Skip to main content

Identification Techniques I

  • Chapter
  • First Online:
Conservation Science for the Cultural Heritage

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 79))

Abstract

Infrared (IR) and Raman spectroscopy have a high potential for characterisation of material. Extensive series of wet chemical analysis may be substituted by a single spectroscopic measurement followed by detailed chemometric data evaluation. Topics of this chapter are: (i) basics of IR and Raman spectroscopy, (ii) the registration of “correct” spectra, and (iii) spectra evaluation. Dedicated applications in the area of conservation science are collected in separate chapters. The infrared (IR) spectrum is often called the fingerprint of a substance. An IR spectrum identifies a substance like a human fingerprint. Due to their origin the features of an IR spectrum are bands, not peaks. They indicate vibrations within the molecular framework. Such vibrations are excited by irradiation with infrared light. The infrared spectral range joins the red end of the visible range, it extends from 780 to 1 mm wavelength. Radiation in this spectral range is of low energy, it does not harm material. Commercial IR spectrometers are available since 1945. They dominated the field of structural analysis (identification) of molecular substances until NMR spectrometers became affordable. Nowadays small and easy-to-use IR spectrometers are abundantly available in laboratories [8]. Raman spectroscopy is complementary to IR spectroscopy. It is named after its discoverer, the Indian Nobel Laureate Sir C. V. Raman. Molecular vibrations are excited here by irradiation with intense visible or near IR radiation. The excitation mechanism is different from the excitation of vibrations by IR light, which results in some well-defined differences between IR and Raman spectra of the same sample. For this reason IR and Raman spectra are complementary, not identical. The complementarity of IR and Raman spectra provides additional information about molecular properties of the sample. The need for intense light sources hampered Raman spectroscopy until the advent of lasers. Today a range of miniaturised lasers and convenient fibre-probes are available, which permit the construction of small portable Raman spectrometers for difficult field applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. JEOL Ltd (2007) Invitation to the SEM world. service advanced technology, JEOL, Japan

    Google Scholar 

  2. Williams DB, Barry Carter C (2004) Transmission electron microscopy: a textbook for Ma-terials science. Springer, New York

    Google Scholar 

  3. Zorba T, Pavlidou E, Stanojlovic M, Bikiaris D, Paraskevopoulos KM, Nikolic V, Nikolic PM (2006) Technique and palette of XIIIth century painting in the monastery of Mileseva. Appl Phys A 83:719–725

    Article  CAS  Google Scholar 

  4. Clark RJH, Dines TJ, Kurmoo M (1983) On the nature of the sulfur chromophores in ultramarine blue, green, violet, and pink and of the selenium chromophore in ultramarine selenium: characterization of radical anions by electronic and resonance Raman spectroscopy and the determination of their excited-state geometries. Inorg Chem 22:2766

    Article  CAS  Google Scholar 

  5. Ganitis V, Pavlidou E, Zorba F, Paraskevopoulos KM, Bikiaris D (2004) A Post-Byzantine Icon of St Nicholas painted on a leather support microanalysis and characterisation of technique. J Cult Heritage 5:349–360

    Article  Google Scholar 

  6. Pistofidis N, Vourlias G, Pavlidou E, Dilo T, Civici N, Stamati F, Gjongecaj S, Prifti I, Bilani O, Stergioudis G, Polychroniades EK (2006) On the comparative study of three silver coins of the third century BC minted in Korkyra, Dyrrachion and by the Illyrian king Monounios. Appl Phys A 83:637–642

    Article  CAS  Google Scholar 

  7. Froh J (2004) Archaeological ceramics studied by scanning electron microscopy. Hyperfine Interact 154:159–176

    Google Scholar 

  8. Griffiths PR, de Haseth JA (2007) Fourier transform infrared spectrometry. Wiley, Hoboken

    Book  Google Scholar 

  9. Skoog DA, Holler FJ, Nieman TA (1998) Principles of instrumental analysis. Brooks Cole, Philadelphia

    Google Scholar 

  10. Schrader B (1989) Ramn/infrared atlas of organic compounds. VCH, Weinheim

    Google Scholar 

  11. Mayo DW, Miller FA, Hannah RW (2004) Course notes on the interpretation of infrared and Raman spectra. Wiley, Hoboken

    Book  Google Scholar 

  12. Gauglitz G, Vo-Dinh T (2003) Handbook of spectroscopy. Wiley-VCH, Weinheim

    Book  Google Scholar 

  13. Salzer R, Siesler HW (2009) Infrared and Raman spectroscopic imaging. Wiley-VCH, Weinheim

    Book  Google Scholar 

  14. Miller FA, Wilkins CH (1952) Infrared spectra and characteristic frequencies of inorganic ions. Analyt Chem 24:1253–1294

    Article  CAS  Google Scholar 

  15. Nyquist RA, Kagel RO (1971) Infrared spectra of inorganic compounds. Academic Press, New York

    Google Scholar 

  16. Degen IA, Newman GA (1993) Raman spectra of inorganic ions. Spectrochim Acta 49A:859–887

    CAS  Google Scholar 

  17. Gruchow F (2007) IR-Spektroskopische Untersuchungen am Holzträger bemalter historischer Kunstobjekte. Thesis, TU Dresden

    Google Scholar 

  18. La Parola V, Longo A, Venezia AM, Spinella A, Caponetti E (2010) Interaction of gold with co-condensed and grafted HMS-SH silica: A 29Si 1H CP-MAS NMR spectroscopy, XRD, XPS and Au LIII EXAFS StudyEur. J Inorg Chem 23:3628–3635

    Google Scholar 

  19. Conte P, Smejkalovà D, Piccolo A, Spaccini R (2008) Evaluation of the factors affecting direct polarization solid state 31P-NMR spectroscopy of bulk soils Eur. J Soil Sci 59:584–591

    Article  CAS  Google Scholar 

  20. Hedesiu C, Demco DE, Kleppinger R, Vanden Poel G, Gijsbers W, Bluemich B, Remerie K, Litvinov VM (2007) Effect of temperature and annealing on the phase composition, molecular mobility and the thickness of domains in isotactic polypropylene studied by proton solid state NMR. SAXS and DSC Macromol 40:3977–3989

    Article  CAS  Google Scholar 

  21. Alemany LB (2007) Solid state NMR analysis of fluorinated single-walled carbon nanotubes: assessing the extent of fluorination Chem. Mater 19:735

    CAS  Google Scholar 

  22. Hoffmann A, Sebastiani D, Sugiono E, Yun S, Kim KS, Spiess HW, Schnell I (2004) Solvent molecules trapped in supramolecular organic nanotubes: a combined solid-State NMR and DFT study chem. Phys Lett 388:164–169

    CAS  Google Scholar 

  23. Becker ED (2000) High resolution NMR theory and chemical applications, Academic Press, Waltham ISBN: 0-12-084662-4

    Google Scholar 

  24. Macomber RS (1998) A complete introduction to modern NMR spectroscopy J. Wiley & Sons ISBN: 0-471-15736-8

    Google Scholar 

  25. Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053

    Article  CAS  Google Scholar 

  26. Stebbins JF, Kroeker S, Lee SK, Kiczenski TJ (2000) Quantification of five- and six-coordinated aluminum in aluminosilicate and fluoride-containing glasses by high-field, high-resolution 27Al NMR. J Non-Cryst Solids 275:1–6

    Article  CAS  Google Scholar 

  27. Demortier G (2004) PIXE, PIGE and NMR study of the masonry of the pyramid of Cheops Giza. Nucl Instr Meth Phys Res B 226:98–109

    Article  CAS  Google Scholar 

  28. Cervantes J, Mendoza-Diaz G, Alvarez-Gasca DE, Martinez-Richa A (1999) Applications of 29Si and 27Al magic angle spinning nuclear magnetic resonance of the building materials of historical monuments. Solid State Nucl Mag 13:263–269

    Article  CAS  Google Scholar 

  29. Hosler D, Burkett SL, Tarkanian MJ (1999) Prehistoric polymers: rubber processing in ancient Mesoamerica. Science 284:1988–1991

    Article  CAS  Google Scholar 

  30. Rijniers LA (2004) PhD thesis, Technical university, Eindhoven

    Google Scholar 

  31. Bardet M, Gerbaud G, Trân QK, Hediger S (2007) Study of interactions between polyethylene glycol and archaeological wood components by C13 high-resolution solid-state CP-MAS NMR. J Archaeol Sci 34:1670–1676

    Article  Google Scholar 

  32. Lambert JB Frye JS Lee TA Welch CJ Poinar GO (1989) Analysis of mexican amber by carbon-13 NMR spectroscopy, in archaeological chemistry IV (ed Allen RO), 381–388 Advances in Chemistry Ser. 220, Am Chem Soc, Washington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ioannis A. Kozaris , Ioannis A. Kozaris , Eleni Pavlidou or Reiner Salzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kozaris , I.A., Pavlidou, E., Salzer, R., Capitani, D., Spinella, A., Caponetti, E. (2012). Identification Techniques I. In: Varella, E. (eds) Conservation Science for the Cultural Heritage. Lecture Notes in Chemistry, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30985-4_3

Download citation

Publish with us

Policies and ethics