Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 285))

Abstract

The feature selection problem can be formulated as a multi-objective optimization (MOO) problem, as it involves the minimization of the feature subset cardinality and the misclassification error. In this chapter, a comparison of MOO algorithms applied to feature selection is presented. The used MOO methods are: Nondominated Sorting Genetic Algorithm II (NSGA-II), Archived Multi Objective Simulated Annealing (AMOSA), and Direct Multi Search (DMS). To test the feature subset solutions, Takagi- Sugeno fuzzy models are used as classifiers. To solve the feature selection problem, AMOSA was adapted to deal with discrete optimization. The multi-objective methods are applied to four benchmark datasets used in the literature and the obtained results are compared and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Direct multisearch (dms) for multi-objective optimization (2012), http://www.mat.uc.pt/dms/

  2. Asuncion, A., Newman, D.: UCI machine learning repository (2007), http://www.ics.uci.edu/mlearn/MLRepository.html

  3. Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A simulated annealing-based multi-objective optimization algorithm: AMOSA. IEEE Transactions on Evolutionary Computation 12(3), 269–283 (2008)

    Article  Google Scholar 

  4. van den Berg, J., Kaymak, U., van den Bergh, W.M.: Fuzzy classification using probability-based rule weighting. In: Proc. IEEE Int. Conf. on Fuzzy Systems, vol. 2, pp. 991–996. IEEE Press, Piscataway (2002)

    Google Scholar 

  5. Bhatia, S., Prakash, P., Pillai, G.: SVM based decision support system for heart disease classification with integer-coded genetic algorithm to select critical features. In: Proc. World Congress on Engineering and Computer Science, San Francisco (2008)

    Google Scholar 

  6. Coello, C.C., Voldhuizen, D., Lament, G. (eds.): Evolutionary Algorithms for Solving Multi Objective Problems. Kluwer Academic, New York (2002)

    MATH  Google Scholar 

  7. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to derivative-free optimization. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  8. Cordon, O., Herrera, F., Jesus, M., Magdalena, L., Sanchez, A., Villar, P.: A multiobjective genetic algorithm for feature selection and data base learning in fuzzy-rule based classification systems. In: Proc. 9th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2002), Annecy, France, pp. 823–830 (2002)

    Google Scholar 

  9. Custódio, A.L., Madeira, J.F.A., Vaz, A.I.F., Vicente, L.N.: Direct multisearch for multiobjective optimization. SIAM Journal on Optimization, 10–18 (2011)

    Google Scholar 

  10. Deb, K. (ed.): Multi Objective Optimization using Evolutionary Algorithms. J. Wiley & Sons, Chichester (2004)

    Google Scholar 

  11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. an Evolutionary Computation 6(2), 10–18 (2002)

    Google Scholar 

  12. Ekbal, A., Saha, S., Garbe, C.: Feature selection using multi-objective optimization for named entity recognition. In: Proc. IEEE Int. Conf. on Pattern Recognition, pp. 1937–1940 (2010)

    Google Scholar 

  13. Emmanouilidis, C. (ed.): Evolutionary Multi-Objective Feature Selection and ROC Analysis with Application to Industrial Machinery Fault Diagnosis. Evolutionary Methods for Design, Optimization and Control. J. Wiley & Sons, Chichester (2002)

    Google Scholar 

  14. Emmanouilidis, C., Hunter, A., MacIntyre, J.: A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator. In: Proc. Congress on Evolutionary Computation (CEC 2000), San Diego, pp. 823–830 (2000)

    Google Scholar 

  15. Emmanouilidis, C., Hunter, A., MacIntyre, J., Cox, C.: A multi-objective genetic algorithm approach to feature selection in neural and fuzzy modeling. Evolutionary Optimization 3(1), 1–26 (2001)

    Google Scholar 

  16. Gustafson, D., Kessel, W.: Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man and Cybernetics 15(1), 116–132 (1985)

    Article  Google Scholar 

  17. Hamdani, T.M., Won, J.-M., Alimi, A.M., Karray, F.: Multi-objective Feature Selection with NSGA II. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 240–247. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Huang, B., Buckley, B., Kechadi, T.: Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications. Expert Systems with Applications 37(5), 3638–3646 (2010)

    Article  Google Scholar 

  19. Lac, H., Stacey, D.: Feature subset selection via multi-objective genetic algorithm. In: Proc. IEEE Int. Joint Conf. on Neural Networks, pp. 1349–1354. IEEE Press, Piscataway (2005)

    Chapter  Google Scholar 

  20. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Berlin (1999)

    Google Scholar 

  21. Miettinen, K.: Nonlinear Multi-objective Optimization. Kluwer, New York (1999)

    Google Scholar 

  22. Nieto, J., Alba, E., Jourdan, L., Talbi, E.: Sensitivity and specificity based multiobjective approach for feature selection: Application to cancer diagnosis. Information Processing Letters 109, 887–896 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Oliveira, L., Sabourin, R., Bortolozzi, F., Suen, C.: Feature selection using multi-objective genetic algorithms for handwritten digit recognition. In: Proc. 16th Int. Conf. on Pattern Recognation (ICPR 2002), pp. 568–571. IEEE Press, Piscataway (2002)

    Google Scholar 

  24. Saha, S., Ekbal, A., Uryupina, O., Poesio, M.: Single and multi-objective optimization for feature selection in anaphora resolution. In: Proc. 5th Int. Joint Conf. on Natural Language Processing, pp. 93–101 (2011)

    Google Scholar 

  25. Sousa, J.M.C., Kaymak, U.: Fuzzy Decision Making in Modeling and Control. World Scientific and Imperial College, Singapore and UK (2002)

    MATH  Google Scholar 

  26. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2(3), 221–248 (1994)

    Article  Google Scholar 

  27. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. on Systems, Man and Cybernetics 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  28. Unler, A., Murat, A.: A discrete particle swarm optimization method for feature selection in binary classification problems. European Journal of Operational Research 206, 528–539 (2010)

    Article  MATH  Google Scholar 

  29. Vieira, S.M., Sousa, J.M.C., Runkler, T.A.: Two cooperative ant colonies for feature selection using fuzzy models. Expert Systems with Applications 37(4), 2714–2723 (2010)

    Article  Google Scholar 

  30. Wang, C., Huang, Y.: Evolutionary-based feature selection approaches with new criteria for data mining: A case study of credit approval data. Expert Systems with Applications 36, 5900–5908 (2009)

    Article  Google Scholar 

  31. Wang, X., Bandyopadhyay, S., Xuan, Z., Zhao, X., Zhang, M., Zhang, X.: Prediction of transcription start sites based on feature selection using AMOSA. In: Computational Systems Bioinformatics Conference, vol. 6, pp. 183–193 (2007)

    Google Scholar 

  32. Waqas, K., Baig, R., Ali, S.: Feature subset selection using multi-objective genetic algorithms. In: Proc. 13th IEEE Multitopic Conference, pp. 1–6 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Türkşen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Türkşen, Ö., Vieira, S.M., Madeira, J.F.A., Apaydin, A., Sousa, J.M.C. (2013). Comparison of Multi-objective Algorithms Applied to Feature Selection. In: Borgelt, C., Gil, M., Sousa, J., Verleysen, M. (eds) Towards Advanced Data Analysis by Combining Soft Computing and Statistics. Studies in Fuzziness and Soft Computing, vol 285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30278-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30278-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30277-0

  • Online ISBN: 978-3-642-30278-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics