Skip to main content

Modeling Space Plasma Dynamics with Anisotropic Kappa Distributions

  • Conference paper
  • First Online:
Multi-scale Dynamical Processes in Space and Astrophysical Plasmas

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 33))

Abstract

Space plasmas are collisionpoor and kinetic effects prevail leading to wave fluctuations, which transfer the energy to small scales: wave-particle interactions replace collisions and enhance dispersive effects heating particles and producing suprathermal populations observed at any heliospheric distance in the solar wind. At large distances collisions are not efficient, and the selfgenerated instabilities constrain the solar wind anisotropy including the thermal core and the suprathermal components. The generalized power-laws of Kappa-type are the best fitting model for the observed distributions of particles, and a convenient mathematical tool for modeling their dynamics. But the anisotropic Kappa models are not correlated with the observations leading, in general, to inconsistent effects. This review work aims to reconcile some of the existing Kappa models with the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marsch E. (2006). Kinetic physics of the solar corona and solar wind, Living Rev. Solar Phys. 3

    Google Scholar 

  2. Pierrard V. & Lazar M. (2010). Kappa distributions: theory and applications in space plasmas, Sol. Phys. 267, 153.

    Google Scholar 

  3. Hasegawa A., Mima K. & Duong-van N. (1985). Plasma distribution function in a superthermal radiation field, Phys. Rev. Lett. 54, 2608.

    Google Scholar 

  4. Miller J.A. & Roberts D.A. (1995). Stochastic proton acceleration by cascading Alfvén waves in impulsive solar flares, Astrophys. J. 452, 912.

    Google Scholar 

  5. Ma C. & Summers D. (1999). Correction to “Formation of Power-law Energy Spectra in Space Plasmas by Stochastic Acceleration due to Whistler-Mode Waves”, Geophys. Res. Lett. 26, 1121.

    Google Scholar 

  6. Leubner M.P. (2000). Wave induced suprathermal tail generation of electron velocity space distributions, Planet. Space Sci. 48, 133.

    Google Scholar 

  7. Yoon P.H., T. Rhee & C.-M. Ryu (2006). Self-consistent formation of electron κ distribution: 1. Theory, J. Geophys. Res. 111, A09106.

    Google Scholar 

  8. Jokipii J.R. & M.A. Lee (2010). Compression acceleration in astrophysical plasmas and the production of f(v) ∼ v  − 5 spectra in the heliosphere, Astrophys. J. 713, 475.

    Google Scholar 

  9. Lin R.P. (1998). Wind observations of suprathermal electrons in interplanetary medium, Space Sci. Rev. 86, 61.

    Google Scholar 

  10. Fisk L.A. & Gloeckler, G. (2006). The common spectrum for accelerated ions in the quiet-time solar wind, Astrophys. J. 640, L79.

    Google Scholar 

  11. Schlickeiser R. (2002). Cosmic Ray Astrophysics, Springer, Heidelberg.

    Google Scholar 

  12. Pierrard V., Maksimovic M. & Lemaire J.F. (1999). Electron velocity distribution functions from the solar wind to corona, J. Geophys. Res. 104, 17021.

    Google Scholar 

  13. Hellinger, P.; Travnicek, P.; Kasper, J. C. & A. J. Lazarus (2006). Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations, Geophys. Res. Lett., 33, L09101.

    Google Scholar 

  14. Stverak, S.; Travnicek, P.; Maksimovic, M. et al. (2008). Electron temperature anisotropy constraints in the solar wind, J. Geophys. Res., 113, A03103.

    Google Scholar 

  15. Leubner M.P. (2002). A nonextensive entropy approach to kappa-distributions, Astrophys. Space Sci. 282, 573.

    Google Scholar 

  16. Summers D. & R.M. Thorne, 1991. The modified plasma dispersion function, Phys. Fluids B 3, 1835.

    Google Scholar 

  17. Hellberg M.A., R.L. Mace & T. Cattaert, 2005. Effects of superthermal particles on waves in magnetized space plasmas, Space Sci. Rev. 121, 127.

    Google Scholar 

  18. Lazar M., Schlickeiser R., Poedts S. & Tautz R. (2008). Counterstreaming magnetized plasmas with kappa distributions - I. Parallel wave propagation, Mon. Not. R. Astron. Soc., 390, 168.

    Google Scholar 

  19. Lazar. M. & Poedts (2009). Firehose instability in space plasmas with bi-kappa distributions, Astron. Astrophys., 494, 311.

    Google Scholar 

  20. Lazar. M., Schlickeiser, R., & Podts S. (2010). Is the Weibel instability enhanced by the suprathermal populations or not?, Phys. Plasmas, 17, 062112.

    Google Scholar 

  21. Lazar. M., Poedts, S. & Schlickeiser, R. (2011a). Instability of the parallel electromagnetic modes in Kappa distributed plasmas - I. Electron whistler-cyclotron modes, Mon. Not. R. Astron. Soc., 410, 663.

    Google Scholar 

  22. Lazar. M., Poedts, S. & Schlickeiser, R. (2011b). Proton firehose instability in bi-Kappa distributed plasmas, Astron. Astrophys., 534, A116.

    Google Scholar 

  23. Basu B. (2009). Hydromagnetic waves and instabilities in kappa distribution plasma, Phys. Plasmas 16, 052106.

    Google Scholar 

  24. Kasper, J. C.; Lazarus, A. J. & Gary S. P. (2002). Wind/SWE observations of firehose constraint on solar wind proton temperature anisotropy, Geophys. Res. Lett., 29, 1839.

    Google Scholar 

  25. Bale S.D., Kasper J.C, Howes G.G. et al. (2009). Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind, Phys. Rev. Lett. 103, 211101.

    Google Scholar 

  26. Pierrard V., Maksimovic M. & Lemaire J.F. (2001). Self-consistent model of solar wind electrons, J. Geophys. Res. 106, 29305.

    Google Scholar 

  27. Pilipp W.G., Miggenrieder H., Montgomery M.D., et al. (1987a). Variations of electron distribution functions in the solar wind, J. Geophys. Res. 92, 1103;

    Google Scholar 

  28. Pilipp W.G., Miggenrieder H., Montgomery M.D., et al. (1987b). Unusual electron distribution functions in the solar wind derived from the Helios plasma experiment: double-strahl distributions and distributions with an extremely anisotropic core, J. Geophys. Res. 92, 1093;

    Google Scholar 

  29. Maksimovic M., Zouganelis I., J.-Y. Chaufray, et al. (2005). Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU, J. Geophys. Res. 110, A09104.

    Google Scholar 

  30. Cattaert, T., Hellberg, M.A., Mace, R.L. (2007). Oblique propagation of electromagnetic waves in a kappa-Maxwellian plasma, Phys. Plasmas 14, 082111.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Research Foundation Flanders (project G.0729.11), the KU Leuven (project GOA/2009-009, grant F/07/061), ESA Prodex 10 (project C 90205) and by the Deutsche Forschungsgemeinschaft (DFG), grant Schl 201/21-1. Financial support by the European Commission through the SOLAIRE Network (MTRN-CT-2006-035484), and the Seventh Framework Program (FP7/2007-2013) the grant agreement SWIFF (project nr. 2633430, www.swiff.eu) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lazar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lazar, M., Pierrard, V., Poedts, S., Schlickeiser, R. (2012). Modeling Space Plasma Dynamics with Anisotropic Kappa Distributions. In: Leubner, M., Vörös, Z. (eds) Multi-scale Dynamical Processes in Space and Astrophysical Plasmas. Astrophysics and Space Science Proceedings, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30442-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30442-2_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30441-5

  • Online ISBN: 978-3-642-30442-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics