Skip to main content

Advanced Topics and New Directions

  • Chapter
  • First Online:
A Rapid Introduction to Adaptive Filtering

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 1843 Accesses

Abstract

In this final chapter we provide a concise and brief discussion of other topics not covered in the previous chapters. These topics are more advanced or are the object of active research in the area of adaptive filtering. A brief introduction to each topic and several relevant references for the interested reader are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is the situation when the probability density of the noise has heavy tails [35].

  2. 2.

    Or any algorithm in which the update is linear in the error filtering signal.

References

  1. S. Haykin, Signal processing: where physics and mathematics meet. IEEE Signal Process. Mag. 18, 6–7 (2001)

    Article  Google Scholar 

  2. B. Hassibi, A.H. Sayed, T. Kailath, Linear estimation in Krein spaces. Parts I and II. IEEE Trans. Autom. Control 41, 18–49 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Hassibi, A.H. Sayed, T. Kailath, \(H\,^{\infty }\) optimality of the LMS algorithm. IEEE Trans. Signal Process. 44, 267–280 (1996)

    Article  Google Scholar 

  4. U. Shaked, Y. Theodor, \(H\,^{\infty }\)-Optimal estimation—a tutorial. Proceedings of IEEE Conference on Decision Control, 1992, pp. 2278–2286

    Google Scholar 

  5. H. Rey, L. Rey Vega, S. Tressens, J. Benesty, Variable explicit regularization in affine projection algorithm: robustness issues and optimal choice. IEEE Trans. Signal Process. 55, 2096–2109 (2007)

    Article  MathSciNet  Google Scholar 

  6. M. Rupp, A.H. Sayed, A time-domain feedback analysis of filtered-error adaptive gradient algorithms. IEEE Trans. Signal Process. 44, 1428–1439 (1996)

    Article  Google Scholar 

  7. T. Aboulnasr, K. Mayyas, A robust variable step-size LMS-type algorithm: Analysis and simulations. IEEE Trans. Signal Process. 45, 631–639 (1997)

    Article  Google Scholar 

  8. J. Benesty, H. Rey, L. Rey Vega, S. Tressens, A nonparametric VSS NLMS algorithm. IEEE Signal Process. Lett. 13, 581–584 (2006)

    Article  Google Scholar 

  9. C. Paleologu, J. Benesty, S. Ciochina, A variable step-size affine projection algorithm designed for acoustic echo cancellation. IEEE Trans. Audio Speech Lang. Process. 16, 1466–1478 (2008)

    Google Scholar 

  10. L. Rey Vega, H. Rey, J. Benesty, S. Tressens, A new robust variable step-size NLMS algorithm. IEEE Trans. Signal Process. 56, 1878–1893 (2008)

    Article  MathSciNet  Google Scholar 

  11. L. Rey Vega, H. Rey, J. Benesty, S. Tressens, A fast robust recursive least-squares algorithm. IEEE Trans. Signal Process. 57, 1209–1216 (2009)

    Article  Google Scholar 

  12. L. Rey Vega, H. Rey, J. Benesty, S. Tressens, A family of robust algorithms exploiting sparsity in adaptive filters, IEEE Trans. Audio Speech Lang. Process. 17, 572–581 (2009)

    Google Scholar 

  13. L. Rey Vega, H. Rey, J. Benesty, A robust variable step-size affine projection algorithm. Elsevier Signal Process. 90, 2806–2810 (2010)

    Article  MATH  Google Scholar 

  14. K. Mayyas, A variable step-size affine projection algorithm. Elsevier Digital Signal Process. 20, 502–510 (2010)

    Article  Google Scholar 

  15. H.-C. Shin, A.H. Sayed, W.-J. Song, Variable step-size NLMS and affine projection algorithms. IEEE Signal Process. Lett. 11, 132–135 (2004)

    Article  Google Scholar 

  16. A. Mader, H. Puder, G. Schmidt, Step-size control for acoustic echo cancellation filters. An overview. Elsevier. Signal Process. 80, 1697–1719 (2000)

    Article  MATH  Google Scholar 

  17. D. Challa, S. L. Grant, A. Mohammad, Variable regularized fast affine projections. Proceedings of IEEE ICASSP, pp. I-89-I-92, 2007

    Google Scholar 

  18. Y. Choi, H. Shin, W. Song, Adaptive regularization matrix for affine projection algorithm. IEEE Trans. Circuits Syst. II 54, 1087–1091 (2007)

    Article  Google Scholar 

  19. W. Yin, A.S. Mehr, A variable regularization method for affine projection algorithm. IEEE Trans. Circuits Syst. II 57, 476–480 (2010)

    Article  Google Scholar 

  20. C. Breining, P. Dreiscitel, E. Hansler, A. Mader, B. Nitsch, H. Puder, T. Schertler, G. Schmidt, J. Tilp, Acoustic echo control. An application of very-high-order adaptive filters. IEEE Signal Process. Mag. 16, 42–69 (1999)

    Google Scholar 

  21. M.R. Raghavendra, K. Giridhar, Improving channel estimation in OFDM systems for sparse multipath channels. IEEE Signal Process. Lett. 12, 52–55 (2005)

    Article  Google Scholar 

  22. J. Haupt, W.U. Bajwa, G. Raz, R. Nowak, Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Trans. Inform. Theory. 56, 5862–5875 (2010)

    Article  MathSciNet  Google Scholar 

  23. D.L. Duttweiler, Proportionate normalized least mean square adaptation in echo cancelers. IEEE Trans. Speech Audio Process. 8, 508–518 (2000)

    Article  Google Scholar 

  24. J. Homer, I. Mareels, C. Hoang, Enhanced detection-guided NLMS estimation of sparse FIR-modeled signal channels. IEEE Trans. Circuits Syst I(53), 1783–1791 (2006)

    Google Scholar 

  25. J. Benesty, S.L. Gay, An improved PNLMS algorithm. Proceedings of IEEE ICASSP, 2002, pp. 1881–1884

    Google Scholar 

  26. Y. Huang, J. Benesty, J. Chen, Acoustic MIMO Signal Processing (Springer, Berlin, 2006)

    MATH  Google Scholar 

  27. R.K. Martin, W.A. Sethares, R.C. Williamson, C.R. Johnson Jr, Exploiting sparsity in adaptive filters. IEEE Trans. Signal Process. 50, 1883–1894 (2002)

    Article  Google Scholar 

  28. S. Amari, Natural gradient works efficiently in learning. Neural Computation 10, 251–276 (1998)

    Article  Google Scholar 

  29. R.E. Mahoney, R.C. Williamson, Prior knowledge and preferential structures in gradient descent learning algorithms. Journal Mach. Learn. Research 1, 311–355 (2001)

    Google Scholar 

  30. E.J. Candes, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag. 25, 21–30 (2008)

    Article  Google Scholar 

  31. Y. Chen, Y. Gu, A. O. Hero, Sparse LMS for system identification. Proceedings of IEEE ICASSP, pp. 3125–3128, 2009

    Google Scholar 

  32. Y. Gu, J. Jian, S. Mei, \(l_{0}\) norm Constraint LMS algorithm for sparse system identification. IEEE Signal Process. Lett. 16, 774–777 (2009)

    Article  Google Scholar 

  33. B. Babadi, N. Kalouptsidis, V. Tarokh, SPARLS: The sparse RLS algorithm. IEEE Trans. Signal Process. 58, 4013–4025 (2010)

    Article  MathSciNet  Google Scholar 

  34. Y. Kopsinis, K. Slavakis, S. Theodoridis, Online sparse system identification and signal reconstruction using projections onto weighted \(\ell _{1}\) balls. IEEE Trans. Signal Process. 59, 936–952 (2011)

    Article  MathSciNet  Google Scholar 

  35. P.J. Huber, Robust Statistics (John Wiley& Sons, New York, 1981)

    Book  MATH  Google Scholar 

  36. T. Gänsler, S.L. Gay, M.M. Sondhi, J. Benesty, Double-talk robust fast converging algorithms for network echo cancellation. IEEE Trans. Speech Audio Process. 8, 656–663 (2000)

    Article  Google Scholar 

  37. P. Petrus, Robust Huber adaptive filter. IEEE Trans. Signal Process. 47, 1129–1133 (1999)

    Article  Google Scholar 

  38. Y. Zou, S.C. Chan, T.S. Ng, Least mean \(M\)-estimate algorithms for robust adaptive filtering in impulse noise. IEEE Trans. Circuits Syst. II(47), 1564–1569 (2000)

    Google Scholar 

  39. J. Chambers, A. Avlonitis, A robust mixed-norm adaptive adaptive filter algorithm. IEEE Signal Process. Lett. 4, 46–48 (1997)

    Article  Google Scholar 

  40. E.V. Papoulis, T. Stathaki, A normalized robust mixed-norm adaptive algorithm for system identification. IEEE Signal Process. Lett. 11, 56–59 (2004)

    Article  Google Scholar 

  41. A. Swami, Q. Zhao, Y. Hong, L. Tong, Wireless Sensor Networks. Signal Processing and Communication Perspectives (Wiley, West Sussex, 2007)

    Google Scholar 

  42. I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks. IEEE Commun. Mag. 40, 102–114 (2002)

    Article  Google Scholar 

  43. C.G. Lopes, A.H. Sayed, Incremental adaptive strategies over distributed networks. IEEE Trans. Signal Process. 55, 4064–4077 (2007)

    Article  MathSciNet  Google Scholar 

  44. F.S. Cativelli, C.G. Lopes, A.H. Sayed, Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Trans. Signal Process. 56, 1865–1877 (2008)

    Article  MathSciNet  Google Scholar 

  45. C.G. Lopes, A.H. Sayed, Diffusion least-mean squares over adaptive networks: Formulation and performance analysis. IEEE Trans. Signal Process. 56, 3122–3136 (2008)

    Article  MathSciNet  Google Scholar 

  46. I.D. Schizas G. Mateos, G.B. Giannakis, Distributed LMS for consensus-based in-network adaptive processing. IEEE Trans. Signal Process. 57, 2365–2382 (2009)

    Google Scholar 

  47. A. Bertrand, M. Moonen, Distributed adaptive node-specific signal estimation in fully connected sensor networks - Part I: Sequential node updating. IEEE Trans. Signal Process. 58, 5277–5291 (2010)

    Article  MathSciNet  Google Scholar 

  48. A. Bertrand, M. Moonen, Distributed adaptive node-specific signal estimation in fully connected sensor networks - Part II: Simultaneous and asynchronous node updating. IEEE Trans. Signal Process. 58, 5292–5306 (2010)

    Article  MathSciNet  Google Scholar 

  49. S. Chouvardas, K. Slavakis, S. Theodoridis, Adaptive robust distributed learning in diffusion sensor networks. IEEE Trans. Signal Process. 59, 4692–4707 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Rey Vega .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Rey Vega, L., Rey, H. (2013). Advanced Topics and New Directions. In: A Rapid Introduction to Adaptive Filtering. SpringerBriefs in Electrical and Computer Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30299-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30299-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30298-5

  • Online ISBN: 978-3-642-30299-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics