Skip to main content

Epigenetic Flexibility Underlying Phenotypic Plasticity

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 74))

Abstract

Phenotypic plasticity refers to the ability of an organism to produce different phenotypes under different environmental circumstances. The mechanisms underlying phenotypic plasticity received considerable attention in recent years. It has become widely acknowledged that plastic variation in phenotypes mostly take place by altering gene expression and eventually altering ontogenetic trajectory in response to environmental changes. Epigenetic modifications provide a plausible mechanism for the putative link between environmental variation and alterations in gene expression. While much attention is being paid to heritable epigenetic changes, little attention is being paid to swift and reversible epigenetic alternations, which mediate rapid plastic responses of the organism to environmental perturbation. This mechanism is particularly important to allow organisms with no/low genetic diversity to adapt to different environments, and is likely to be a favorable evolutionary response when organisms are exposed to stress periods that last shorter than a single life span. Studying epigenetic complexes in the real environment would allow us to get greater insights into the molecular machinery that interfaces the genotype and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen GE (1979) Naturalists and experimentalists: the genotype and the phenotype. Stud Hist Biol 3:179–209

    PubMed  CAS  Google Scholar 

  • Angers B, Castonguay E, Massicotte R (2010) Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol Ecol 19:1283–1295

    Article  PubMed  CAS  Google Scholar 

  • Astolfi PA, Salamini F, Sgaramella V (2010) Are we genomic mosaics? Variations of the genome of somatic cells can contribute to diversify our phenotypes. Curr Genomics 11:379–386

    Article  PubMed  CAS  Google Scholar 

  • Aubin-Horth N, Renn SCP (2009) Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Mol Ecol 18:3763–3780

    Article  PubMed  CAS  Google Scholar 

  • Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164–167

    Article  PubMed  CAS  Google Scholar 

  • Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K, Weigel D (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–249

    Article  PubMed  CAS  Google Scholar 

  • Bell JT, Spector TD (2011) A twin approach to unraveling epigenetics. Trends Genet 27:116–125

    Article  PubMed  CAS  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  PubMed  CAS  Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115

    PubMed  Google Scholar 

  • Bossdorf O, Arcuri D, Richards CL, Pigliucci M (2010) Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana. Evol Ecol 24:541–553

    Article  Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72

    Article  PubMed  CAS  Google Scholar 

  • Boyko A, Kathiria P, Zemp FJ, Yao YL, Pogribny I, Kovalchuk I (2007) Transgenerational changes in the genome stability and methylation in pathogen-infected plants (virus-induced plant genome instability). Nucleic Acids Res 35:1714–1725

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

    Article  Google Scholar 

  • Callahan HS, Wells CL, Pigliucci M (1999) Light-sensitive plasticity genes in Arabidopsis thaliana: mutant analysis and ecological genetics. Evol Ecol Res 1:731–751

    Google Scholar 

  • Callahan HS, Dhanoolal N, Ungerer MC (2005) Plasticity genes and plasticity costs: a new approach using an Arabidopsis recombinant inbred population. New Phytol 166:129–140

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  PubMed  CAS  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277:589–600

    Article  PubMed  CAS  Google Scholar 

  • Crispo E (2008) Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. J Evol Biol 21:1460–1469

    Article  PubMed  CAS  Google Scholar 

  • DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81

    Article  PubMed  CAS  Google Scholar 

  • Dunn BK, Verma M, Umar A (2003) Epigenetics in cancer prevention: early detection and risk assessment. Ann NY Acad Sci 984:1–4

    Article  Google Scholar 

  • Eichten SR, Swanson-Wagner RA, Schnable JC, Waters AJ, Hermanson PJ, Liu S, Yeh CT, Jia Y, Gendler K, Freeling M, Schnable PS, Vaughn MW, Springer NM (2011) Heritable epigenetic variation among maize inbreds. PLoS Genet 7(11):e1002372

    Article  PubMed  CAS  Google Scholar 

  • Elango N, Hunt BG, Goodisman MAD, Yi SV (2009) DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc Natl Acad Sci USA 106:11206–11211

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Irizarry RA (2010) Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci USA 107:1757–1764

    Article  PubMed  CAS  Google Scholar 

  • Fordyce JA (2006) The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J Exp Biol 209:2377

    Article  PubMed  Google Scholar 

  • Gabriel W, Luttbeg B, Sih A, Tollrian R (2005) Environmental tolerance, heterogeneity, and the evolution of reversible plastic responses. Am Nat 166:339–353

    Article  PubMed  Google Scholar 

  • Gao LX, Geng YP, Li B, Chen JK, Yang J (2010) Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation. Plant Cell Environ 33:1820–1827

    Article  PubMed  CAS  Google Scholar 

  • Geng YP, Pan XY, Xu CY, Zhang WJ, Li B, Chen JK (2006) Phenotypic plasticity of invasive Alternanthera philoxeroides in relation to different water availability, compared to its native congener. Acta Oecol 30:380–385

    Article  Google Scholar 

  • Geng YP, Pan XY, Xu CY, Zhang WJ, Li B, Chen JK, Lu BR, Song ZP (2007) Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. Biol Invasions 9:245–256

    Article  Google Scholar 

  • Gilbert SF (2001) Ecological developmental biology: developmental biology meets the real world. Dev Biol 233:1–12

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SF (2005) Mechanisms for the environmental regulation of gene expression: ecological aspects of animal development. J Biosci 30:65–74

    Article  PubMed  CAS  Google Scholar 

  • Grant-Downton RT, Dickinson HG (2005) Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Ann Bot 96:1143–1164

    Article  PubMed  CAS  Google Scholar 

  • Holm L, Doll J, Holm E, Pancho J, Herberger J (1997) World weeds: natural histories and distribution. Wiley, New York

    Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  PubMed  CAS  Google Scholar 

  • Johannes F, Colot V, Jansen RC (2008) Epigenome dynamics: a quantitative genetics perspective. Nat Rev Genet 9:883–890

    Article  PubMed  CAS  Google Scholar 

  • Kalisz S, Kramer EM (2008) Variation and constraint in plant evolution and development. Heredity 100:171–177

    Article  PubMed  CAS  Google Scholar 

  • Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–1830

    Article  PubMed  CAS  Google Scholar 

  • Li J, Ye WH (2006) Genetic diversity of alligator weed ecotypes is not the reason for their different responses to biological control. Aquat Bot 85:155–158

    Article  Google Scholar 

  • Lopez-Maury L, Marguerat S, Bahler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9:583–593

    Article  PubMed  CAS  Google Scholar 

  • Lukens LN, Zhan SH (2007) The plant genome’s methylation status and response to stress: implications for plant improvement. Curr Opin Plant Biol 10:317–322

    Article  PubMed  CAS  Google Scholar 

  • Marden JH (2008) Quantitative and evolutionary biology of alternative splicing: how changing the mix of alternative transcripts affects phenotypic plasticity and reaction norms. Heredity 100:111–120

    Article  PubMed  CAS  Google Scholar 

  • Marfil CF, Camadro EL, Masuelli RW (2009) Phenotypic instability and epigenetic variability in a diploid potato of hybrid origin, Solanum ruiz-lealii. BMC Plant Biol 9:21–36

    Article  PubMed  Google Scholar 

  • Moczek AP, Sultan S, Foster S, Ledon-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfenning DW (2011) The role of developmental plasticity in evolutionary innovation. Proc Biol Sci 278:2705–2713

    Article  PubMed  Google Scholar 

  • Morange M (2009) How phenotypic plasticity made its way into molecular biology. J Biosci 34:495–501

    Article  PubMed  Google Scholar 

  • Pan XY, Geng YP, Sosa A, Zhang WJ, Li B, Chen JK (2007) Invasive Alternanthera philoxeroides: biology, ecology and management. Acta Phytotaxon Sin 45:884–900

    Article  Google Scholar 

  • Petronis A (2010) Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 465:721–727

    Article  PubMed  CAS  Google Scholar 

  • Pigliucci M (1996) How organisms respond to environmental changes: from phenotypes to molecules (and vice versa). Trends Ecol Evol 11:168–173

    Article  Google Scholar 

  • Pigliucci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol 20:481–486

    Article  PubMed  Google Scholar 

  • Pigliucci M, Schlichting CD (1998) Reaction norms of Arabidopsis. V. Flowering time controls phenotypic architecture in response to nutrient stress. J Evol Biol 11:285–301

    Google Scholar 

  • Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367

    Article  PubMed  Google Scholar 

  • Reiber CL, Roberts SP (2005) Ontogeny of physiological regulatory mechanisms: fitting into the environment introduction to the symposium. Comp Biochem Physiol A Mol Integr Physiol 141:359–361

    Article  PubMed  Google Scholar 

  • Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7:395–401

    Article  PubMed  CAS  Google Scholar 

  • Richards CL, Bossdorf O, Pigliucci M (2010) What role does heritable epigenetic variation play in phenotypic evolution? BioScience 60:232–237

    Article  Google Scholar 

  • Schlichting CD, Pigliucci M (1993) Control of phenotypic plasticity via regulatory genes. Am Nat 142:366–370

    Article  PubMed  CAS  Google Scholar 

  • Schlichting CD, Smith H (2002) Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evol Ecol 16:189–211

    Article  Google Scholar 

  • Stearns SC (1989) The evolutionary significance of phenotypic plasticity—phenotypic sources of variation among organisms can be described by developmental switches and reaction norms. Bioscience 39:436–445

    Article  Google Scholar 

  • Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Ecol Evol 5:537–542

    CAS  Google Scholar 

  • Sultan SE (2005) An emerging focus on plant ecological development. New Phytol 166:1–5

    Article  PubMed  Google Scholar 

  • Szyf M (2007) The dynamic epigenome and its implications in toxicology. Toxicol Sci 100:7–23

    Article  PubMed  CAS  Google Scholar 

  • Thibert-Plante X, Hendry AP (2011) The consequences of phenotypic plasticity for ecological speciation. J Evol Biol 24:326–342

    Article  PubMed  CAS  Google Scholar 

  • Tollrian R, Harvell CD (1999) The ecology and evolution of inducible defenses. Princeton University Press, Princeton

    Google Scholar 

  • Tsuji S, Tsujii M, Murata H, Nishida T, Komori M, Yasumaru M, Ishii S, Sasayama Y, Kawano S, Hayashi N (2006) Helicobacter pylori eradication to prevent gastric cancer: underlying molecular and cellular mechanisms. World J Gastroenterol 12:1671–1680

    PubMed  CAS  Google Scholar 

  • van Kleunen M, Fischer M (2005) Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol 166:49–60

    Article  PubMed  Google Scholar 

  • Verhoeven KJ, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118

    Article  PubMed  CAS  Google Scholar 

  • Wade PA, Archer TK (2006) Epigenetics: environmental instructions for the genome. Environ Health Perspect 114:A140–A141

    Article  PubMed  Google Scholar 

  • Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK (2011) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62:1951–1960

    Article  PubMed  CAS  Google Scholar 

  • Weinhold B (2006) Epigenetics—the science of change. Environ Health Perspect 114:A160–A167

    Article  PubMed  Google Scholar 

  • West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci USA 102:6543–6549

    Article  PubMed  CAS  Google Scholar 

  • Wheeler NC, Jech K, Masters S, Brobst SW, Alvarado AB, Hoover AJ, Snader KM (1992) Effects of genetic, epigenetic, and environmental-factors on taxol content in Taxus brevifolia and related species. J Nat Prod 55:432–440

    Article  PubMed  CAS  Google Scholar 

  • Xie HH, Wang M, de Andrade A, Bonaldo MD, Galat V, Arndt K, Rajaram V, Goldman S, Tomita T, Soares MB (2011) Genome-wide quantitative assessment of variation in DNA methylation patterns. Nucleic Acids Res 39:4099–4108

    Article  PubMed  CAS  Google Scholar 

  • Zhai J, Liu J, Liu B, Li PC, Meyers BC, Chen XM, Cao XF (2008) Small RNA-directed epigenetic natural variation in Arabidopsis thaliana. PLos Genet 4:e1000056

    Article  PubMed  Google Scholar 

  • Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L, Zhang Q, Fan L, Deng XW (2007) Global genome expression analysis of rice in response to drought and high-salinity in shoot, flag leaf, and panicle. Plant Mol Biol 63:591–608

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geng, Y., Gao, L., Yang, J. (2013). Epigenetic Flexibility Underlying Phenotypic Plasticity. In: Lüttge, U., Beyschlag, W., Francis, D., Cushman, J. (eds) Progress in Botany. Progress in Botany, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30967-0_5

Download citation

Publish with us

Policies and ethics