Skip to main content

3D Full-Loop Simulation of an Industrial-Scale Circulating Fluidized Boiler

  • Conference paper
  • First Online:
Cleaner Combustion and Sustainable World (ISCC 2011)

Included in the following conference series:

  • 1184 Accesses

Abstract

In this study, 3D full-loop simulations of a CFB boiler are carried out. FLUENT®6.3 is used as the solver, where an Eulerian multiphase model with EMMS-based drag model is employed. The wide particle size distribution are considered and divided into several groups to better represent the polydisperse behavior of ash particles. The simulation shows that, compared to the conventional drag model, EMMS-based model predicts more reasonable pressure drop of furnace and larger slip velocity at the lower elevations of the furnace. Further work is under way to improve the full-loop simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

d p :

particle diameter, m

G s :

solids flux, kg/(m2·s)

H:

Total height of furnace, m

H D :

heterogeneity index

Re s :

Reynolds number,d p U slip ρ f /μ f

U g :

superficial gas rate, m/s

v :

real velocity, m/s

β :

drag coefficient with structure in a control volume, kg/(m3·s)

β 0 :

drag coefficient without structure in a control volume, kg/(m3·s)

ε g :

voidage

ε s :

solids concentration

ε mf :

incipient voidage

ε max :

maximum voidage for particle aggregation

μ :

viscosity, Pa·s

ρ :

density, kg/m3

g :

gas phase

s :

solid phase

p :

particle

(Bold characters are for vectors or tensors)

References

  1. Basu P, Sett A, Gbordzoe EAM. A simplified model for combustion of carbon in a circulating fluidized bed combustor. In: Proceedings of the IX International Conference on Fluidized Bed Combustion, New York; 1987.

    Google Scholar 

  2. Huilin L, Guangbo Z, Rushan B, Yongjin C, Gidaspow D. A coal combustion model for circulating fluidized bed boilers. Fuel. 2000;79(2):165–72.

    Article  Google Scholar 

  3. Adanez J, Gayan P, Grasa G, de Diego LF, Armesto L, Cabanillas A. Circulating fluidized bed combustion in the turbulent regime: modeling of carbon combustion efficiency and sulfur retention. Fuel. 2001;80:1405–14.

    Article  Google Scholar 

  4. Nikolopoulos A, Rampidis I, Nikolopoulos N, Grammelis P, Kakaras E. Numerical investigation of 3-D transient combusting flow in a 1.2MWTH pilot power plant. In: Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi’an, China; 2009.

    Google Scholar 

  5. Zhou W, Zhao CS, Duan LB, Qu CR, Chen XP. Two-dimensional computational fluid dynamics simulation of coal combustion in a circulating fluidized bed combustor. Chem Eng J. 2011;166(1):306–14.

    Article  Google Scholar 

  6. Zhang N, Lu B, Wang W, Li J. Virtual experimentation through 3D full-loop simulation of a circulating fluidized bed. Particuology. 2008;6(6):529–39.

    Article  Google Scholar 

  7. Zhang N, Lu B, Wang W, Li J. 3D CFD simulation of hydrodynamics of a 150 MWecirculating fluidized bed boiler. Chem Eng J. 2010;162(2):821–8.

    Article  Google Scholar 

  8. Shah S, Klajny M, Myöhänen K, Hyppänen T. Improvement of CFD methods for modeling full scale circulating fluidized bed combustion systems. In: Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi’an, China; 2009.

    Google Scholar 

  9. Lu B, Wang W, Li J. Searching for a mesh- independent sub-grid model for CFD simulation of gas-solid riser flows. Chem Eng Sci. 2009;64(15):3437–47.

    Article  Google Scholar 

  10. Hartge E-U, Ratschow L, Wischnewski R, Werther J. CFD-simulation of a circulating fluidized bed riser. Particuology. 2009;7(4):283–96.

    Article  Google Scholar 

  11. Seppala M, Kallio S. CFD modelling of particle mixtures in a 2D CFB. In: Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi’an, China; 2009.

    Google Scholar 

  12. O’Brien TJ, Syamlal M. Particle cluster effects in the numerical simulation of a circulating fluidized bed. In: Preprint Volume for Circulating Fluidized Beds IV. Somerset: AICHE, 1993.

    Google Scholar 

  13. Li J, Wen L, Ge W, Cui H, Ren J. Dissipative structure in concurrent-up gas-solid flow. Chem Eng Sci. 1998;53(19):3367–79.

    Article  Google Scholar 

  14. Sundaresan S. Modeling the hydrodynamics of multiphase flow reactors: current status and challenges. AIChE J. 2000;46(6):1102–5.

    Article  Google Scholar 

  15. Agrawal K, Loezos PN, Syamlal M, Sundaresan S. The role of mesoscale structures in rapid gas-solid flows. J Fluid Mech. 2001;445:151–85.

    Article  MATH  Google Scholar 

  16. Benyahia S. Analysis of model parameters affecting the pressure profile in a circulating fluidized bed. AIChE J. 2011. doi:10.1002/aic.12603.

  17. Jiradilok V, Gidaspow D, Damronglerd S, Koves WJ, Mostofi R. Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser. Chem Eng Sci. 2006;61(17):5544–59.

    Article  Google Scholar 

  18. Chalermsinsuwan B, Piumsomboon P, Gidaspow D. A computational fluid dynamics design of a carbon dioxide sorption circulating fluidized bed. AIChE J. 2010;56(11):2805–24.

    Article  Google Scholar 

  19. Gidaspow D. Hydrodynamics of fluidization and heat transfer: supercomputer modeling. Appl Mech Rev. 1986;39:1–23.

    Article  Google Scholar 

  20. Wang W, Li J. Simulation of gas-solid two- phase flow by a multi-scale CFD approach-extension of EMMS model to the sub-grid level. Chem Eng Sci. 2007;62:208–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg & Tsinghua University Press

About this paper

Cite this paper

Lu, B., Zhang, N., Wang, W., Li, J. (2013). 3D Full-Loop Simulation of an Industrial-Scale Circulating Fluidized Boiler. In: Qi, H., Zhao, B. (eds) Cleaner Combustion and Sustainable World. ISCC 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30445-3_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30445-3_87

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30444-6

  • Online ISBN: 978-3-642-30445-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics