Skip to main content

Computational Modeling with Spiking Neural Networks

  • Chapter
Springer Handbook of Bio-/Neuroinformatics

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter reviews recent developments in the area of spiking neural networks (SNN) and summarizes the main contributions to this research field. We give background information about the functioning of biological neurons, discuss the most important mathematical neural models along with neural encoding techniques, learning algorithms, and applications of spiking neurons. As a specific application, the functioning of the evolving spiking neural network (eSNN) classification method is presented in detail and the principles of numerous eSNN based applications are highlighted and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DNA:

deoxyribonucleic acid

FPGA:

field-programmable gate array

GABA:

gamma-aminobutyric acid

LIF:

leaky integrate-and-fire neuron

LSM:

liquid state machine

LTD:

long-term depression

LTP:

long-term potentiation

MFCC:

mel-frequency cepstral coefficient

MLP:

multilayer perceptron

PSP:

post-synaptic potential

ReSuMe:

remote supervised method

SNN:

spiking neural network

SRM:

spike response model

STDP:

spike-timing dependent plasticity

eSNN:

evolving spiking neural network

References

  1. Wikipedia: Neuron, available online at http://en.wikipedia.org/wiki/Neuron

  2. E.R. Kandel: Principles of Neural Science (McGraw-Hill, Columbus 2000)

    Google Scholar 

  3. W. Maass: Networks of spiking neurons: The third generation of neural network models, Neural Netw. 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  4. A.L. Hodgkin, A.F. Huxley: A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  5. M. Nelson, J. Rinzel: The Hodgkin-Huxley model. In: The Book of Genesis, ed. by J.M. Bower, D. Beeman (Springer, Berlin, Heidelberg 1995) pp. 27–51

    Google Scholar 

  6. J.M. Bower, D. Beeman: The Book of Genesis (Springer, Berlin, Heidelberg 1995)

    Book  MATH  Google Scholar 

  7. L. Lapicque: Recherches quantitatives sur lʼexcitation électrique des nerfs traitée comme une polarisation, J. Physiol. Pathol. Gen. 9, 620–635 (1907)

    Google Scholar 

  8. L.F. Abbott: Lapicqueʼs introduction of the integrate-and-fire model neuron (1907), Brain Res. Bull. 50(5/6), 303–304 (1999)

    Article  Google Scholar 

  9. N. Brunel, M.C.W. van Rossum: Lapicqueʼs 1907 paper: From frogs to integrate-and-fire, Biol. Cybern. 97(5), 337–339 (2007)

    Article  MATH  Google Scholar 

  10. B.W. Knight: Dynamics of encoding in a population of neurons, J. Gen. Physiol. 59, 734–766 (1972)

    Article  Google Scholar 

  11. H. Meffin, A.N. Burkitt, D.B. Grayden: An analytical model for the ``large, fluctuating synaptic conductance stateʼʼ typical of neocortical neurons in vivo, J. Comput. Neurosci. 16, 159–175 (2004)

    Article  Google Scholar 

  12. W. Gerstner, W.M. Kistler: Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge Univ. Press, Cambridge 2002)

    Book  MATH  Google Scholar 

  13. N. Burkitt: A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biol. Cybern. 95(1), 1–19 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Burkitt: A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties, Biol. Cybern. 95(2), 97–112 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. E.M. Izhikevich: Simple model of spiking neurons, IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003g)

    Article  MathSciNet  Google Scholar 

  16. E.M. Izhikevich: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (MIT Press, Cambridge 2006)

    Google Scholar 

  17. E.M. Izhikevich: Which model to use for cortical spiking neurons?, IEEE Trans. Neural Netw. 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  18. E.M. Izhikevich, G.M. Edelman: Large-scale model of mammalian thalamocortical systems, Proc. Natl. Acad. Sci. USA 105(9), 3593–3598 (2008)

    Article  Google Scholar 

  19. T. Masquelier, R. Guyonneau, S.J. Thorpe: Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains, PLoS ONE 3, e1377 (2008)

    Article  Google Scholar 

  20. W. Maass, C.M. Bishop (Eds.): Pulsed Neural Networks (MIT Press, Cambridge 1999)

    MATH  Google Scholar 

  21. W. Maass: Lower bounds for the computational power of networks of spiking neurons, Neural Comput. 8(1), 1–40 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. W. Maass: Computing with spiking neurons. In: Pulsed Neural Networks (MIT Press, Cambridge 1999) pp. 55–85

    Google Scholar 

  23. W. Gerstner, J.L. van Hemmen, J.D. Cowan: What matters in neuronal locking?, Neural Comput. 8(8), 1653–1676 (1996)

    Article  Google Scholar 

  24. W.M. Kistler, R. Seitz, J.L. van Hemmen: Modeling collective excitations in cortical tissue, J. Phys. D 114(3/4), 273–295 (1998)

    MATH  Google Scholar 

  25. S.J. Thorpe, J. Gautrais: Rank Order Coding (Plenum, New York 1998) pp. 113–118

    Google Scholar 

  26. S.J. Thorpe: Spike arrival times: A highly efficient coding scheme for neural networks. In: Paralle Processing in Neural Systems and Computers, ed. by R. Eckmiller, G. Hartmann, G. Hauske (Elsevier, Amsterdam 1990) pp. 91–94

    Google Scholar 

  27. S.J. Thorpe, D. Fize, C. Marlot: Speed of processing in the human visual system, Nature 381, 520–522 (1996)

    Article  Google Scholar 

  28. R. Van Rullen, S.J. Thorpe: Rate coding versus temporal order coding: What the retinal ganglion cells tell the visual cortex, Neural Comput. 13(6), 1255–1283 (2001)

    Article  MATH  Google Scholar 

  29. S.J. Thorpe, J. Gautrais: Rapid visual processing using spike asynchrony, Proc. Adv. Neural Inf. Process. Syst., Vol. 9 (NIPS), Denver 1996 (MIT Press, Cambridge 1996) pp. 901–907

    Google Scholar 

  30. S.J. Thorpe: How can the human visual system process a natural scene in under 150 ms? On the role of asynchronous spike propagation, ESANN 1997, 5th Eur. Symp. Artif. Neural Netw., D-Facto (1997)

    Google Scholar 

  31. A. Delorme, S.J. Thorpe: SpikeNET: An event-driven simulation package for modelling large networks of spiking neurons, Network 14, 613–627 (2003)

    Article  Google Scholar 

  32. S.J. Thorpe, R. Guyonneau, N. Guilbaud, J.-M. Allegraud, R. Van Rullen: SpikeNet: Real-time visual processing with one spike per neuron, Neurocomputing 58–60, 857–864 (2004)

    Article  Google Scholar 

  33. R. Van Rullen, J. Gautrais, A. Delorme, S. Thorpe: Face processing using one spike per neurone, Biosystems 48(1–3), 229–239 (1998)

    Article  Google Scholar 

  34. A. Delorme, L. Perrinet, S.J. Thorpe: Networks of integrate-and-fire neurons using rank order coding B: Spike timing dependent plasticity and emergence of orientation selectivity, Neurocomputing 38–40, 539–545 (2001)

    Article  Google Scholar 

  35. E.D. Adrian: The impulses produced by sensory nerve endings, J. Physiol. (London) 61, 49–72 (1926)

    Article  Google Scholar 

  36. F. Rieke, D. Warland, R.R. van Steveninck, W. Bialek: Spikes: Exploring the Neural Code (MIT Press, Cambridge 1999)

    MATH  Google Scholar 

  37. W. Gerstner: Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking, Neural Comput. 12(1), 43–89 (2000)

    Article  Google Scholar 

  38. N. Brunel, F.S. Chance, N. Fourcaud, L.F. Abbott: Effects of synaptic noise and filtering on the frequency response of spiking neurons, Phys. Rev. Lett. 86, 2186–2189 (2001)

    Article  Google Scholar 

  39. R. Lestienne: Determination of the precision of spike timing in the visual cortex of anaesthetised cats, Biol. Cybern. 74(1), 55–61 (1995)

    Article  Google Scholar 

  40. M.P. Nawrot, P. Schnepel, A. Aertsen, C. Boucsein: Precisely timed signal transmission in neocortical networks with reliable intermediate-range projections, Front. Neural Circuits 3(2), 1–11 (2009)

    Google Scholar 

  41. A.E.P. Villa, I.V. Tetko, B. Hyland, A. Najem: Spatiotemporal activity patterns of rat cortical neurons predict responses in a conditioned task, Proc. Natl. Acad. Sci. USA 96(3), 1106–1111 (1999)

    Article  Google Scholar 

  42. M.J. Tovee, E.T. Rolls, A. Treves, R.P. Bellis: Information encoding and the responses of single neurons in the primate temporal visual cortex, J. Neurophysiol. 70(2), 640–654 (1993)

    Google Scholar 

  43. C. von der Malsburg: The Correlation Theory of Brain Function, Internal Report, Vol. 81-2 (Max-Planck-Institute for Biophysical Chemistry, Göttingen 1981)

    Google Scholar 

  44. R.V. Florian: A reinforcement learning algorithm for spiking neural networks, Proc. 7th Int. Symp. Symb. Numer. Algorithms Sci. Comput. (SYNASC 2005) (IEEE, Los Alamitos 2005) pp. 299–306

    Google Scholar 

  45. R.V. Florian: Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity, Neural Comput. 19(6), 1468–1502 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. H.S. Seung: Learning in spiking neural networks by reinforcement of stochastic synaptic transmission, Neuron 40(6), 1063–1073 (2003)

    Article  Google Scholar 

  47. X. Xie, H.S. Seung: Learning in neural networks by reinforcement of irregular spiking, Phys. Rev. E 69(4), 041909 (2004)

    Article  MathSciNet  Google Scholar 

  48. A.J. Kasinski, F. Ponulak: Comparison of supervised learning methods for spike time coding in spiking neural networks, Int. J. Appl. Math. Comput. Sci. 16, 101–113 (2006)

    MathSciNet  MATH  Google Scholar 

  49. D.O. Hebb (Ed.): The Organization of Behavior (Wiley, New York 1949)

    Google Scholar 

  50. T.V.P. Bliss, T. Lomo: Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol. 232(2), 331–356 (1973)

    Article  Google Scholar 

  51. T.V.P. Bliss, A.R. Gardner-Medwin: Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path, J. Physiol. 232(2), 357–374 (1973)

    Article  Google Scholar 

  52. C.C. Bell, V.Z. Han, Y. Sugawara, K. Grant: Synaptic plasticity in a cerebellum-like structure depends on temporal order, Nature 387, 278–281 (1997)

    Article  Google Scholar 

  53. H. Markram, J. Lubke, M. Frotscher, B. Sakmann: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs, Science 275(5297), 213–215 (1997)

    Article  Google Scholar 

  54. G.-Q. Bi, M.M. Poo: Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type, J. Neurosci. 18(24), 10464–10472 (1998)

    Google Scholar 

  55. V. Egger, D. Feldmeyer, B. Sakmann: Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex, Nat. Neurosci. 2, 1098–1105 (1999)

    Article  Google Scholar 

  56. J. Iglesias, J. Eriksson, F. Grize, M. Tomassini, A.E.P. Villa: Dynamics of pruning in simulated large-scale spiking neural networks, Biosystems 79(1–3), 11–20 (2005)

    Article  Google Scholar 

  57. J. Iglesias, A.E.P. Villa: Neuronal cell death and synaptic pruning driven by spike-timing dependent plasticity, LNCS 4132, 953–962 (2006)

    Google Scholar 

  58. J. Iglesias, A.E.P. Villa: Effect of stimulus-driven pruning on the detection of spatiotemporal patterns of activity in large neural networks, Biosystems 89(1–3), 287–293 (2007)

    Article  Google Scholar 

  59. G.-Q. Bi, M.-M. Poo: Synaptic modification by correlated activity: Hebbʼs postulate revisited, Annu. Rev. Neurosci. 24(1), 139–166 (2001)

    Article  Google Scholar 

  60. R. Kempter, W. Gerstner, J.L. van Hemmen: Hebbian learning and spiking neurons, Phys. Rev. E 59(4), 4498–4514 (1999)

    Article  MathSciNet  Google Scholar 

  61. W. Gerstner, W.K. Kistler: Mathematical formulations of Hebbian learning, Biol. Cybern. 87(5/6), 404–415 (2002)

    Article  MATH  Google Scholar 

  62. W.M. Kistler: Spike-timing dependent synaptic plasticity: A phenomenological framework, Biol. Cybern. 87(5/6), 416–427 (2002)

    Article  MATH  Google Scholar 

  63. S.M. Bohte, J.N. Kok, J.A. La Poutré: SpikeProp: Backpropagation for networks of spiking neurons, ESANN Proc. (2000) pp. 419–424

    Google Scholar 

  64. S.M. Bohte, J.N. Kok, J.A. La Poutré: Error-backpropagation in temporally encoded networks of spiking neurons, Neurocomputing 48(1–4), 17–37 (2002)

    Article  MATH  Google Scholar 

  65. J. Xin, M.J. Embrechts: Supervised Learning with Spiking Neural Networks (IEEE, Bellingham 2001) pp. 1772–1777

    Google Scholar 

  66. B. Schrauwen, J. van Campenhout: Improving SpikeProp: Enhancements to an error-backpropagation rule for spiking neural networks, Proc. 15th ProRISC Workshop (2004) pp. 104–174

    Google Scholar 

  67. P. Tiňo, A.J.S. Mills: Learning beyond finite memory in recurrent networks of spiking neurons, Neural Comput. 18(3), 591–613 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  68. T. Natschläger, W. Maass, H. Markram: The ``liquid computerʼʼ: A novel strategy for real-time computing on time series, Telematik 8(1), 39–43 (2002)

    MATH  Google Scholar 

  69. F. Ponulak: ReSuMe – New supervised learning method for Spiking Neural Networks, Tech. Rep. (Institute of Control and Information Engineering, Poznan University of Technology 2005)

    Google Scholar 

  70. W. Maass, T. Natschläger, H. Markram: Real-time computing without stable states: A new framework for neural computation based on perturbations, Neural Comput. 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  71. D. Verstraeten, B. Schrauwen, M. DʼHaene, D. Stroobandt: An experimental unification of reservoir computing methods, Neural Netw. 20(3), 391–403 (2007)

    Article  MATH  Google Scholar 

  72. T. Natschläger, H. Markram, W. Maass: Computer models and analysis tools for neural microcircuits. In: Neuroscience Databases: A Practical Guide, ed. by R. Kötter (Kluwer Academic, Dordrecht 2003) pp. 123–138

    Chapter  Google Scholar 

  73. D. Verstraeten, B. Schrauwen, D. Stroobandt: Isolated word recognition using a Liquid State Machine, Proc. ESANN (2005) pp. 435–440

    Google Scholar 

  74. A.J. Kasinski, F. Ponulak: Experimental demonstration of learning properties of a new supervised learning method for the spiking neural networks, LNCS 3696, 145–152 (2005)

    Google Scholar 

  75. F. Ponulak, A.J. Kasinski: Generalization properties of spiking neurons trained with ReSuMe method, Proc. ESANN (2006) pp. 629–634

    Google Scholar 

  76. F. Ponulak: Analysis of the ReSuMe learning process for spiking neural networks, Appl. Math. Comput. Sci. 18(2), 117–127 (2008)

    MathSciNet  Google Scholar 

  77. N.T. Carnevale, M.L. Hines: The NEURON Book (Cambridge Univ. Press, University 2006)

    Book  Google Scholar 

  78. M.L. Hines, N.T. Carnevale: Neuron: A tool for neuroscientists, Neuroscientist 7(2), 123–135 (2001)

    Article  Google Scholar 

  79. J.M. Bower, D. Beeman: GENESIS (simulation environment), Scholarpedia 2(3), 1383 (2007)

    Article  Google Scholar 

  80. B.P. Glackin, T.M. McGinnity, L.P. Maguire, Q. Wu, A. Belatreche: A novel approach for the implementation of large scale spiking neural networks on FPGA Hardware, LNCS 3512, 552–563 (2005)

    Google Scholar 

  81. L.P. Maguire, T.M. McGinnity, B. Glackin, A. Ghani, A. Belatreche, J. Harkin: Challenges for large-scale implementations of spiking neural networks on FPGAs, Neurocomputing 71(1–3), 13–29 (2007)

    Article  Google Scholar 

  82. A. Knoblauch: Neural associative memory for brain modeling and information retrieval, Inf. Process. Lett. 95(6), 537–544 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  83. N. Iannella, L. Kindermann: Finding iterative roots with a spiking neural network, Inf. Process. Lett. 95(6), 545–551 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  84. D. Floreano, C. Mattiussi: Evolution of spiking neural controllers for autonomous vision-based robots, LNCS 2217, 38–61 (2001)

    MATH  Google Scholar 

  85. D. Floreano, Y. Epars, J.-C. Zufferey, C. Mattiussi: Evolution of spiking neural circuits in autonomous mobile robots: Research articles, Int. J. Intell. Syst. 21(9), 1005–1024 (2006)

    Article  Google Scholar 

  86. X. Wang, Z.-G. Hou, A. Zou, M. Tan, L. Cheng: A behavior controller based on spiking neural networks for mobile robots, Neurocomputing 71(4–6), 655–666 (2008)

    Article  Google Scholar 

  87. N. Kasabov: Evolving Connectionist Systems: The Knowledge Engineering Approach (Springer, New York 2006)

    MATH  Google Scholar 

  88. S.G. Wysoski, L. Benuskova, N.K. Kasabov: Adaptive learning procedure for a network of spiking neurons and visual pattern recognition, LNCS 4179, 1133–1142 (2006)

    Google Scholar 

  89. S. Soltic, S. Wysoski, N. Kasabov: Evolving spiking neural networks for taste recognition, Proc. IJCNN 2008 (IEEE, Bellingham 2008) pp. 2091–2097

    Google Scholar 

  90. L. Perrinet, A. Delorme, M. Samuelides, S.J. Thorpe: Networks of integrate-and-fire neuron using rank order coding A: How to implement spike time dependent Hebbian plasticity, Neurocomputing 38–40, 817–822 (2001)

    Article  Google Scholar 

  91. S.J. Thorpe, A. Delorme, R. van Rullen: Spike-based strategies for rapid processing, Neural Netw. 14(6/7), 715–725 (2001)

    Article  Google Scholar 

  92. S. Loiselle, J. Rouat, D. Pressnitzer, S. Thorpe: Exploration of rank order coding with spiking neural networks for speech recognition, Proc. IJCNN 2005 (IEEE, Bellingham 2005) pp. 2076–2080

    Google Scholar 

  93. A. Delorme, J. Gautrais, R. Van Rullen, S. Thorpe: SpikeNET: A simulator for modeling large networks of integrate and fire neurons, Neurocomputing 26–27, 989–996 (1999)

    Article  Google Scholar 

  94. A. Delorme, S.J. Thorpe: Face identification using one spike per neuron: Resistance to image degradations, Neural Netw. 14(6/7), 795–803 (2001)

    Article  Google Scholar 

  95. S.G. Wysoski, L. Benuskova, N. Kasabov: On-line learning with structural adaptation in a network of spiking neurons for visual pattern recognition, LNCS 4131, 61–70 (2006)

    Google Scholar 

  96. S.G. Wysoski, L. Benuskova, N. Kasabov: Fast and adaptive network of spiking neurons for multi-view visual pattern recognition, Neurocomputing 71(13–15), 2563–2575 (2008)

    Article  Google Scholar 

  97. S.G. Wysoski, L. Benuskova, N. Kasabov: Text-independent speaker authentication with spiking neural networks, LNCS 4669, 758–767 (2007)

    Google Scholar 

  98. L. Rabiner, B.-H. Juang: Fundamentals of Speech Recognition (Prentice-Hall, Upper Saddle River 1993)

    MATH  Google Scholar 

  99. S.G. Wysoski, L. Benuskova, N. Kasabov: Adaptive spiking neural networks for audiovisual pattern recognition, LNCS 4985, 406–415 (2008)

    Google Scholar 

  100. S.G. Wysoski: Evolving Spiking Neural Networks for Adaptive Audiovisual Pattern Recognition. Ph.D. Thesis (Auckland University, Auckland 2008)

    Google Scholar 

  101. S. Schliebs, M. Defoin-Platel, S. Worner, N. Kasabov: Quantum-inspired feature and parameter optimisation of evolving spiking neural networks with a case study from ecological modeling, Proc. IJCNN (IEEE Computer Society, Washington 2009) pp. 2833–2840

    Google Scholar 

  102. S. Schliebs, M. Defoin-Platel, S. Worner, N. Kasabov: Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous probabilistic models, Neural Netw. 22(5–6), 623–632 (2009)

    Article  Google Scholar 

  103. S. Worner, G. Lankin, S. Samarasinghe, D. Teulon: Improving prediction of aphid flights by temporal analysis of input data for an artificial neural network, N. Z. Plant Prot. 55, 312–316 (2002)

    Google Scholar 

  104. N. Cocu, R. Harrington, M.D. Rounsevell, S.P. Worner, M. Hulle: Geographical location, climate and land use influences on the phenology and numbers of the aphid, Myzus persicae, in Europe, J. Biogeogr. 32(4), 615–632 (2005)

    Article  Google Scholar 

  105. M.J. Watts, S.P. Worner: Using MLP to determine abiotic factors inuencing the establishment of insect pest species, Proc. 2006 Int. Joint Conf. Neural Netw. (IJCNN 2006) (IEEE, New York 2006) pp. 3506–3511

    Google Scholar 

  106. H.C. de Sousa, A. Riul Jr.: Using MLP networks to classify red wines and water readings of an electronic tongue, VII Braz. Symp. Neural Netw. (SBRNʼ02) (2002)

    Google Scholar 

  107. A. Riul, H.C. de Sousa, R.R. Malmegrim, D.S. dos Santos, A.C.P.L.F. Carvalho, F.J. Fonseca, O.N. Oliveira, L.H.C. Mattoso: Wine classification by taste sensors made from ultra-thin films and using neural networks, Sens. Actuators B 98(1), 77–82 (2004)

    Article  Google Scholar 

  108. A. Zuppicich, S. Soltic: FPGA Implementation of an evolving spiking neural network, LNCS 5506, 1129–1136 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Schliebs or Nikola Kasabov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Schliebs, S., Kasabov, N. (2014). Computational Modeling with Spiking Neural Networks. In: Kasabov, N. (eds) Springer Handbook of Bio-/Neuroinformatics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30574-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30574-0_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30573-3

  • Online ISBN: 978-3-642-30574-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics