Skip to main content

Computational Models of Vascularization and Therapy in Tumor Growth

  • Chapter
  • First Online:
Mechanical and Chemical Signaling in Angiogenesis

Abstract

Computational and mathematical models are powerful tools to study the complexity in biological systems. The models, when validated with experimental evidence, can then be used to better understand the behavior of a complex system subjected to perturbations. In particular, a computational model can be used to test new hypotheses and, in the case of therapies for instance, to predict and optimize treatment outcomes in patients. Most models in biology rely on the description, using continuous or discrete mathematical tools, of the time-course of one or several biological entities. Its aim is to ‘capture’ the dynamics of a process, which by definition evolve in time. Almost all biological processes are characterized by a particular dynamic. Computational modeling relies on the premise that integrating the dynamics of a process can provide benefits in its understanding compared to a classical static analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friberg, L.E., Henningsson, A., Maas, H., Nguyen, L., Karlsson, M.O.: Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J. Clin. Oncol. 20(24), 4713–4721 (2002)

    Article  Google Scholar 

  2. Miller, A.B., Hoogstraten, B., Staquet, M., Winkler, A.: Reporting results of cancer treatment. Cancer 47, 207–214 (1981)

    Article  Google Scholar 

  3. Therasse, P., Arbuck, S.G., Eisenhauer, E.A., Wanders, J., Kaplan, R.S., et al.: New guidelines to evaluate the response to treatment in solid tumors. european organization for research and treatment of cancer, national cancer institute of the united states, national cancer institute of canada. J. Natl. Cancer. Inst. 92(3), 205–216 (2000)

    Article  Google Scholar 

  4. Laird, A.K.: Dynamics of tumor growth. Br. J. Cancer 13, 490–502 (1964)

    Article  Google Scholar 

  5. Simpson-Herren, L., Lloyd, H.H.: Kinetic parameters and growth curves for experimental tumor systems. Cancer Chemothe. Rep. 54(3), 143–174 (1970)

    Google Scholar 

  6. Sullivan, P.W., Salmon, S.E.: Kinetics of tumor growth and regression in IgG multiple myeloma. J. Clin. Investig. 51(7), 1697–1708 (1972)

    Article  Google Scholar 

  7. Norton, L., Simon, R., Brereton, H.D., Bogden, A.E.: Predicting the course of gompertzian growth. Nature 264(5586), 542–545 (1976)

    Article  Google Scholar 

  8. Norton, L.: A gompertzian model of human breast cancer growth. Cancer Res. 48, 7067–7071 (1988)

    Google Scholar 

  9. Citron, M.L., Berry, D.A., Cirrincione, C., Hudis, C., Winer, E.P., et al.: Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup trial C9741/cancer and leukemia group B Trial 9741. J. Clin. Oncol. 21, 1431–1439 (2003)

    Article  Google Scholar 

  10. Simeoni, M., Magni, P., Cammia, C., De Nicolao, G., Croci, V., et al.: Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res. 64(3), 1094–1101 (2004)

    Article  Google Scholar 

  11. Wang, Y., Sung, C., Dartois, C., Ramchandani, R., Booth, B.P., et al.: Elucidation of relationship between tumor size and survival in non-small-cell lung cancer patients can aid early decision making in clinical drug development. Clin. Pharmacol. Ther. 86(2), 167–174 (2009)

    Article  Google Scholar 

  12. Tham, L.S., Wang, L., Soo, R.A., Lee, S.C., Lee, H.S., et al.: A pharmacodynamic model for the time course of tumor shrinkage by gemcitabine + carboplatin in non-small cell lung cancer patients. Clin. Cancer Res. 14(13), 4213–4218 (2008)

    Article  Google Scholar 

  13. Claret, L., Girard, P., Hoff, P.M., Van Cutsem, E., Zuideveld, K.P., et al.: Model-based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics. J. Clin. Oncol. 27(25), 4103–4108 (2009)

    Article  Google Scholar 

  14. Houk, B.E., Bello, C.L., Poland, B., Rosen, L.S., Demetri, G.D., et al.: Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother. Pharmacol. 66(2), 357–371 (2010)

    Article  Google Scholar 

  15. Tracqui, P., Cruywagen, G.C., Woodward, D.E., Bartoo, G.T., Murray, J.D., et al.: A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif. 28(1), 17–31 (1995)

    Article  Google Scholar 

  16. Murray, J.D.: Mathematical Biology. Springer, New York (2002)

    MATH  Google Scholar 

  17. Swanson, K.R., Alvord Jr, E.C., Murray, J.D.: Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br. J. Cancer 86, 14–18 (2002)

    Article  Google Scholar 

  18. Swanson, K.R., Bridge, C., Murray, J.D., Alvord Jr, E.C.: Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216, 1–10 (2003)

    Article  Google Scholar 

  19. Rockne, R., Rockhill, J.K., Mrugala, M., Spence, A.M., Kalet, I., et al.: Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys. Med. Biol. 55, 3271–3285 (2010)

    Article  Google Scholar 

  20. Harpold, H.L., Alvord Jr, E.C., Swanson, K.R.: The evolution of mathematical modeling of glioma proliferation and invasion. J. Neuropathol. Exp. Neurol. 66, 1–9 (2007)

    Article  Google Scholar 

  21. Wang, C.H., Rockhill, J.K., Mrugala, M., Peacock, D.L., Lai, A., et al.: Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer Res. 69, 9133–9140 (2009)

    Article  Google Scholar 

  22. Mandonnet, E., Capelle, L., Duffau, H.: Extension of paralimbic low grade gliomas: toward an anatomical classification based on white matter invasion patterns. J. Neurooncol. 78, 179–185 (2006)

    Article  Google Scholar 

  23. Mandonnet, E., Delattre, J.Y., Tanguy, M.L., Swanson, K.R., Carpentier, A.F., et al.: Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann. Neurol. 53, 524–528 (2003)

    Article  Google Scholar 

  24. Mandonnet, E., Jbabdi, S., Taillandier, L., Galanaud, D., Benali, H., et al.: Preoperative estimation of residual volume for WHO grade II glioma resected with intraoperative functional mapping. Neuro. Oncol. 9, 63–69 (2007)

    Article  Google Scholar 

  25. Mandonnet, E., Pallud, J., Clatz, O., Taillandier, L., Konukoglu, E., et al.: Computational modeling of the WHO grade II glioma dynamics: principles and applications to management paradigm. Neurosurg. Rev. 31, 263–269 (2008)

    Article  Google Scholar 

  26. Swanson, K.R., Rockne, R.C., Claridge, J., Chaplain, M.A., Alvord, E.C., Jr., et al. (2011) Quantifying the role of angiogenesis in malignant progression of gliomas: In silico modeling integrates imaging and histology. Cancer Res. 71(24), 7366–7375

    Google Scholar 

  27. Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L.: Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999)

    Google Scholar 

  28. d’Onofrio, A., Gandolfi, A.: Chemotherapy of vascularised tumours: role of vessel density and the effect of vascular “pruning”. J. Theor. Biol. 264, 253–265 (2010)

    Article  MathSciNet  Google Scholar 

  29. d’Onofrio, A., Ledzewicz, U., Maurer, H., Schattler, H.: On optimal delivery of combination therapy for tumors. Math. Biosci. 222, 13–26 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. d’Onofrio, A., Gandolfi, A., Rocca, A.: The dynamics of tumour-vasculature interaction suggests low-dose, time-dense anti-angiogenic schedulings. Cell Prolif. 42, 317–329 (2009)

    Article  Google Scholar 

  31. D’Onofrio, A., Gandolfi, A.: A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy. Math. Med. Biol: J IMA 26, 63–95 (2009)

    Article  MATH  Google Scholar 

  32. d’Onofrio, A., Gandolfi, A.: Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). Math. Biosci. 191, 159–184 (2004)

    Google Scholar 

  33. Pouyssegur, J., Dayan, F., Mazure, N.M.: Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441, 437–443 (2006)

    Article  Google Scholar 

  34. Ribba, B., Watkin, E., Tod, M., Girard, P., Grenier, E., et al.: A model of vascular tumour growth in mice combining longitudinal tumour size data with histological biomarkers. Eur. J. Cancer 47, 479–490 (2011)

    Article  Google Scholar 

  35. Bonatem, P.L.: Pharmacokinetics in drug development: advances and applications, Vol. 3; Howard PLBaDR, ed. Springer, New York (2011)

    Google Scholar 

  36. Anderson, A.R., Chaplain, M.A.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998)

    Article  MATH  Google Scholar 

  37. Komarova, N.L., Mironov, V.: On the role of endothelial progenitor cells in tumor neovascularization. J. Theor. Biol. 235, 338–349 (2005)

    Article  MathSciNet  Google Scholar 

  38. Billy, F., Ribba, B., Saut, O., Morre-Trouilhet, H., Colin, T., et al.: A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J. Theor. Biol. 260, 545–562 (2009)

    Article  MathSciNet  Google Scholar 

  39. Arakelyan, L., Vainstein, V., Agur, Z.: A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth. Angiogenesis 5, 203–214 (2002)

    Article  Google Scholar 

  40. Suri, C., McClain, J., Thurston, G., McDonald, D.M., Zhou, H., et al.: Increased vascularization in mice overexpressing angiopoietin-1. Science 282, 468–471 (1998)

    Article  Google Scholar 

  41. Maisonpierre, P.C., Suri, C., Jones, P.F., Bartunkova, S., Wiegand, S.J., et al.: Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60 (1997)

    Article  Google Scholar 

  42. Arakelyan, L., Merbl, Y., Agur, Z.: Vessel maturation effects on tumour growth: validation of a computer model in implanted human ovarian carcinoma spheroids. Eur. J. Cancer 41, 159–167 (2005)

    Article  Google Scholar 

  43. Gorelik, B., Ziv, I., Shohat, R., Wick, M., Hankins, W.D., et al.: Efficacy of weekly docetaxel and bevacizumab in mesenchymal chondrosarcoma: a new theranostic method combining xenografted biopsies with a mathematical model. Cancer Res. 68, 9033–9040 (2008)

    Article  Google Scholar 

  44. Ferrara, N.: VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2, 795–803 (2002)

    Article  Google Scholar 

  45. Cebe-Suarez, S., Zehnder-Fjallman, A., Ballmer-Hofer, K.: The role of VEGF receptors in angiogenesis; complex partnerships. CMLS 63, 601–615 (2006)

    Article  Google Scholar 

  46. Olsson, A.K., Dimberg, A., Kreuger, J., Claesson-Welsh, L.: VEGF receptor signalling–in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359–371 (2006)

    Article  Google Scholar 

  47. Cross, M.J., Dixelius, J., Matsumoto, T., Claesson-Welsh, L.: VEGF-receptor signal transduction. Trends Biochem. Sci. 28, 488–494 (2003)

    Article  Google Scholar 

  48. Alarcon, T., Page, K.M.: Mathematical models of the VEGF receptor and its role in cancer therapy. J. Royal Soc. Interface/Royal Soc. 4, 283–304 (2007)

    Article  Google Scholar 

  49. Shibuya, M.: Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J. Biochem. Mol. Biol. 39, 469–478 (2006)

    Article  Google Scholar 

  50. Aldridge, B.B., Burke, J.M., Lauffenburger, D.A., Sorger, P.K.: Physicochemical modelling of cell signalling pathways. Nat. Cell Biol. 8, 1195–1203 (2006)

    Article  Google Scholar 

  51. Lamalice, L., Le Boeuf, F., Huot, J.: Endothelial cell migration during angiogenesis. Circ. Res. 100, 782–794 (2007)

    Article  Google Scholar 

  52. Gerber, H.P., Dixit, V., Ferrara, N.: Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem. 273, 13313–13316 (1998)

    Article  Google Scholar 

  53. Vivanco, I., Sawyers, C.L.: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2, 489–501 (2002)

    Article  Google Scholar 

  54. Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., Yumoto, N., et al.: A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem. J. 373, 451–463 (2003)

    Article  Google Scholar 

  55. Wang, Z., Zhang, L., Sagotsky, J., Deisboeck, T.S.: Simulating non-small cell lung cancer with a multiscale agent-based model. Theor. Biol. Med. Model. 4, 50 (2007)

    Article  Google Scholar 

  56. Scianna, M., Munaron, L., Preziosi, L.: A multiscale hybrid approach for vasculogenesis and related potential blocking therapies. Prog. Biophys. Mol. Biol. 106, 450–462 (2011)

    Article  Google Scholar 

  57. Munaron, L.: Calcium signalling and control of cell proliferation by tyrosine kinase receptors (review). Int. J. Mol. Med. 10, 671–676 (2002)

    Google Scholar 

  58. Munaron, L.: Intracellular calcium, endothelial cells and angiogenesis. Recent Pat. Anti-Cancer Drug Discovery 1, 105–119 (2006)

    Article  Google Scholar 

  59. Munaron, L., Antoniotti, S., Lovisolo, D.: Intracellular calcium signals and control of cell proliferation: how many mechanisms? J. Cell Mol. Med. 8, 161–168 (2004)

    Article  Google Scholar 

  60. Munaron, L., Fiorio Pla, A.: Calcium influx induced by activation of tyrosine kinase receptors in cultured bovine aortic endothelial cells. J. Cell. Physiol. 185, 454–463 (2000)

    Article  Google Scholar 

  61. Kimura, H., Esumi, H.: Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochim. Pol. 50, 49–59 (2003)

    Google Scholar 

  62. Fiorio Pla, A., Grange, C., Antoniotti, S., Tomatis, C., Merlino, A., et al.: Arachidonic acid-induced Ca2+ entry is involved in early steps of tumor angiogenesis. MCR 6, 535–545 (2008)

    Article  Google Scholar 

  63. Mottola, A., Antoniotti, S., Lovisolo, D., Munaron, L.: Regulation of noncapacitative calcium entry by arachidonic acid and nitric oxide in endothelial cells. FASEB J. 19, 2075–2077 (2005)

    Google Scholar 

  64. Berridge, M.J., Bootman, M.D., Roderick, H.L.: Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003)

    Article  Google Scholar 

  65. Scianna, M.: A multiscale hybrid model for pro-angiogenic calcium signals in a vascular endothelial cell. Bull. Math. Biol. (2011)

    Google Scholar 

  66. Carmeliet, P.: Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6, 389–395 (2000)

    Article  Google Scholar 

  67. Folkman, J., Haudenschild, C.: Angiogenesis in vitro. Nature 288, 551–556 (1980)

    Article  Google Scholar 

  68. Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., et al.: Modeling the early stages of vascular network assembly. EMBO J. 22, 1771–1779 (2003)

    Article  Google Scholar 

  69. Gamba, A., Ambrosi, D., Coniglio, A., de Candia, A., Di Talia, S., et al.: Percolation, morphogenesis, and burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90, 118101 (2003)

    Article  Google Scholar 

  70. Tosin, A., Ambrosi, D., Preziosi, L.: Mechanics and chemotaxis in the morphogenesis of vascular networks. Bull. Math. Biol. 68, 1819–1836 (2006)

    Article  MathSciNet  Google Scholar 

  71. Fong, G.H., Zhang, L., Bryce, D.M., Peng, J.: Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 126, 3015–3025 (1999)

    Google Scholar 

  72. Murray, J.D., Oster, G.F., Harris, A.K.: A mechanical model for mesenchymal morphogenesis. J. Math. Biol. 17, 125–129 (1983)

    Article  MATH  Google Scholar 

  73. Harris, A.K., Stopak, D., Wild, P.: Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290, 249–251 (1981)

    Article  Google Scholar 

  74. Oster, G.F., Murray, J.D., Harris, A.K.: Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morphol. 78, 83–125 (1983)

    Google Scholar 

  75. Murray, J.D., Oster, G.F.: Cell traction models for generating pattern and form in morphogenesis. J. Math. Biol. 19, 265–279 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Ribba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ribba, B., Lignet, F., Preziosi, L. (2013). Computational Models of Vascularization and Therapy in Tumor Growth. In: Reinhart-King, C. (eds) Mechanical and Chemical Signaling in Angiogenesis. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30856-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30856-7_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30855-0

  • Online ISBN: 978-3-642-30856-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics