (Salmo salar) comparative biochemistry and physiology. Part A 160(2011):278–290

    CAS  Google Scholar 

  • Chandrasekar G, Lauter G, Hauptmann G (2007) Distribution of corticotropin-releasing hormone in the developing zebrafish brain. J Comp Neurol 505:337–351

    Article  PubMed  CAS  Google Scholar 

  • Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 267:1244–1252

    Article  PubMed  CAS  Google Scholar 

  • Cousins K, Farrell A, Sweeting R, Vesely D, Keen J (1997) Release of atrial natriuretic factor prohormone peptides 1–30, 31–67 and 99–126 from freshwater- and seawater-acclimated perfused trout (Oncorhynchus mykiss) hearts. J Exp Biol 200:1351–1362

    PubMed  CAS  Google Scholar 

  • Davie PS, Wells RMG, Tetens V (1986) Effects of sustained swimming on rainbow trout muscle structure, blood oxygen transport, and lactate dehydrogenase isozymes: evidence for increased aerobic capacity of white muscle. J Exp Zool 237:159–171

    Article  PubMed  CAS  Google Scholar 

  • Davison W (1997) The effects of exercise training on teleost fish, a review of recent literature. Comp Biochem Physiol A 117:67–75

    Article  Google Scholar 

  • Davison W, Goldspink G (1977) The effect of prolonged exercise on the lateral musculature of the brown trout (Salmo trutta). J Exp Biol 70:1–12

    Google Scholar 

  • East P, Magnan P (1987) The effect of locomotor activity on the growth of brook charr, Salvelinus fontanilis Mitchell. Can J Zool 65:843–846

    Article  Google Scholar 

  • Ekker M, Akimenko M-A (2010) Genetic tools. In: Zebrafish. Fish Physiology 29: 1–23, Perry SF, Ekker M, Farrell AP, Brauner CJ (eds), Elsevier

    Google Scholar 

  • Farrell AP, Johansen JA, Steffensen JF, Moyes CD, West TG, Suarez RK (1990) Effects of exercise and coronary ablation on swimming performance, heart size, and cardiac enzymes in rainbow trout, Oncorhynchus mykiss. Can J Zool 68:1174–1179

    Article  Google Scholar 

  • Forné I, Abián J, Cerdà J (2010) Fish proteome analysis: model organisms and non-sequenced species. Proteomics 10:858–872

    Article  PubMed  Google Scholar 

  • Gallaugher PE, Thorarensen H, Kiessling A, Farrell AP (2001) Effects of high intensity exercise training on cardiovascular function, oxygen uptake, internal oxygen transport and osmotic balance in chinook salmon (Oncorhynchus tshawytscha) during critical speed swimming. J Exp Biol 204:2861–2872

    PubMed  CAS  Google Scholar 

  • Gamperl AK, Farrell AP (2004) Cardiac plasticity in fishes: environmental influences and intraspecific differences. J Exp Biol 207:2539–2550

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Requeni P, Conceicao LEC, Olderbakk Jordal A-E, Rønnestad I (2010) A reference growth curve for nutritional experiments in zebrafish (Danio rerio) and changes in whole body proteome during development. Fish Physiol Biochem 36:1199–1215

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Nunez V, Gonzalez-Sarmiento R, Rodriguez RE (2003) Identification of two proopiomelanocortin genes in zebrafish (Danio rerio). Brain Res Mol Brain Res 120:1–8

    Article  PubMed  CAS  Google Scholar 

  • Greer Walker M, Emerson L (1978) Sustained swimming speeds and myotomal muscle function in the trout, Salmo gairderi. J Fish Biol 13:475–481

    Article  Google Scholar 

  • Hegedűs Z, Zakrzewska A, Ágoston VC, Ordas A, Rácz P et al (2009) Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. Mol Immunol 15:2918–2930

    Article  Google Scholar 

  • Herbert NA, Kadri S, Huntingford FA (2011) A moving light stimulus elicits a sustained swimming response in farmed Atlantic salmon. Salmo salar L. Fish Physiol Biochem. 37:317–325

    Article  CAS  Google Scholar 

  • Hochachka PW (1961) The effect of physical training on oxygen debt and glycogen reserves in trout. Can J Zool 39:767–776

    Article  CAS  Google Scholar 

  • Johnston IA, Lee H-T, Macqueen DJ, Paranthaman K, Kawashima C, Anwar A, Kinghorn JR, Dalmay T (2009) Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes. J Exp Biol 212:1781–1793

    Article  PubMed  CAS  Google Scholar 

  • Kajstura J, Gurusamy N, Ogórek B, Goichberg P, Clavo-Rondon C, Hosoda T, D’Amario D, Bardelli S, Beltrami AP, Cesselli D, Bussani R, del Monte F, Quaini F, Rota M, Beltrami CA, Buchholz BA, Leri A, Anversa P (2010) Myocyte turnover in the aging human heart. Circ Res 107:1374–1386

    Article  PubMed  CAS  Google Scholar 

  • Kanther M, Rawls JF (2010) Host–microbe interactions in the developing zebrafish. Curr Opin Immunol 22:10–19

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann R (1990) Respiratory cost of swimming in larval and juvenile cyprinids. J Exp Biol 150:343–366

    Google Scholar 

  • Kaushik S, Georga I, Koumoundouros G (2011) Growth and body composition of Zebrafish (Danio rerio) Larvae Fed a compound feed from first feeding onward: toward implications on nutrient requirements. Zebrafish 8(2):87–95

    Article  PubMed  CAS  Google Scholar 

  • Langenau DM, Ferrando AA, Traver D, Kutok JL, Hezel JP, Kanki JP, Zon LI, Look AT, Trede NS (2004) In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc Natl Acad Sci USA 101:7369–7374

    Article  PubMed  CAS  Google Scholar 

  • LeMoine CMR, Craig PM, Dhekney K, Kim JJ, McClelland GB (2010) Temporal and spatial patterns of gene expression in skeletal muscles in response to swim training in adult zebrafish (Danio rerio). J Comp Physiol B 180:151–160

    Article  PubMed  CAS  Google Scholar 

  • Leon K, Kranenbarg S, Schulte-Merker S, Van Leeuwen J, Fiaz A (2011) Swim training accelerates the onset of chondrogenesis and osteogenesis in the zebrafish (Danio rerio) larva. Abstract 7th European Zebrafish Meeting, Edinburgh, Scotland 5th–9th July 2011

    Google Scholar 

  • Lien C-L, Schebesta M, Makino S, Weber GJ, Keating MT (2006) Gene expression analysis of Zebrafish heart regeneration. PLoS Biol 4(8):e260

    Article  PubMed  Google Scholar 

  • Lucas MC, Priede IG (1992) Utilization of metabolic scope in relation to feeding and activity by individual and grouped zebrafish, Brachydanio rerio (Hamilton-Buchanan). J Fish Biol 41:175–190

    Article  Google Scholar 

  • Martin SAM (2009) Chapter 6. Proteomics in aquaculture In: Molecular research in aquaculture, Overturf K (ed.), Blackwell Publishing, Oxford. doi: 10.1002/9780813807379.ch6

  • Mathew LK, Sengupta S, Kawakami A, Andreasen EA, Lohr CV, Loynes CA, Renshaw SA, Peterson RT, Tanguay RL (2007) Unraveling tissue regeneration pathways using chemical genetics. J Biol Chem 282:35202–35210

    Article  PubMed  CAS  Google Scholar 

  • McClelland GB, Craig PM, Dhekney K, Dipardo S (2006) Temperature- and exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio). J Physiol 577:739–751

    Article  PubMed  CAS  Google Scholar 

  • Meijer AH, Spaink HP (2011) Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 12:1000–1017

    Article  PubMed  CAS  Google Scholar 

  • Milligan CL, Hooke GB, Johnson C (2000) Sustained swimming at low velocity following a bout of exhaustive exercise enhances metabolic recovery in rainbow trout. J Exp Biol 203:921–926

    PubMed  CAS  Google Scholar 

  • Milligan CL (2003) A regulatory role for cortisol in muscle glycogen metabolism in rainbow trout Oncorhynchus mykiss Walbaum. J Exp Biol 206:3167–3173

    Article  PubMed  CAS  Google Scholar 

  • Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9:211–268

    Article  Google Scholar 

  • Olney RC (2009) Mechanisms of impaired growth: effect of steroids on bone and cartilage. Horm Res 72(Suppl 1):30–35

    Article  PubMed  CAS  Google Scholar 

  • Palstra AP, Planas JV (2011) Fish under exercise. Fish Physiol Biochem 37:259–272

    Article  PubMed  CAS  Google Scholar 

  • Palstra A, van Ginneken V, van den Thillart G (2008) Cost of transport and optimal swimming speeds in farmed and wild European silver eels (Anguilla anguilla). Comp Biochem Physiol A 151:37–44

    Article  Google Scholar 

  • Palstra AP, Tudorache C, Rovira M, Brittijn B, Burgerhout E, van den Thillart GEEJM, Spaink HP, Planas JV (2010) Establishing zebrafish as a novel exercise model: swimming economy, swimming-enhanced growth and regulation of muscle growth marker gene expression. PLoS ONE 5(12):e14483

    Article  PubMed  CAS  Google Scholar 

  • Palstra AP, Tudorache C, Rovira M, Márquez P, Brittijn SA, Burgerhout E, van den Thillart GEEJM, Spaink HP, Planas JV (2011) Establishing zebrafish as novel exercise model. European Aquaculture 2011. October 18–21, Rhodes (Greece)

    Google Scholar 

  • Pedersen BK, Hoffman-Goetz L (2000) Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 80:1055–1081

    PubMed  CAS  Google Scholar 

  • Petersen A, Pedersen B (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Plaut I (2000) Effects of fin size on swimming performance, swimming behaviour and routine activity of zebrafish Danio rerio. J Exp Biol 203:813–820

    PubMed  CAS  Google Scholar 

  • Plaut I, Gordon MS (1994) Swimming metabolism of wild-type and cloned zebrafish Brachydanio rerio. J Exp Biol 194:209–223

    PubMed  Google Scholar 

  • Postlethwaite EK, McDonald DG (1995) Mechanisms of Na+ and Cl- regulation in freshwater-adapted rainbow trout (Oncorhynchus mykiss) during exercise and stress. J Exp Biol 198:295–304

    PubMed  CAS  Google Scholar 

  • Roeselers G, Mittge EK, Zac Stephens W, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 1–14

    Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

    Article  PubMed  CAS  Google Scholar 

  • Schaaf MJ, Champagne D, van Laanen IH, van Wijk DC, Meijer AH, Meijer OC, Spaink HP, Richardson MK (2008) Discovery of a functional glucocorticoid receptor beta-isoform in zebrafish. Endocrinology 149:1591–1599

    Article  PubMed  CAS  Google Scholar 

  • Schoonheim PJ, Chatzopoulou A, Schaaf MJ (2010) The zebrafish as an in vivo model system for glucocorticoid resistance. Steroids 75:918–925

    Article  PubMed  CAS  Google Scholar 

  • Sepulcre MP, Alcaraz-Pérez F, López-Muñoz A, Roca FJ, Meseguer J, Cayuela ML, Mulero V (2009) Evolution of lipopolysaccharide (LPS) recognition and signaling: fish TLR4 does not recognize LPS and negatively regulates NF-κB activation. J Immunol 182:1836–1845

    Article  PubMed  CAS  Google Scholar 

  • Sfakianakis DG, Leris I, Kentouri M (2011) Effect of developmental temperature on swimming performance of zebrafish (Danio rerio) juveniles. Environ Biol Fish 90:421–427

    Article  Google Scholar 

  • Stockhammer OW, Zakrzewska A, Hegedûs Z, Spaink HP, Meijer AH (2009) Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection. J Immunol 182:5641–5653

    Article  PubMed  CAS  Google Scholar 

  • Thomas JK, Janz DM (2011) Dietary selenomethionine exposure in adult zebrafish alters swimming performance, energetics and the physiological stress response. Aquat Toxicol 102:79–86

    Article  PubMed  CAS  Google Scholar 

  • Thorarensen H, Gallaugher PE, Kiessling AK, Farrell AP (1993) Intestinal blood flow in swimming chinook salmon Oncorhynchus tshawytscha and the effects of haematocrit on blood flow distribution. J Exp Biol 179:115–129

    Google Scholar 

  • Totland GK, Kryvi H, Jødestøl KA, Christiansen EN, Tangerås A et al (1987) Growth and composition of the swimming muscle of adult Atlantic salmon (Salmo salar L.) during long-term sustained swimming. Aquaculture 66:299–313

    Article  Google Scholar 

  • Trede NS, Langenau DM, Traver D, Look AT, Zon LI (2004) Use of zebrafish to understand immunity. Immunity 20:367–379

    Article  PubMed  CAS  Google Scholar 

  • Van den Thillart G, van Ginneken V, Körner F, Heijmans R, van der Linden R et al (2004) Endurance swimming of European eel. J Fish Biol 65:312–318

    Article  Google Scholar 

  • Van der Meulen T, Schipper H, van den Boogaart JGM, Huising MO, Kranenbarg S, van Leeuwen JL (2006) Endurance exercise differentially stimulates heart and axial muscle development in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 291:R1040–R1048

    Article  PubMed  Google Scholar 

  • Van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CMJE, Bitter W (2004) A star with stripes: zebrafish as an infection model. Trends Microbiol 12:451–457

    Article  PubMed  Google Scholar 

  • Van der Sar AM, Spaink HP, Zakrzewska A, Bitter W, Meijer AH (2009) Specificity of the zebrafish host transcriptome response to acute and chronic mycobacterial infection and the role of innate and adaptive immune components. Mol Immunol 46:2317–2332

    Article  PubMed  Google Scholar 

  • van Ginneken V, Antonissen E, Muller UK, Booms R, Eding E, Verreth J, van den Thillart G (2005) Eel migration to the Sargasso: remarkably high swimming efficiency and low energy costs. J Exp Biol 208:1329–1335

    Article  PubMed  Google Scholar 

  • Videler JJ (1993) Fish Swimming. Chapman and Hall, London, p 254

    Book  Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    PubMed  CAS  Google Scholar 

  • Whirledge S, Cidlowski JA (2010) Glucocorticoids, stress, and fertility. Minerva Endocrinol 35:109–125

    PubMed  CAS  Google Scholar 

  • Woodward JJ, Smith LS (1985) Exercise training and the sterss response in rainbow trout, Salmo gairderi. J Fish Biol 26:435–447

    Article  CAS  Google Scholar 

  • Xu C, Wu G, Zohar Y, Du S-J (2003) Analysis of myostatin gene structure, expression and function in zebrafish. J Exp Biol 206:4067–4079

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Zhang L, Weng S, Huang Z, Lu J et al (2008) A zebrafish (Danio rerio) model of infectious spleen and kidney necrosis virus (ISKNV) infection. Virology 376:1–12

    Article  PubMed  CAS  Google Scholar 

  • Young PS, Cech JJ Jr (1994) Effects of different exercise conditioning velocities on the energy reserves and swimming stress responses in young-of-the-year striped bass (Morone saxatilis). Can J Fisheries Aquatic Sci. 51:1528–1534

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank C. Tudorache, S. Brittijn, E. Burgerhout, O. Stockhammer, G. van den Thillart, H. Spaink (Leiden University, The Netherlands), P. Márquez, M. Rovira, D. Crespo, R. Marin-Juez, J. Torrella (University of Barcelona, Barcelona), L. Sevilla (Barcelona Science Park, Barcelona), S. Boltaña, N. Roher, and S. MacKenzie (Universitat Autónoma de Barcelona, Barcelona) for their assistance with experiments, measurements, and analyses. Research was supported by grants from the Spanish Ministerio de Ciencia e Innovación (AGL2009-07006; CSD2007-0002 to J. V. Planas) and from the Dutch Ministry of Economic Affairs, Agriculture and Innovation (project “Marine Aquaculture: Customized Nutrition” to A.P. Palstra). A.P. Palstra was supported by a Marie Curie Intra-European Fellowship (REPRO-SWIM) with Grant Agreement number 219971 and a Marie Curie Reintegration Grant (SWIMFIT) with Grant Agreement number 303500 from the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Palstra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Palstra, A.P., Schaaf, M., Planas, J.V. (2013). Exercise Physiology of Zebrafish: Swimming Effects on Skeletal and Cardiac Muscle Growth, on the Immune System, and the Involvement of the Stress Axis. In: Palstra, A., Planas, J. (eds) Swimming Physiology of Fish. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31049-2_14

Download citation

Publish with us

Policies and ethics