Skip to main content

Generalised Neuber Concept of Fictitious Notch Rounding

  • Chapter
  • First Online:
Advanced Methods of Fatigue Assessment

Abstract

Sharp or pointed notches reduce the fatigue strength or life of structural components drastically, but not to the extent of the elastic notch stress increase. Microstructural support is observed for crack initiation at the notch root. The support effect may be described by averaging the maximum notch stresses in a small material volume (length \( \rho^{\ast} \)) at the notch root (radius \( {\rho} \)), which can be expressed by the maximum stress of a corresponding notch of a slightly enlarged, fictitious radius, ρ f  = ρ + \(s\rho^{\ast} \) (Neuber 1937, 1968). The support factor s is derived for elementary notches and V-notches in the three loading modes: in-plane tensile and shear loading as well as out-of-plane shear loading (modes 1, 2 and 3). Out-of-bisector crack initiation and propagation is basic for mode 2 loading. The dependency of s on the notch opening angle 2α is recognised, besides its correlation with multiaxiality conditions and failure criteria. The Neuber concept of fictitious notch rounding is thus generalised. Application-relevant issues such as reference notches, design SN curves, non-singular stress components, seam-welded cruciform joints and spot-welded lap joints are also dealt with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berto F (2012) Fictitious notch rounding concept applied to V-notches with end holes under mode 3 loading. Int J Fatigue 38:188–193

    Google Scholar 

  • Berto F, Lazzarin P (2010) Fictitious notch rounding approach of pointed V-notches under in-plane shear. Theor Appl Fract Mech 53:127–135

    Google Scholar 

  • Berto F, Zappalorto M (2011) Fictitious notch rounding concept applied to V-notches with endholes under mode 1 loading. Int J Fract 171:91–98

    Google Scholar 

  • Berto F, Zappalorto M (2012) The fictitious notch rounding approach applied to V-notches with root holes subjected to mode 1 loading, J Strain Anal, available online: doi 10.1177/0309324712437106

  • Berto F, Lazzarin P, Radaj D (2008) Fictitious notch rounding concept applied to sharp V-notches: Evaluation of the microstructural support factor. Part I: Basic stress equations. Engng Fract Mech 75:3060–3072

    Google Scholar 

  • Berto F, Lazzarin P, Radaj D (2009) Fictitious notch rounding concept applied to sharp V-notches: Evaluation of the microstructural support factor. Part II: Microstructural support analysis. Engng Fract Mech 76:1151–1175

    Google Scholar 

  • Berto F, Lazzarin P, Radaj D (2012) Fictitious notch rounding concept applied to V-notches with root holes subjected to in-plane shear loading. Engng Fract Mech 79:281–294

    Google Scholar 

  • Creager M, Paris PC (1967) Elastic field equations for blunt cracks with reference to stress corrosion cracking. Int J Fract Mech 3:247–252

    Google Scholar 

  • Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Engng 85:519–525

    Google Scholar 

  • Filippi S, Lazzarin P, Tovo R (2002) Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates. Int J Solids Struct 39:4543–4565

    Google Scholar 

  • Fricke W (2008) Guideline for the fatigue assessment by notch stress analysis for welded structures. IIW Doc XIII-2240r1-08/XV-1289r1-08

    Google Scholar 

  • Fricke W (2011) Guideline for the assessment of weld root fatigue. IIW Doc XIII-2380r1-11/XV-1383r1-11

    Google Scholar 

  • Gross R, Mendelson A (1972) Plane elastic static analysis of V-notched plates. Int J Fract Mech 8:267–427

    Google Scholar 

  • Hasebe N, Nakamura T, Iida J (1990) Notch mechanics for plane and thin plate bending problems. Engng Fract Mech 37:87–99

    Google Scholar 

  • Hobbacher A (ed) (2009) Fatigue design of welded joints and components. IIW-Doc XIII-2151-07/XV-1254-07. Welding Research Council, Bulletin 520, New York

    Google Scholar 

  • Inglis CE (1913) Stresses in a plate due to the pressure of cracks and sharp corners. Trans Inst Naval Arch 60:219–230

    Google Scholar 

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Google Scholar 

  • Kullmer G (1992) Elastic stress fields in the vicinity of a narrow notch with circular root. In: Proc Eur Conf on Reliability and Structural Integrity of Advanced Materials, ECF9, pp 905–910

    Google Scholar 

  • Lazzarin P, Filippi S (2006) A generalised stress intensity factor to be applied to rounded V-shaped notches. Int J Solids Struct 43:2461–2478

    Google Scholar 

  • Lazzarin P, Tovo R (1996) A unified approach to the evaluation of linear-elastic fields in the neighbourhood of cracks and notches. Int J Fract 78:3–19

    Google Scholar 

  • Lazzarin P, Berto F, Radaj D (2009) Fatigue-relevant stress field parameters of welded lap joints: pointed slit tip compared with keyhole notch. Fatigue Fract Engng Mater Struct 32:713–735

    Google Scholar 

  • McMahon JC, Smith GA, Lawrence FV (1990) Fatigue crack initiation and growth in tensile-shear spot weldments. ASTM STP 1058:47–77

    Google Scholar 

  • Muskhelishvili NI (1963) Some basic problems of the mathematical theory of elasticity. P. Noordhoff, Groningen

    Google Scholar 

  • Neuber H (1936) Zur Theorie der technischen Formzahl. Forschung Ing Wes 7:271–274

    Google Scholar 

  • Neuber H (11937, 21958, 31985) Kerbspannungslehre. Springer, Berlin

    Google Scholar 

  • Neuber H (1968) Über die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen. Konstruktion 20:245–251

    Google Scholar 

  • Olivier R, Köttgen VB, Seeger T (1989) Schweißverbindung I – Schwingfestigkeitsnachweise für Schweißverbindungen auf der Grundlage örtlicher Beanspruchungen. FKM-Forschungsheft 143, FKM, Frankfurt/M

    Google Scholar 

  • Olivier R, Köttgen VB, Seeger T (1994) Schweißverbindung II – Untersuchung zur Einbindung eines neuartigen Zeit- und Dauerfestigkeitsnachweises von Schweißverbindungen aus Stahl in Regelwerke. FKM-Forschungsheft 180, FKM, Frankfurt/M

    Google Scholar 

  • Pedersen MM, Mouritsen OØ, Hansen MR, Andersen JG, Wenderby J (2010) Re-analysis of fatigue data for welded joints using the notch stress approach. Int J Fatigue 32:1620–1626

    Google Scholar 

  • Peterson RE (1950) Relation between stress analysis and fatigue of metals. Proc SESA 11: 199–206

    Google Scholar 

  • Radaj D (1969) Näherungsweise Berechnung der Formzahl von Schweißnähten. Schweißen u Schneiden 21:97-103, 151–158

    Google Scholar 

  • Radaj D (1990) Design and analysis of fatigue resistant welded structures. Abington Publ, Cambridge

    Google Scholar 

  • Radaj D (1997) Fatigue notch factor of gaps in welded joints reconsidered. Engng Fract Mech 57:405–407

    Google Scholar 

  • Radaj D (2010) T-stress corrected notch stress intensity factors with application to welded lap joints. Fatigue Fract Engng Mat Struct 33:378–389

    Google Scholar 

  • Radaj D, Helmers K (1997) Bewertung von Schweißverbindungen hinsichtlich Schwingfestigkeit nach dem Kerbspannungskonzept. Konstruktion 49:21–27

    Google Scholar 

  • Radaj D, Vormwald M (32007) Ermüdungsfestigkeit – Grundlagen für Ingenieure. Springer, Berlin

    Google Scholar 

  • Radaj D, Zhang S (1990) Mehrparametrige Strukturoptimierung hinsichtlich Spannungserhöhungen. Konstruktion 42:289–292

    Google Scholar 

  • Radaj D, Zhang S (1991) Multiparameter design optimisation in respect of stress concentrations. In: Eschenauer HA et al. (eds) Engineering optimization in design processes. Springer, Berlin, pp. 181–189

    Google Scholar 

  • Radaj D, Zhang S (1992) Notch effect of welded joints subjected to antiplane shear loading. Engng Fract Mech 43:663–669

    Google Scholar 

  • Radaj D, Zhang S (1993(1)) Analogies between crack tip and rigid line tip stresses and displacements. Engng Fract Mech 44:913–919

    Google Scholar 

  • Radaj D, Zhang S (1993(2)) On the relations between notch stress and crack stress intensity in plane shear and mixed mode loading. Engng Fract Mech 44:691–704

    Google Scholar 

  • Radaj D, Lehrke HP, Greuling S (2001) Theoretical fatigue-effective notch stresses at weld spots. Fatigue Fract Engng Mater Struct 24:293–308

    Google Scholar 

  • Radaj D, Sonsino CM, Fricke W (22006) Fatigue assessment of welded joints by local approaches. Woodhead Publ, Cambridge and CRC Press, Boca Raton Fla

    Google Scholar 

  • Radaj D, Lazzarin P, Berto F (2009(1)) Fatigue assessment of welded joints under slit-parallel loading based on strain energy density or notch rounding. Int J Fatigue 31:1490–1504

    Google Scholar 

  • Radaj D, Sonsino CM, Fricke W (2009(2)) Recent developments in local concepts of fatigue assessment of welded joints. Int J Fatigue 31:2–11

    Google Scholar 

  • Radaj D, Lazzarin P, Berto F (2013) Generalised Neuber concept of fictitious notch rounding. Int J Fatigue 35 (accepted for publication)

    Google Scholar 

  • Sähn S, Göldner H (1989) Bruch- und Beurteilungskriterien in der Festigkeitslehre. VEB Fachbuchverlag, Leipzig

    Google Scholar 

  • Seeger T, Greuling S, Brüning J, Leis P, Radaj D, Sonsino CM (2005) Bewertung lokaler Berechnungskonzepte zur Ermüdungsfestigkeit von Punktschweißverbindungen. FAT-Schriftenreihe 196, Frankfurt

    Google Scholar 

  • Sih GC (1974) Strain energy density factor applied to mixed mode crack problems. Int J Fract 10:305–321

    Google Scholar 

  • Taylor D (1999) Geometrical effects in fatigue – A unifying theoretical model. Int J Fatigue 21:413–420

    Google Scholar 

  • Weiss V (1971) Eine Bruchmechanik für Kerben. Schweiz Arch Angew Wiss Techn 37:1–7

    Google Scholar 

  • Wieghardt K (1907) Über das Spalten und Zerreißen elastischer Körper. Z Math Phys 55:60–103

    Google Scholar 

  • Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners on plates in tension. J Appl Mech 19:526–528

    Google Scholar 

  • Zappalorto M, Lazzarin P (2011) In-plane and out-of-plane stress field solutions for V-notches with end holes. Int J Fract 167:168–180

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Radaj .

List of Symbols

a

Notch depth, semilength of slit or crack

a i

Initiated crack length

a, b

Semiaxes of elliptical hole

b

Net section semiwidth

C

Auxiliary parameter of SN curve

C 1, C 2

Constants in Neuber’s stress field equations

d

Weld spot diameter

F

Shear force

F a

Load amplitude

K 1, K 2, K 3

Notch stress intensity factors, mode 1, 2, 3

K 1,ρ , K 2,ρ

Generalised notch stress intensity factors, mode 1, 2

\( K_{1,\rho }^{\ast} \)

T-stress-corrected K 1,ρ

K f, K f red

Theoretical fatigue notch factor, reduced K f

\( K_{\text{f}}^{\ast} \), \( K_{\text{f}}^{\ast\ast} \)

Fatigue notch factor, reduced and modified

K f,l, K f,u

Fatigue notch factor, lower and upper slit face

K O

Stress intensity factor, transverse singular mode

K t

Theoretical (equivalent) stress concentration factor

\( \overline{K}_{\text{t}} \)

Stress concentration factor of locally averaged notch stresses

K t(ρ f)

Stress concentration factor after fictitious notch rounding

\( K_{{\sigma^{\prime}}} ,K_{\tau } \)

Stress concentration factor relating to \( \sigma^{\prime}_{\max } ,\tau_{ \max } \)

K I, K II, K III

Stress intensity factor, mode I, II, III

K Ic

Fracture toughness

K eq

Equivalent stress intensity factor

K w

Stress concentration factor of weld notch

k

Inverse slope exponent, SN curve

k I, k II, k III

Normalised stress intensity factors of modes I, II and III

l

Semilength of plate

m

Parameter in complex stress function

N, N i

Endurable number of cycles, the same up to crack initiation

n

Elastic notch support index

q, r

Stress field parameters linked to V-notch opening angle

P s

Survival probability

R

Ratio of lower to upper stress

R

Parameter in complex stress function

r

Polar coordinate, radial distance

\( {r}^{\ast} \)

Radius of circular core region

r 0

Distance between notch tip and origin of polar coordinate system

S

Endurable nominal stress

S

Sih’s strain energy density factor

\( s,\;\overline{s} \)

Microstructural support factor, plateau value

s vM, s B

Support factor, von Mises and Beltrami equivalent stress

T

T-Stress

t

Notch depth, semiaxis of ellipse, plate thickness

t w

Weld throat thickness

u, u 0

Horizontal displacement, remote value

v, v 0

Vertical displacement, remote value

w

Plate semiwidth, joint face width, specimen width

x 0

Distance between notch tip and origin of polar coordinate system

x, y, z

Cartesian coordinates

α

Notch opening semi-angle

Δ

Relative deviation

ζ

Complex coordinate

\( \theta ,\overline{\theta } \)

Polar angle, value for \( \sigma^{\prime}_{\max } \)

κ

Multiaxiality jump factor

κ 0

Free surface factor

\( \kappa_{{\sigma^{\prime}}} ,\,\kappa_{\tau } \)

Geometry factor, relating to σ’ and τ

κ vM, κ B

Jump factor, von Mises and Beltrami equivalent stress

κ 1, κ 2, κ 3

Short crack reduction factor on K f, mode I, II, III

λ 1, λ 2

Eigenvalue of stress distribution at V-notch, mode 1, 2

μ

Exponent in Filippi’s stress equations

ν

Poisson’s ratio

\( \rho \)

Real notch radius

\( \rho^{\prime} \)

Radius of curvature at point of maximum stress \( \sigma^{\prime}_{\max } \)

\( {\rho} _{}^{\ast} \)

Microstructural support length

\( \rho_{\text{f}} ,\rho_{\text{r}} \)

Fictitious and reference notch radius

\( \rho_{\text{f}}^{\ast} \)

Degree of cross-sectional weakening, \( \rho_{\text{f}} /t \)

\( \sigma_{}^{\ast} \)

Lower to upper surface stress ratio, \( \sigma_{\text{l}} /\sigma_{\text{u}} \)

\( \overline{\sigma } \)

Locally averaged notch stress

\( \sigma_{\text{a}} \)

Stress amplitude

\(\sigma _{{\rm{b}}}^{\ast} \)

Structural bending stress at level of hole radius

\( \overline{\sigma }_{{\rm{c}}} \)

Locally averaged notch stress at fracture

\( \sigma_{\text{E}} ,\sigma_{\text{kE}} \)

Endurance limit, notch stress endurance limit

\( \overline{\sigma }_{{\rm{eq}}} \)

Locally averaged equivalent stress

\( \sigma_{{{\text{eq}}\,{ \max }}} \)

Maximum equivalent stress

\( \sigma_{{{\text{i}},{\text{l}}}} ,\sigma_{{{\text{i}},{\text{u}}}} \)

Lower and upper plate inner side stresses

σ k

Notch stress

σ l, σ u

Stresses on lower and upper plate surface

σ n, σ ng

Nominal stress, value in gross cross-section

σ m

Static mean stress or membrane stress

σ max, \( \sigma '_{\max } \)

Maximum notch stress, symmetric and antimetric component

σ r , σ θ

Stresses in the polar coordinate system

σ s

Structural stress

σ th

Theoretical (equivalent) notch stress

σ vM, σ B

Equivalent stress, von Mises and Beltrami

σ U

Ultimate tensile strength

σ Y

Yield limit

\( \sigma_{0}^{\ast} \)

Structural stress parallel to slit front

σ 0

Structural basic stress parallel to slit

σ 0s

Structural stress at slit flank

σ 1, σ 2, σ 3

Principal stresses

σ θ max

Maximum tangential stress

\( \overline{\tau },\;\overline{\tau }^{\ast} \)

Locally averaged notch shear stress, in-plane and out-of-plane

τ 0

Reference shear stress

τ max, \( \tau_{\max }^{\ast} \)

Maximum notch shear stress, in-plane and out-of-plane

τ n, \( \tau_{\rm{n}}^{\ast} \)

Nominal shear stress, in-plane and out-of-plane

\( \tau_{{ {\text{ng}}}} ,\tau_{\text{ng}}^{\ast} \)

Nominal shear stress, gross cross-section, in-plane, out-of-plane

τ

Shear stress in polar coordinate system

\( \tau_{{ {\text{th}}}} ,\tau_{\text{th}}^{\ast} \)

Theoretical notch shear stress, in-plane and out-of-plane

\( \tau_{ yz} \)

Shear stress along notch bisector

\( \tau_{{z\,{ \max }}}^{\ast} \)

Maximum out-of-plane shear stress produced by \( \tau_{0}^{\ast} \)

\( \tau_{0}^{\ast} \)

Non-singular out-of-plane structural shear stress

\( \phi,\psi \)

Complex stress function

\( \tilde{\omega }_{1} \)

Auxiliary parameter in Filippi’s stress equations

B

Beltrami (criterion)

BE

Boundary element

FAT

Fatigue strength class in IIW design recommendations

FE

Finite element

IIW

International Institute of Welding

NSIF

Notch stress intensity factor

MSED

Minimum strain energy density (criterion)

MTS

Maximum tangential stress (criterion)

SCF

Stress concentration factor

SIF

Stress intensity factor

ns

Normal stress (criterion)

ps

Plane stress

pn

Plane strain

vM

von Mises (criterion)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Radaj, D. (2013). Generalised Neuber Concept of Fictitious Notch Rounding. In: Advanced Methods of Fatigue Assessment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30740-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30740-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30739-3

  • Online ISBN: 978-3-642-30740-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics