Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter aims to provide an overview of what is happening in the field of brain like robotics, what the main issues are and how they are being addressed by different authors. It starts by introducing several concepts and theories on the evolution and operation of the brain and provides a basic biological and operational framework as background to contextualize the topic. Building on these foundations, the main body of the chapter is devoted to the different contributions within the robotics community that use brain-like models as a source of inspiration for controlling real robots. These contributions are addressed from two perspectives. On one hand the main cognitive architectures developed under a more or less strict brain-like point of view are presented, offering a brief description of each architecture as well as highlighting some of their main contributions. Then the point of view is changed and a more extensive review is provided of what is being done within three areas that we consider key for the future development of autonomous brain-like robotic creatures that can live and work in human environments interacting with other robots and human beings. These are: Memory, Attention and Emotions. This review is followed by a description of some of the current projects that are being carried out or have recently finished within this field as well as of some robotic platforms that are currently being used. The chapter is heavily referenced in the hope that this extensive compilation of papers and books from the different areas that are relevant within the field are useful for the reader to really appreciate its breadth and beauty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

AI:

artificial intelligence

ANN:

artificial neural network

BBD:

brain-based device

BLR:

brain-like robotics

CDR:

cognitive developmental robotics

ERA:

epigenetic robotics architecture

FOA:

focus of attention

IAC:

intelligent adaptive Curiosity

IHDR:

incremental hierarchical discriminant regression

IM:

images line

IMA:

intelligent machine architecture

IOR:

inhibition of return

IT:

infero temporal cortex

LGN:

lateral geniculate nucleus

LTM:

long-term memory

MDB:

multi-level Darwinist brain

MDP:

Markov decision process

MT:

middle temporal cortex

PP:

posterior parietal cortex

SASE:

self-aware and self-effecting architecture

SM:

sensory memory

SOM:

self-organizing map

STM:

short-term memory

VF:

visual field

WTA:

winner-take-all

pSNN:

probabilistic spiking neural network

References

  1. H. Ritter, J.J. Steil, C. Noelker, F. Roethling, P.C. McGuire: Neural architectures for robot intelligence, Rev. Neurosci. 14(1/2), 121–143 (2003)

    Google Scholar 

  2. W. Duch: Brain-inspired conscious computing architecture, J. Mind Behav. 26(1/2), 1–21 (2005)

    Google Scholar 

  3. S. Sloman: Grand challenge 5: The Architecture of Brain and Mind: Integrating Low-Level Neuronal Brain Processes with High-Level Cognitive Behaviours in a Functioning Robot, Technical Report, COSY-TR-0607 (School of Computer Science, University of Birmingham UK 2006)

    Google Scholar 

  4. R. Brooks: I, Rodney Brooks, am a robot, IEEE Spectr. 45(6), 71–75 (2008)

    Article  Google Scholar 

  5. H. Jerison: Evolution of the Brain and Intelligence (Academic, New York 1973)

    Google Scholar 

  6. W. Hodos: Some perspectives on the evolution of intelligence and the brain. In: Animal Mind—Human Mind, ed. by D.R. Griffin (Springer, Berlin, Heidelberg 1982) pp. 33–56

    Chapter  Google Scholar 

  7. A.B. Butler, W. Hodos: Comparative Vertebrate Neuroanatomy (Wiley-Liss, New York 1996)

    Google Scholar 

  8. P.H. Harvey, J.R. Krebs: Comparing brains, Science 249, 140–146 (1990)

    Article  Google Scholar 

  9. R.G. Northcutt: Evolution of the telencephalon in nonmammals, Annu. Rev. Neurosci. 4, 301–350 (1981)

    Article  Google Scholar 

  10. R.G. Northcutt, J.H. Kaas: The emergence and evolution of mammalian neocortex, Trends Neurosci. 18, 373–379 (1995)

    Article  Google Scholar 

  11. S. Walker: Animal Thought (Routledge Kegan Paul, London 1983)

    Google Scholar 

  12. M.G. Belekhova, N.P. Veselkin: Telencephalization and transfer of function in the central nervous system of vertebrates in light of current data, J. Evol. Biochem. Physiol. 21, 357–365 (1985)

    Google Scholar 

  13. A.H. Cohen: Evolution of the vertebrate central pattern generator for locomotion. In: Neural Control of Rhythmic Movements in Vertebrates, ed. by A.H. Cohen, S. Rossignol, S. Grillner (Wiley, New York 1988) pp. 129–166

    Google Scholar 

  14. W. Wilczynski: Central neural systems subserving a homoplasous periphery, Am. Zool. 24, 755–763 (1984)

    Article  Google Scholar 

  15. T.W. Deacon: Rethinking mammalian brain evolution, Am. Zool. 30, 629–705 (1990)

    Article  Google Scholar 

  16. P.A. Getting: Emerging principles governing the operation of neural networks, Annu. Rev. Neurosci. 12, 185–204 (1989)

    Article  Google Scholar 

  17. R.M. Harris-Warrick: Modulation of neural networks for behaviour, Annu. Rev. Neurosci. 14, 39–57 (1991)

    Article  Google Scholar 

  18. T.J. Prescott, P. Redgrave, K. Gurney: Layered control architectures in robots and vertebrates, Adapt. Behav. 7, 99–127 (1999)

    Article  Google Scholar 

  19. J.H. Jackson: Evolution and dissolution of the nervous system, Br. Med. J. I, 662 (1884)

    Google Scholar 

  20. K.E. von Baer: Über Entwicklungsgeschichte der Thiere: Beobachtung und Reflexion, Vol. 2 (Königsberg, Bornträger 1828) pp. 1828–1888

    Google Scholar 

  21. H.W. Magoun: The Waking Brain (Thomas, Springfield, Illinois 1958)

    Book  Google Scholar 

  22. G.G. Berntson, S.T. Boysen, J.T. Cacioppo: Neurobehavioral organization and the cardinal principle of evaluative bivalence, Annu. New York Acad. Sci. 702, 75–102 (1993)

    Article  Google Scholar 

  23. P. Teitelbaum, T. Schallert, I.Q. Whishaw: Sources of spontaneity in motivated behaviour. In: Handbook of Behavioural Neurobiology, Vol. 6, ed. by P. Teitelbaum, E. Satinoff (Plenum, New York 1983) pp. 23–65

    Google Scholar 

  24. J.W. Rudy, S. Stadler-Morris, P. Albert: Ontogeny of spatial navigation behaviours in the rat: Dissociation of proximal – and distal – cue-based behaviours, Behav. Neurosci. 101, 62–73 (1987)

    Article  Google Scholar 

  25. C.R. Gallistel: The Organization of Action: A New Synthesis (Lawrence Erlbaum, Hillsdale, NJ 1980)

    Google Scholar 

  26. R. Brooks: A robust layered control system for a mobile robot, IEEE J. Robot. Autom. 2(1), 14–23 (1986)

    Article  Google Scholar 

  27. J. Kien: From command fibers to command systems to consensus are these labels really useful anymore, Behav. Brain Sci. 9, 732–733 (1986)

    Article  Google Scholar 

  28. A.H. Cohen: The role of heterarchical control in the evolution of central pattern generators, Brain, Behav. Evol. 40, 112–124 (1992)

    Article  Google Scholar 

  29. W. Penfield: The Mystery of the Mind (Princeton Univ., Princeton, NJ 1975)

    Google Scholar 

  30. R. Thompson: Centrencephalic theory, the general learning system, and subcortical dementia, Annu. New York Acad. Sci. 702, 197–223 (1993)

    Article  Google Scholar 

  31. M.P. Young: Special issue on brain-structure-function relationships, advances from neuroinformatics, Philos. Trans. R. Soc. Lond. B 355, 3–6 (2000)

    Article  Google Scholar 

  32. A. Meyering, H. Ritter: Learning to recognize 3d-hand postures from perspective pixel images, Artif. Neural Netw. 2, 821–824 (1992)

    Google Scholar 

  33. M.P. Young, J.W. Scannel: Analysis and modelling of the organization of the mammalian cerebral cortex. In: Experimental and Theoretical Advances in Biological Pattern Formation, Vol. 259 of NATO ASI Series A, ed. by H.G. Othmer, P.K. Maini, J.D. Murray (Plenum, New York 1993) pp. 369–384

    Chapter  Google Scholar 

  34. W. Duch: Platonic model of mind as an approximation to neurodynamics. In: Brain-Like Computing and Intelligent Information Systems, ed. by S. Amari, N. Kasabov (Springer, Singapore 1997) pp. 491–512

    Google Scholar 

  35. W.J. Freeman: Neurodynamics, An Exploration in Mesoscopic Brain Dynamics (Springer, London 2000)

    Book  MATH  Google Scholar 

  36. M. Spivey, M. Grosjean, G. Knoblich: Continuous attraction toward phonological competitors, Proc. Natl. Acad. Sci. USA 102(29), 10393–10398 (2005)

    Article  Google Scholar 

  37. T.D. Frank, A. Daffertshofer, C.E. Peper, P.J. Beek, H. Haken: Towards a comprehensive theory of brain activity: Coupled oscillator systems under external forces, Physica D 144, 62–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. N. Kasabov, L. Benuskova, S. Wysoski: Biologically plausible computational neurogenetic models: Modeling the interaction between genes/proteins, neurons and neural networks, J. Comput. Theoret. Nanosci. 2(4), 569–575 (2005)

    Article  Google Scholar 

  39. N. Kasabov, R. Schliebs, H. Kojima: Probabilistic computational neurogenetic modelling: From cognitive systems to Alzheimerʼs disease, IEEE Trans. Auton. Ment. Dev. 3(4), 300–311 (2011)

    Article  Google Scholar 

  40. Y. Meng, Y. Jin, J. Yin, M. Conforth: Human activity detection using spiking neural networks regulated by a gene regulatory network, Proc. Int. Joint Conf. Neural Netw. (IJCNN) (2010) pp. 2232–2237

    Google Scholar 

  41. A.F. Morse, J. de Greeff, T. Belpeame, A. Cangelosi: Epigenetic robotic architecture (ERA), IEEE Trans. Auton. Ment. Develop. 2(4), 325–339 (2010)

    Article  Google Scholar 

  42. W. Morris (Ed.): The American Heritage Dictionary of the English Language, 4th edn. (Houghton Mifflin Harcourt, Boston 2000)

    Google Scholar 

  43. E.C. de Castro, R.R. Gudwin: An episodic memory for a simulated autonomous robot, Proc. Robot. 2010 (2010) pp. 1–7

    Google Scholar 

  44. M.D. Byrne: Cognitive architecture. In: The Human-Computer Interaction Handbook, ed. by J.A. Jacko, A. Sears (L. Erlbaum Associates Inc., Hillsdale, NJ, USA 2002) pp. 97–117

    Google Scholar 

  45. B. van Heuveln: What is Cognitive Robotics? (Cognitive Science Department, Rensselaer Polytechnic Institute, Troy 2010), available online at http://www.cogsci.rpi.edu/public_html/heuveb/Teaching/CognitiveRobotics/Cognitive%20Robotics.html

    Google Scholar 

  46. J.E. Laird, A. Newell, P.S. Rosenbloom: SOAR: An architecture for general intelligence, Artif. Intell. 33(1), 1–64 (1987)

    Article  MathSciNet  Google Scholar 

  47. A. Newell: Unified Theories of Cognition (Harvard University, Cambridge 1994)

    Google Scholar 

  48. J.E. Laird: Toward cognitive robotics, SPIE Def. Sens. Conf. (2009)

    Google Scholar 

  49. J.E. Laird: Extending the soar cognitive architecture, Proc. 2008 Conf. Artif. Gen. Intell., ed. by P. Wang, B. Goertzel, S. Franklin (IOS, Amsterdam 2008) pp. 224–235

    Google Scholar 

  50. J.R. Anderson, C. Lebiere: The Atomic Components of Thought (Lawrence Erlbaum Associates, Mahwah, NJ 1998)

    Google Scholar 

  51. J.R. Anderson, D. Bothell, M.D. Byrne, S. Douglass, C. Lebiere, Y. Qin: An integrated theory of the mind, Psychol. Rev. 111(4), 1036–1060 (2004)

    Article  Google Scholar 

  52. C. Lebiere, J.R. Anderson: A connectionist implementation of the ACT-R production system, 15th Annu. Conf. Cogn. Sci. Soc. (1993) pp. 635–640

    Google Scholar 

  53. B.J. Best, C. Lebiere: Cognitive agents interacting in real and virtual worlds. In: Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation, ed. by R. Sun (Cambridge Univ. Press, Cambridge 2006) pp. 186–218

    Google Scholar 

  54. D. Friedlander, S. Franklin: LIDA and a Theory of Mind, 1st Conf. Artif. Gen. Intell. (AGI) (Amsterdam 2008) pp. 137–148

    Google Scholar 

  55. S. Franklin: Cognitive robots: Perceptual associative memory and learning, IEEE Int. Workshop on Robot and Human Interact. Commun. (ROMAN) (2005) pp. 427–433

    Google Scholar 

  56. S. Franklin, M. Ferkin: Using broad cognitive models to apply computational intelligence to animal cognition. In: Applications of Computational Intelligence in Biology, Vol. 122, ed. by T. Smolinski, M. Milanova, A.-E. Hassanien (Springer Berlin, Heidelberg 2008) pp. 363–394

    Chapter  Google Scholar 

  57. D.L. De Luise, G. Barrera, S. Franklin: Robot localization using consciousness, J. Pattern Recognit. Res. 6, 1–23 (2011)

    Article  Google Scholar 

  58. J. Bach: The micropsi agent architecture, 5th Int. Conf. Cognit. Model. (ICCM) (Bamberg, Germany 2003) pp. 15–20

    Google Scholar 

  59. J. Bach: Principles of Synthetic Intelligence PSI: An Architecture of Motivated Cognition, 1st edn. (Oxford Univ., Inc., New York, USA 2009)

    Book  Google Scholar 

  60. J.S. Albus, A.M. Meystel: Engineering of Mind: An Introduction to the Science of Intelligent Systems (Wiley, New York 2001)

    Google Scholar 

  61. J.S. Albus: Reverse engineering the brain. In: AAAI Fall Symp. Biol. Inspired Cogn. Archit. (Arlington, Virginia, USA 2008) pp. 5–14

    Google Scholar 

  62. B. Goertzel: The Hidden Pattern: A Patternist Philosophy of Mind (Brown Walker, FL 2006)

    Google Scholar 

  63. B. Goertzel, H. de Garis: XIA-MAN: An extensible, integrative architecture for intelligent humanoid robotics, AAAI Fall Symp. Biol. Inspired Cogn. Archit. (2008) pp. 65–74

    Google Scholar 

  64. J. Weng: On developmental mental architectures, Neurocomputing 70(13–15), 2303–2323 (2007)

    Article  Google Scholar 

  65. M. Asada, K.F. MacDorman, H. Ishiguro, Y. Kuniyoshi: Cognitive developmental robotics as a new paradigm for the design of humanoid robots, Robot. Auton. Syst. 37, 185–193 (2001)

    Article  MATH  Google Scholar 

  66. D. Vernon, G. Metta, G. Sandini: The iCub cognitive architecture: Interactive development in a humanoid robot, Proc. ICDL 2007 (2007) pp. 122–127

    Google Scholar 

  67. J.L. Krichmar, G.N. Reeke: The Darwin brain-based automata: Synthetic neural models and real-world devices. In: Modelling in the Neurosciences: From Biological Systems to Neuromimetic Robotics, ed. by G.N. Reeke, R.R. Poznanski, K.A. Lindsay, J.R. Rosenberg, O. Sporns (Taylor and Francis, Boca Raton 2005) pp. 613–638

    Google Scholar 

  68. J.L. Krichmar, G.M. Edelman: Principles underlying the construction of brain-based devices, Proc. AISB ʼ06, Vol. 2 (2006) pp. 37–42

    Google Scholar 

  69. J. Weng: Developmental robotics: Theory and experiments, Int. J. Humanoid Robot. 1(2), 199–236 (2004)

    Article  Google Scholar 

  70. M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa, M. Ogino, C. Yoshida: Cognitive Developmental Robotics: A Survey, IEEE Trans. Auton. Ment. Dev. 1(1), 12–34 (2009)

    Article  Google Scholar 

  71. Y. Zhang, J. Weng: Grounded auditory development by a developmental robot, Proc. INNS-IEEE Int. Jt. Conf. Neural Netw. (2001) pp. 1059–1064

    Google Scholar 

  72. S. Zeng, J. Weng: Online-learning and attention-based approach to obstacle avoidance using a range finder, J. Intell. Robotic Syst. 50(3), 219–239 (2007)

    Article  Google Scholar 

  73. G. Metta, G. Sandini, D. Vernon, L. Natale, F. Nori: The iCub humanoid robot: An open platform for research in embodied cognition, PerMIS: Perform. Metr. Intell. Syst. Workshop (2008)

    Google Scholar 

  74. O. Ly, P.-Y. Oudeyer: Acroban the humanoid: Playful and compliant physical child-robot interaction, ACM SIGGRAPHʼ2010 Emerg. Technol. (2010)

    Google Scholar 

  75. K. Kawamura, W. Dodd, P. Ratanaswasd, R.A. Gutierrez: Development of a robot with a sense of self, IEEE Int. Symp. Comput. Intell. Robot. Autom. (CIRA) (2005) pp. 211–217

    Google Scholar 

  76. K. Kawamura, S.M. Gordon, P. Ratanaswasd, E. Erdemir, J.F. Hall: Implementation of cognitive control for a humanoid robot, Int. J. Humanoid Robot. 5(4), 547–586 (2008)

    Article  Google Scholar 

  77. P. Ratanaswasd, W. Dodd, K. Kawamura, D.C. Noelle: Modular behavior control for a cognitive robot, 12th Int. Conf. Adv. Robot. (ICAR) (2005) pp. 713–718

    Google Scholar 

  78. P. Ratanaswasd, C. Garber, A. Lauf: Situation-based stimuli response in a humanoid robot, 5th Int. Conf. Dev. Learn. (2006)

    Google Scholar 

  79. B. Ulutas, E. Erdemir, K. Kawamura: Application of a hybrid controller with non-contact impedance to a humanoid robot, Int. Workshop Var. Struct. Syst. (VSS) (2008) pp. 378–383

    Google Scholar 

  80. M.P. Shanahan: A cognitive architecture that combines internal simulation with a global workspace, Conscious. Cogn. 15, 433–449 (2006)

    Article  Google Scholar 

  81. B.J. Baars: A Cognitive Theory of Consciousness (Cambridge Univ. Press, Cambridge 1998)

    Google Scholar 

  82. B.J. Baars: In the Theater of Consciousness (Oxford Univ., New York 1997)

    Book  Google Scholar 

  83. B.J. Baars: The conscious access hypothesis: Origins and recent evidence, Trends Cogn. Sci. 6(1), 47–52 (2002)

    Article  Google Scholar 

  84. B.J. Baars, S. Franklin: How conscious experience and working memory interact, Trends Cogn. Sci. 7, 166–172 (2003)

    Article  Google Scholar 

  85. M.P. Shanahan: Consciousness, emotion, and imagination: A brain-inspired architecture for cognitive robotics, Proc. AISB 2005 Symp. Next Gener. Approaches Mach. Conscious (2005) pp. 26–35

    Google Scholar 

  86. M.P. Shanahan, B.J. Baars: Global workspace theory emerges unscathed, Behav. Brain Sci. 30(5/6), 524–525 (2007)

    Google Scholar 

  87. J.L. Krichmar, G.M. Edelman: Brain-based devices: Intelligent systems based on principles of the nervous system, IEEE/RSJ Int. Conf. Intell. Robotic Syst. (IROS), Vol. 1 (2003) pp. 940–945

    Google Scholar 

  88. G.M. Edelman: Learning in and from brain-based devices, Science 318(5853), 1103–1105 (2007)

    Article  Google Scholar 

  89. J.G. Fleischer, B. Szatmáry, D.B. Hutson, D.A. Moore, J.A. Snook, G.M. Edelman, J.L. Krichmar: A neurally controlled robot competes and cooperates with humans in Segway soccer, IEEE Int. Conf. Robot. Autom. (ICRA) (2006) pp. 3673–3678

    Google Scholar 

  90. G.N. Reeke Jr., O. Sporns, G.M. Edelman: Synthetic neural modeling: The `Darwinʼ series of recognition automata, Proc. IEEE 78(9), 1498–1530 (1990)

    Article  Google Scholar 

  91. J. Weng, C. Evans, W.S. Hwang, Y.B. Lee: The developmental approach to artificial intelligence: Concepts, developmental algorithms and experimental results, Proc. NSF Des. Manuf. Grantees Conf. (1999)

    Google Scholar 

  92. J. Weng, W. Hwang: Online image classification using IHDR, Int. J. Doc. Anal. Recognit. 5(2/3), 118–125 (2002)

    Google Scholar 

  93. J. Weng, M. Luciw: Online learning for attention, recognition, and tracking by a single developmental framework, Proc. 23rd IEEE Conf. Comput. Vis. Pattern Recognit. 4th IEEE Online Learn. Comput. Vis. (2010) pp. 1–8

    Google Scholar 

  94. G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. von Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, L. Montesano: The iCub humanoid robot: An open-systems platform for research in cognitive development, Neural Netw. 23(8–9), 1125–1134 (2010)

    Article  Google Scholar 

  95. D. Vernon, C. von Hofsten, L. Fadiga: A Roadmap for Cognitive Development in Humanoid Robots. In: Cognitive Systems Monographs, Vol. 11, ed. by R. Dillmann, Y. Nakamura, S. Schaal, D. Vernon (Springer, Berlin, Heidelberg 2010)

    Google Scholar 

  96. D. Vernon: Enaction as a conceptual framework for developmental cognitive robotics, Paladyn J. Behav. Robot. 1(2), 89–98 (2010)

    Google Scholar 

  97. D. Vernon, G. Metta, G. Sandini: A survey of artificial cognitive systems: Implications for the autonomous development of mental capabilities in computational agents, IEEE Trans. Evol. Comput. 11(2), 151–180 (2007)

    Article  Google Scholar 

  98. R.J. Duro, J. Santos, F. Bellas, A. Lamas: On line Darwinist cognitive mechanism for an artificial organism, Proc. Suppl. Book SAB2000 (2000) pp. 215–224

    Google Scholar 

  99. F. Bellas, R.J. Duro, A. Faiña, D. Souto: Multilevel Darwinist brain (MDB): Artificial evolution in a cognitive architecture for real robots, IEEE Trans. Auton. Ment. Dev. 2(4), 340–354 (2010)

    Article  Google Scholar 

  100. B. Santos-Diez, F. Bellas, A. Faiña, R.J. Duro: Lifelong learning by evolution in robotics: Bridging the gap from theory to reality, Proc. Int. Symp. Evol. Intell. Syst. (2010) pp. 48–53

    Google Scholar 

  101. R.J. Duro, F. Bellas, J.A. Becerra: Evolutionary architecture for lifelong learning and real-time operation in autonomous robots. In: Evolving Intelligent Systems: Methodology and Applications, ed. by P. Angelov, D.P. Filev, N. Kasabov (Wiley, New Jersey 2010)

    Google Scholar 

  102. F. Bellas, J.A. Becerra, R.J. Duro: Internal and external memory in neuroevolution for learning in non-stationary problems, Lect. Notes Artif. Intell. 5040, 62–72 (2008)

    Google Scholar 

  103. F. Bellas, R.J. Duro: Multilevel Darwinist brain in robots, initial implementation, Proc. 1st Int. Conf. Inform. Control, Autom. Robot. (2004) pp. 25–32

    Google Scholar 

  104. F. Bellas, J.A. Becerra, R.J. Duro: Induced behaviour in a real agent using the multilevel Darwinist brain, Lect. Notes Comput. Sci. 3562, 425–434 (2005)

    Article  Google Scholar 

  105. A.F. Morse, J. De Greeff, T. Belpaeme, A. Cangelosi: Epigenetic robotics architecture (ERA), IEEE Trans. Auton. Ment. Dev. 2(4), 325–339 (2010)

    Article  Google Scholar 

  106. P. Gardenfors: Conceptual spaces as a framework for knowledge representation, Mind and Matter 2(2), 9–27 (2004)

    Google Scholar 

  107. J. Parthemore, A.F. Morse: Reclaiming symbols: An enactive account of the inter-dependence of concepts and experience, Pragmat. Cogn. 18(2), 273–312 (2010)

    Article  Google Scholar 

  108. A.F. Morse, T. Belpaeme, A. Cangelosi, L.B. Smith: Thinking with your body: Modelling spatial biases in categorization using a real humanoid robot, 32nd Annu. Conf. Cogn. Sci. Soc. (2010)

    Google Scholar 

  109. A.F. Morse, R. Lowe, T. Ziemke: Manipulating space: Modelling the role of transient dynamics in inattentional blindness, Connect. Sci. 21(4), 275–295 (2009)

    Article  Google Scholar 

  110. A.F. Morse, M. Aktius: Dynamic liquid association: Complex learning without implausible guidance, Neural Netw. 22(1), 875–889 (2009)

    Article  Google Scholar 

  111. A.F. Morse, T. Ziemke: Action, detection, and perception: A computational model of the relation between movement and orientation selectivity in the cerebral cortex, Proc. CogSci. 2009 – 31st Annu. Conf. Cogn. Sci. Soc. (2009)

    Google Scholar 

  112. A. Cangelosi, T. Belpaeme, G. Sandini, G. Metta, L. Fadiga, G. Sagerer, K. Rohlfing, B. Wrede, S. Nolfi, D. Parisi, C. Nehaniv, K. Dautenhahn, J. Saunders, K. Fischer, J. Tani, D. Roy: The ITALK project: Integration and transfer of action and language knowledge, Proc. 3rd ACM/IEEE Int. Conf. Hum. Robot Interact. (HRI 2008) (2008)

    Google Scholar 

  113. A. Baranes, P.-Y. Oudeyer: R-IAC: Robust intrinsically motivated exploration and active learning, IEEE Trans. Auton. Mental Dev. 1(3), 155–169 (2009)

    Article  Google Scholar 

  114. A. Baranes, P.-Y. Oudeyer: Intrinsically motivated goal exploration for active motor learning in robots: A Case Study, Proc. IEEE/RSJ Int. Conf. Intell. Robotic Syst. (2010)

    Google Scholar 

  115. P.-Y. Oudeyer, F. Kaplan, V. Hafner: Intrinsic motivation systems for autonomous mental development, IEEE Trans. Evol. Comput. 11(2), 265–286 (2007)

    Article  Google Scholar 

  116. F. Kaplan, P.-Y. Oudeyer, B. Bergen: Computational models in the debate over language learnability, Infant Child Dev. 17(1), 55–80 (2008)

    Article  Google Scholar 

  117. J.M. Fuster: The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe, 2nd edn. (Lippincott, Williams Wilkins 1997)

    Google Scholar 

  118. B.R. Postle: Working memory as an emergent property of the mind and brain, Neuroscience 139(1), 23–38 (2006)

    Article  Google Scholar 

  119. S. Jockel, M. Weser, D. Westhoff, J. Zhang: Towards an episodic memory for cognitive robots, Proc. 6th Int. Cognit. Rob. Workshop 18th Eur. Conf. Artif. Intell. (ECAI) (IOS, July 21–22 2008) pp. 68–74

    Google Scholar 

  120. T. Deutsch, A. Gruber, R. Lang, R. Velik: Episodic memory for autonomous agents, Conf. Hum. Syst. Interact., ed. by Łukasz Piatek (Rzeszow University of Information, Technology and Management, Kraków 2008) pp. 621–626

    Google Scholar 

  121. P. Kronberg: Evolving short-term memory for behavior-based robots, Master Thesis (Chalmers Univ. Technol., Göteborg 2003)

    Google Scholar 

  122. S.A. Christianson (Ed.): Handbook of Emotion and Memory: Current Research and Theory (Lawrence Erlbaum Associates, New Jersey 1992)

    Google Scholar 

  123. E.R. Kandel, J.H. Schwartz, T.M. Jessell: Principles of Neural Science, 4th edn. (McGraw-Hill, New York 2000)

    Google Scholar 

  124. R.A. Brooks: Elephants Donʼt Play Chess, Designing Autonomous Agents: Theory and Practice from Biology to Engineering and Back (MIT, Cambridge USA 1990)

    Google Scholar 

  125. Roomba vacuum cleaner website: http://www.irobot.com (2011)

  126. J. Phillips, D. Noelle: A biologically inspired working memory framework for robots, Proc. IEEE Intl. Workshop Robot. Hum. Interact. Commun. (RO-MAN) (2005)

    Google Scholar 

  127. J.R. Anderson, M. Matessa: The rational analysis of categorization and the ACT-R architecture. In: Rational Models of Cognition, ed. by M. Oaksford, N. Chater (Oxford Univ. Press, Oxford 1998) pp. 197–217

    Google Scholar 

  128. B. Goertzel, H. de Garis: XIA-MAN: An extensible, integrative architecture for intelligent humanoid robotics, Proc. BICA-08 (2008) pp. 86–90

    Google Scholar 

  129. J.M. Fuster: Network memory, Trends Neurosci. 20(10), 451–459 (1997)

    Article  Google Scholar 

  130. I. Rosenfield: The Strange, Familiar, and Forgotten. An Anatomy of Consciousness (Vintage Books, New York 1993)

    Google Scholar 

  131. K. Dautenhahn: Embodiment and interaction in socially intelligent life-like agents. In: Computation for Metaphors, Analogy, and Agents, Lecture Notes In Computer Science, Vol. 1562, ed. by C.L. Nehaniv (Springer, Berlin, Heidelberg 1999) pp. 102–141

    Chapter  Google Scholar 

  132. R. Atkinson, R. Shiffrin: Human memory: A proposed system and its control processes. In: The Psychology of Learning and Motivation, Vol. 2, ed. by K.W. Spence, J.T. Spence (Academic Press, New York 1968) pp. 89–195

    Google Scholar 

  133. P.A. Vargas, W.C. Ho, M. Lim, S. Enz, R. Aylett: To forget or not to forget: Towards a roboethical memory control, Proc. AISB-2009 (2009) pp. 18–23

    Google Scholar 

  134. J.M. Levenson: Epigenetic mechanisms: A common theme in vertebrate and invertebrate memory formation, Cell. Mol. Life Sci. 63, 1009–1016 (2006)

    Article  Google Scholar 

  135. F. Dayoub, T. Duckett, G. Cielniak: Toward an object-based semantic memory for long-term operation of mobile service robots. In: Workshop on Semantic Mapping and Autonomous Knowledge Acquisition (IROS, Taipei, Taiwan 2010)

    Google Scholar 

  136. C. Gurrin, H. Lee, J. Hayes: iForgot: A model of forgetting in robotic memories, Proc. HRI 2010 – 5th ACM/IEEE Int. Conf. Hum.-Robot. Interact. (2010) pp. 93–94

    Google Scholar 

  137. A.D. Baddeley, G. Hitch: Working memory. In: The Psychology of Learning and Motivation: Advances in Research and Theory, Vol. 8, ed. by G.H. Bower (Academic Press, New York 1974) pp. 47–89

    Google Scholar 

  138. M. Solms, O. Turnbull: The Brain and the Inner World (Karnac/Other, Cathy Miller Foreign Rights Agency, London, England 2002)

    Google Scholar 

  139. N. Cowan: What are the differences between long-term, short-term, and working memory? Prog. Brain Res. 169, 323–338 (2008)

    Article  Google Scholar 

  140. S. Gordon, J. Hall: System integration with working memory management for robotic behavior learning, Proc. 5th Int. Conf. Dev. Learn. (ICDLʼ06) (2006)

    Google Scholar 

  141. D.M. Wilkes, M. Tugcu, J.E. Hunter, D. Noelle: Working memory and perception, Proc. IEEE Int. Workshop Robot. Hum. Interact. Commun. (2005) pp. 686–691

    Google Scholar 

  142. E. Tulving: Episodic and Semantic Memory, in Organization of Memory (Academic, NewYork 1972) pp. 89–101

    Google Scholar 

  143. S. Halpern: Canʼt Remember what I Forgot: The Good News From the Front Lines of Memory Research (Harmony Books, New York 2008)

    Google Scholar 

  144. L.R. Squire, B. Knowlton, G. Musen: The structure and organization of memory, Annu. Rev. Psychol. 44, 453–495 (1993)

    Article  Google Scholar 

  145. A. Baddeley: Human Memory: Theory and Practice (Psychology, UK 1997)

    Google Scholar 

  146. W. Dodd, R. Gutierrez: The role of episodic memory and emotion in a cognitive robot, Proc. 14th Annu. IEEE Int. Workshop Robot. Hum. Interact. Commun. (RO-MAN) (2005) pp. 692–697

    Google Scholar 

  147. P. Baxter, W. Browne: Memory as the substrate of cognition: A developmental cognitive robotics perspective, Proc. 10th Int. Conf. Epigenet. Robot. (2010) pp. 19–26

    Google Scholar 

  148. J.M. Fuster: The Cognit: A network model of cortical representation, Int. J. Psychophysiol. 60, 125–132 (2006)

    Article  Google Scholar 

  149. M.M. Mesulam: Attention, confusional states, and neglect. In: Principles of Behavioral and Cognitive Neurology, ed. by M.M. Mesulam (Oxford Univ. Press, New York 2000) pp. 174–256

    Google Scholar 

  150. J.L. Tsotsos: A Computational Perspective on Visual Attention (MIT Press, Cambridge 2011)

    Book  Google Scholar 

  151. L. Paletta, J.L. Tsotsos: Attention in cognitive systems, 5th Int. Workshop Atten. Cognit. Syst., WAPCV 2008 (Springer, Berlin, Heidelberg 2009)

    Google Scholar 

  152. M. Begum, F. Karray: Visual attention for robotic cognition: A survey, IEEE Trans. Auton. Mental Dev. 3(1), 1–14 (2010)

    Google Scholar 

  153. S. Frintrop, E. Rome, H.I. Christensen: Computational visual attention systems and their cognitive foundations: A survey, ACM Trans. Appl. Percept. 7(1), 6 (2010)

    Article  Google Scholar 

  154. S.N. Wrigley, G.J. Brown: A computational model of auditory selective attention, IEEE Trans. Neural Netw. 15(5), 1151–1163 (2004)

    Article  Google Scholar 

  155. S. Lang, M. Kleinehagenbrock, S. Hohenner, J. Fritsch, G.A. Fink, G. Sagerer: Providing the basis for human–robot-interaction: A multi-modal attention system for a mobile robot, Proc. Int. Conf. Multimodal Interfaces (2003)

    Google Scholar 

  156. S.W. Ban, M. Lee: Biologically motivated visual selective attention for face localization, Proc. 2nd Int. Workshop Atten. Perform. Comput. Vis. (WAPCV 2004), Vol. 3368, ed. by N.L. Paletta, J.K. Tsotsos, E. Rome, G.W. Humphreys (Springer, Berlin, Heidelberg 2004) pp. 196–205

    Google Scholar 

  157. J.L. Crespo, A. Faiña, R.J. Duro: An adaptive detection/attention mechanism for real time robot operation, Neurocomputing 72, 850–860 (2009)

    Article  Google Scholar 

  158. R. Arrabales, A. Ledezma, A. Sanchis: A cognitive approach to multimodal attention, J. Phys. Agents 3(1), 53–64 (2009)

    Google Scholar 

  159. A. Haasch, N. Hofemann, J. Fritsch, G. Sagerer: A multi-modal object attention system for a mobile robot, IROS 2005 Proc. (2005) pp. 2712–2717

    Google Scholar 

  160. L.M. Garcia, A.A.F. Oliveira, R.A. Grupen, D.S. Wheeler, A.H. Fagg: Tracing patterns and attention: Humanoid robot cognition, IEEE Intell. Syst. Appl. 15(4), 70–77 (2000)

    Article  Google Scholar 

  161. P.J. Burt: Attention mechanisms for vision in a dynamic world, 9th Int. Conf. Pattern Recognit., Vol. 2 (1988) pp. 977–987

    Google Scholar 

  162. B.J. Baars: A Cognitive Theory of Consciousness (Cambridge Univ. Press, New York 1993)

    MATH  Google Scholar 

  163. D.C. Dennett: Consciousness Explained (Little, Brown and Co, Boston 1991)

    Google Scholar 

  164. C. Koch, S. Ullman: Shifts in selective visual attention: Toward the underlying neural circuitry, Hum. Neurobiol. 4, 219–227 (1985)

    Google Scholar 

  165. L. Itti, C. Koch, E. Niebur: A model of saliency-based visual attention for rapid scene analysis, IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  166. S. Frintrop: VOCUS: A visual attention system for object detection and goal-directed search, Lecture Notes in Artificial Intelligence (LNAI), Vol. 3899 (Springer, Berlin, Heidelberg 2006)

    Book  Google Scholar 

  167. V. Navalpakkam, L. Itti: Top-down attention selection is fine- grained, J. Vis. 6, 1180–1193 (2006)

    Google Scholar 

  168. M.R. Heinen, P.M. Engel: Visual selective attention model for robot vision, Latin Am. Robot. Symp. Intell. Robot. Meet. (2008) pp. 29–34

    Google Scholar 

  169. J.M. Canas, M.M. Casa, T. Gonzalez: An overt visual attention mechanism based on saliency dynamics, Int. J. Intell. Comput. Med. Sci. Image Process 2, 93–100 (2008)

    Google Scholar 

  170. J. Ruesch, M. Lopes, A. Bernardino, J. Hornstein, J.S. Victor, R. Pfeifer: Multi modal saliency-based bottom-up attention: A framework for the humanoid robot icub, Proc. IEEE Int. Conf. Robot. Autom. (2008) pp. 962–967

    Google Scholar 

  171. L. Zhang: Vision attention learning model and its application in robot, Proc. 7th Asian Control Conf. (2009) pp. 970–975

    Google Scholar 

  172. T. Xu, K. Kühnlenz, M. Buss: Autonomous behavior-based switched top-down and bottom-up visual attention for mobile robots, IEEE Trans. Robot. 26(5), 947–954 (2010)

    Article  Google Scholar 

  173. Y. Sun, R. Fisher: Object-based visual attention for computer vision, Artif. Intell. 146, 77–123 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  174. T. Wu, J. Gao, Q. Zhao: A computational model of object-based selective visual attention mechanism in visual information acquisition, Proc. IEEE Conf. Inform. Acquis. (2004) pp. 405–409

    Google Scholar 

  175. Y. Yu, G.K. Mann, R.G. Gosine: A novel robotic visual perception method using object-based attention, Proc. 2009 IEEE Int. Conf. Robot. Biomim. (2009)

    Google Scholar 

  176. M. Begum, G. Mann, R. Gosine, F. Karray: Object and space-based visual attention: An integrated framework for autonomous robots, Proc. IEEE/RSJ Int. Conf. Intell. Robotic Syst., Nice (2008) pp. 301–306

    Google Scholar 

  177. L.J. Lanyon, S.L. Denham: A model of active visual search with object-based attention guiding scan paths, Neural Netw. 17, 873–897 (2004)

    Article  MATH  Google Scholar 

  178. B. Mertsching, M. Bollmann, R. Hoischen, S. Schmalz: The neural active vision system NAVIS. In: Handbook of Computer Vision and Applications, Vol. 3, ed. by B. Jähne, H. Haussecke, P. Geissler (Academic, San Diego 1999) pp. 543–568

    Google Scholar 

  179. M. Bollmann, R. Hoischen, M. Jesikiewicz, C. Justkowski, B. Mertsching: Playing domino: A case study for an active vision system. In: Computer Vision Systems, ed. by H. Christensen (Springer, New York 1999) pp. 392–411

    Chapter  Google Scholar 

  180. S. Vijayakumar, J. Conradt, T. Shibata, S. Schaal: Overt visual attention for a humanoid robot, Proc. Int. Conf. Intell. Robot. Auton. Syst. (IROS 2001) (2001) pp. 2332–2337

    Google Scholar 

  181. A. Dankers, N. Barnes, A. Zelinsky: A reactive vision system: Active-dynamic saliency, Proc. 5th Int. Conf. Comput. Vis. Syst. (ICVS 2007) (2007)

    Google Scholar 

  182. S. Jeong, M. Lee, H. Arie, J. Tani: Developmental learning of integrating visual attention shifts and bimanual object grasping and manipulation tasks, Proc. IEEE 9th Int. Conf. Dev. Learn. (ICDL2010) (2010) pp. 165–170

    Google Scholar 

  183. J.J. Clark, N.J. Ferrier: Modal control of an attentive vision system, Proc. 2nd Int. Conf. Comput. Vis. (Tampa, Florida, US 1988)

    Google Scholar 

  184. C. Breazeal: A context-dependent attention system for a social robot, Proc. Int. Jt. Conf. Artif. Intell. (IJCAI 99) (Stockholm 1999) pp. 1146–1151

    Google Scholar 

  185. Y. Nagai: From bottom-up visual attention to robot action learning, IEEE 8th Int. Conf. Dev. Learn. (2009)

    Google Scholar 

  186. B.R. Cox, J.L. Krichmar: Neuromodulation as a robot controller: A brain inspired design strategy for controlling autonomous robots, IEEE Rob. Autom. Mag. 16(3), 72–80 (2009)

    Article  Google Scholar 

  187. J. Garforth, S.L. McHale, A. Meehan: Executive attention, task selection and attention-based learning in a neurally controlled simulated robot, Neurocomputing 69(16–18), 1923–1945 (2006)

    Article  Google Scholar 

  188. W.H. Alexander, O. Sporns: An embodied model of learning, plasticity, and reward, Adapt. Behav. 10, 143–159 (2002)

    Article  Google Scholar 

  189. T.J. Prescott, F.M. Montes Gonzalez, K. Gurney, M.D. Humphries, P. Redgrave: A robot model of the basal ganglia: Behavior and intrinsic processing, Neural Netw. 19, 31–61 (2006)

    Article  MATH  Google Scholar 

  190. D. Sperber, D. Wilson: Relevance: Communication and Cognition (Blakwell, Oxford 1986)

    Google Scholar 

  191. R.R. Cornelius: The Science of Emotion: Research and Tradition in the Psychology of Emotions (Prentice-Hall, Inc, Englewood Cliffs, NJ, US 1996)

    Google Scholar 

  192. R. Buck: The Communication of Emotion (Guilford, New York 1984)

    Google Scholar 

  193. D. Keltner, J. Haidt: Social functions of emotions. In: Emotions: Current Issues and Future Directions, ed. by T.J. Mayne, G.A. Bonanno (Guilford, New York 2001) pp. 192–213

    Google Scholar 

  194. D. Keltner, A.M. Kring: Emotion, social function, and psychopathology, Rev. Gen. Psychol. 2(3), 320–342 (1998)

    Article  Google Scholar 

  195. M. Ridley: The Origins of Virtue (Penguin, London 1997)

    Google Scholar 

  196. M.W. Eysenck: Psychology: An Integrated Approach (Longman, Harlow, Essex 1998)

    Google Scholar 

  197. L. Cosmides, J. Tooby: Evolutionary psychology and the emotions. In: Handbook of Emotions, Vol. 7, 2nd edn., ed. by M. Lewis, J.M. Haviland-Jones (Wiley, Chichester 2000) pp. 91–115

    Google Scholar 

  198. D. Matsui, T. Minato, K.F. MacDorman, H. Ishiguro: Generating natural motion in an android by mapping human motion, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) (2005) pp. 3301–3308

    Google Scholar 

  199. H. Miwa, T. Okuchi, K. Itoh, H. Takanobu, A. Takanishi: A new mental model for humanoid robots for human friendly communication introduction of learning system, mood vector and second order equations of emotion, IEEE Int. Conf. Robot. Autom. (ICRA), Vol. 3 (2003) pp. 3588–3593

    Google Scholar 

  200. H. Miwa, K. Itoh, M. Matsumoto, M. Zecca, H. Takanobu, S. Rocella, M.C. Carrozza, P. Dario, A. Takanishi: Effective emotional expressions with expression humanoid robot WE-4RII: Integration of humanoid robot hand RCH-1, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 3 (2004) pp. 2203–2208

    Google Scholar 

  201. T. Hashimoto, S. Hitramatsu, T. Tsuji, H. Kobayashi: Development of the face robot SAYA for rich facial expressions, Int. Jt. Conf. SICE-ICASE (2006) pp. 5423–5428

    Google Scholar 

  202. L. Canamero, J. Fredslund: I show you how I like you – can you read it in my face?, IEEE Trans. Syst. Man Cyber. A 31(5), 454–459 (2001)

    Article  Google Scholar 

  203. C. Breazeal: Toward sociable robots, Robot. Auton. Syst. 42(3), 167–175 (2003)

    Article  MATH  Google Scholar 

  204. C. Breazeal, D. Buchsbaum, J. Gray, D. Gatenby, B. Blumberg: Learning from and about others: Towards using imitation to bootstrap the social understanding of others by robots, Artif. Life 11(1), 31–62 (2005)

    Article  Google Scholar 

  205. H. Kobayashi, Y. Ichikawa, M. Senda, T. Shiiba: Realization of realistic and rich facial expressions by face robot, IEEE/RSJ Int. Conf. Intell. Rob. Syst. (IROS), Vol. 2 (2003) pp. 1123–1128

    Google Scholar 

  206. A. Watanabe, M. Ogino, M. Asada: Mapping facial expression to internal states based on intuitive parenting, J. Robot. Mechatron 19(3), 315–323 (2007)

    Google Scholar 

  207. D. Lee, H.S. Ahn, J.Y. Choi: A general behavior generation module for emotional robots using unit behavior combination method, The 18th IEEE Int. Symp. Robot Hum. Interact. Commun. (RO-MAN) (2009) pp. 375–380

    Google Scholar 

  208. M.-J. Han, C.-H. Lin, K.-T. Song: Autonomous emotional expression generation of a robotic face, IEEE Int. Conf. Syst., Man and Cybern. (SMC) (2009) pp. 2427–2432

    Google Scholar 

  209. E.T. Rolls: On The brain and emotion, Behav. Brain Sci. 23(2), 219–228 (2000)

    Article  Google Scholar 

  210. R.W. Levenson: Blood, sweat, and fears: The autonomic architecture of emotion, Annu. New York Acad. Sci. 1000, 348–366 (2003)

    Article  Google Scholar 

  211. A. Ortony, D.A. Norman, W. Revelle: Affect and proto-affect in effective functioning. In: Who Needs Emotions: The Brain Meets the Machine, ed. by J.M. Fellous, M.A. Arbib (Oxford Univ., New York 2005)

    Google Scholar 

  212. M.A. Arbib: Beware the passionate robot. In: Who Needs Emotions? The Brain Meets the Machine, ed. by J.M. Fellous, M.A. Arbib (Oxford Univ., New York 2005)

    Google Scholar 

  213. R.C. Arkin, K. Ali, A. Weitzenfeld, F. Cervantes-Pèrez: Behavioral models of the praying mantis as a basis for robotic behavior, Robot. Auton. Syst. 32(1), 39–60 (2000)

    Article  Google Scholar 

  214. M. Ogino, T. Ooide, A. Watanabe, M. Asada: Acquiring peekaboo communication: Early communication model based on reward prediction, IEEE 6th Int. Conf. Dev. Learn. (ICDL) (2007) pp. 116–121

    Google Scholar 

  215. R. Paz, J.G. Pelletier, E.P. Bauer, D. Paré: Emotional enhancement of memory via amygdala-driven facilitation of rhinal interactions, Nat. Neurosci. 9(10), 1321–1329 (2006)

    Article  Google Scholar 

  216. J.L. McGaugh: Memory and Emotion (Orion, London 2003)

    Google Scholar 

  217. W. Schultz, P. Dayan, P.R. Montague: A neural substrate of prediction and reward, Science 275(5306), 1593–1599 (1997)

    Article  Google Scholar 

  218. P. Rochat, J.G. Querido, T. Striano: Emerging sensitivity to the timing and structure of protoconversation in early infancy, Dev. Psychol. 35(4), 950–957 (1999)

    Article  Google Scholar 

  219. N.A. Mirza, C.L. Nehaniv, K. Dautenhahn, R. Te Boekhorst: Grounded sensorimotor interaction histories. In an information theoretic metric space for robot ontogeny, Adapt. Behav. 15, 167–187 (2007)

    Article  Google Scholar 

  220. N.A. Mirza, C.L. Nehaniv, K. Dautenhahn, R. te Boekhorst: Developing social action capabilities in a humanoid robot using an interaction history architecture, 8th IEEE-RAS Int. Conf. Humanoid Robots (2008) pp. 609–616

    Google Scholar 

  221. J.-A. Meyer, A. Guillot, B. Girard, M. Khamassi, P. Pirim, A. Berthoz: The Psikharpax project: Towards building an artificial rat, Robot. Auton. Syst. 50(4), 211–223 (2005)

    Article  Google Scholar 

  222. H.L. Dreyfus: What Computers Still Canʼt Do: A Critique of Artificial Reason (MIT, Cambridge, USA 1992)

    Google Scholar 

  223. R.A. Brooks: Cambrian Intelligence: The Early History of the New AI (MIT, Cambridge, USA 1999)

    MATH  Google Scholar 

  224. M.P. Michalowski, S. Sabanovic, P. Michel: Roillo: Creating a social robot for playrooms, 15th IEEE Int. Symp. Robot Hum. Interact. Commun. (ROMAN) (2006) pp. 587–592

    Google Scholar 

  225. Project SERA (Social Engagement with Robots and Agents): http://project-sera.eu/ (last accessed 5 May 2013)

  226. UK Computing Research Committee (Grand Challenges in Computer Research): http://www.ukcrc.org.uk/grand-challenge/ (last accessed 5 May 2013)

  227. UK Computing Research Committee (Grand Challenge 5 Architecture of Brain and Mind), http://www.cs.stir.ac.uk/gc5/ (last accessed 5 May 2013)

  228. Seventh Framework Programme (FP7), Information and Communication Technologies Challenge 2: Cognitive Systems and Robotics, http://cordis.europa.eu/fp7/ict/programme/challenge2_en.html (last accessed 5 May 2013)

  229. RobotCub – An Open Framework for Research in Embodied Cognition, http://www.robotcub.org (last accessed 5 May 2013)

  230. iCub – An Open Source Cognitive Humanoid Robotic Platform, http://www.icub.org (last accessed 5 May 2013)

  231. N.G. Tsagarakis: iCub: The design and realization of an open humanoid platform for cognitive and neuroscience research, Adv. Robot. 21(10), 1151–1175 (2007)

    Article  Google Scholar 

  232. G. Sandini, G. Metta, D. Vernon: The iCub cognitive humanoid robot: An open-system research platform for enactive cognition. In: 50 Years of Artificial Intelligence, Vol. 4850, ed. by M. Lungarella, F. Iida, J. Bongard, R. Pfeifer (Springer, Berlin, Heidelberg 2007) pp. 358–369

    Chapter  Google Scholar 

  233. MACSi – Motor Affective Cognitive Scaffolding for the iCub, http://macsi.isir.upmc.fr (last accessed 5 May 2013)

  234. Darwin Project – Dexterous Assembler Robot Working with embodied Intellience, http://darwin-project.eu (last accessed 5 May 2013)

    Google Scholar 

  235. ITALK – Integration and Transfer of Action and Language Knowledge in Robots, www.italkproject.org (last accessed 5 May 2013)

  236. IM-CLeVeR – Intrinsically Motivated Cumulative Learning Versatile Robots, http://www.im-clever.eu (last accessed 5 May 2013)

  237. EFAA – Experimental Functional Android Assistant, http://efaa.upf.edu (last accessed 5 May 2013)

  238. CHRIS – Cooperative Human Robot Interaction Systems, http://www.chrisfp7.eu (last accessed 5 May 2013)

  239. ROSSI – Emergence of communication in RObots through Sensorimotor and Social Interaction, http://www.rossiproject.eu (last accessed 5 May 2013)

  240. Feelix Growing Project, http://www.feelix-growing.org (last access date 07/28/2011)

  241. RoboCup, http://www.robocup.org (last accessed 5 May 2013)

  242. BabyBot Humanoid, LIRA Lab, http://www.liralab.it/babybotmain.htm (last accessed 5 May 2013)

  243. T. Minato, Y. Yoshikawa, T. Noda, S. Ikemoto, H. Ishiguro, M. Asada: CB2: A child robot with biomimetic body for cognitive developmental robotics, 7th IEEE-RAS Int. Conf. Humanoid Robots (2007) pp. 557–562

    Google Scholar 

  244. T. Minato, F. DallaLibera, S. Yokokawa, Y. Nakamura, H. Ishiguro, E. Menegatti: A baby robot platform for cognitive developmental robotics, Workshop Synerg. Intell. 2009 IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009)

    Google Scholar 

  245. The Acroban Humanoid Project, INRIA Ensta-ParisTech research team on developmental and social robotics, http://flowers.inria.fr/acroban.php (last accessed 5 May 2013)

  246. NAO Humanoid Robot, Aldebaran Robotics, http://www.aldebaran-robotics.com (last accessed 5 May 2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard J. Duro , Francisco Bellas or José A. Becerra Permuy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Duro, R.J., Bellas, F., Becerra Permuy, J.A. (2014). Brain-Like Robotics. In: Kasabov, N. (eds) Springer Handbook of Bio-/Neuroinformatics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30574-0_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30574-0_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30573-3

  • Online ISBN: 978-3-642-30574-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics