Skip to main content

Prokaryotes and Their Habitats

  • Reference work entry
The Prokaryotes

Abstract

Prokaryotes are well recognized as essential members of the biosphere. They inhabit all possible locations in which life exists from those offering ideal conditions for growth and reproduction to those representing extreme environments at the borderline of abiotic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Deceased

References

  • Aaronson S (1970) Experimental microbial ecology. Academic, New York

    Google Scholar 

  • Acher AJ, Juven BJ (1977) Destruction of coliforms in water and sewage by dye-sensitized photooxidation. Appl Environ Microbiol 33:1019–1022

    PubMed  CAS  Google Scholar 

  • Adler J (1974) Chemoreception and chemotaxis in bacteria. In: Jaenicke L (ed) Biochemistry of sensory functions. Springer, Berlin

    Google Scholar 

  • Adler J (1988) Chemotaxis: old and new. Botanica Acta 101:93–100

    CAS  Google Scholar 

  • Ahrens R, Moll G, Rheinheimer G (1968) Die Rolle der Fimbrien bei der eigenartigen Sternbildung von Agrobacterium luteum. Archiv für Mikrobiologie 63:321–330

    PubMed  CAS  Google Scholar 

  • Akin DE (1976) Ultrastructure of rumen bacterial attachment to forage cell walls. Appl Environ Microbiol 31:562–568

    PubMed  CAS  Google Scholar 

  • Akin DE, Amos WE (1975) Rumen bacterial degradation of forage cell walls investigated by electron microscopy. Appl Microbiol 29:692–701

    PubMed  CAS  Google Scholar 

  • Alexander M (1971) Microbial ecology. Wiley, New YorK

    Google Scholar 

  • Alexander M (1976) Natural selection and the ecology of microbial adaption in a biosphere. In: Heinrich MR (ed) Extreme environments. Mechanisms of microbial adaption. Academic, New York, pp 3–25

    Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. Wiley, New York

    Google Scholar 

  • Anwar M, Khan TH, Prebble J, Zagalski PF (1977) Membrane-bound carotenoid in Micrococcus luteus protects naphthoquinone from photodynamic action. Nature 270:538–540

    PubMed  CAS  Google Scholar 

  • Aragno M (1978) Enrichment, isolation and preliminary characterization of a thermophilic, endospore-forming hydrogen bacterium. FEMS Microbiol Lett 3:13–15

    CAS  Google Scholar 

  • Atlas RM, Bartha R (1987) Microbial ecology: fundamentals and applications, 2nd edn. CA The Benjamin/Cummings, Menlo-Park

    Google Scholar 

  • Babenzien H-D (1965) Über Vorkommen und Kultur von Nevskia ramosa Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl 1:111–116

    Google Scholar 

  • Babenzien H-D (1967) Zur Biologie von Nevskia ramosa. Zeitschrift für Allgemeine Mikrobiologie 7:89–96

    PubMed  CAS  Google Scholar 

  • Ballard RD (1977) Notes on a major oceanographic find. Oceanus 20:35–44

    Google Scholar 

  • Barber RT (1968) Dissolved organic carbon from deep waters resists microbial oxidation. Nature 220:274–275

    PubMed  CAS  Google Scholar 

  • Baross JA, Deming JW (1983) Growth of black smoker bacteria at temperatures of at least 250 °C. Nature 303:423–426

    CAS  Google Scholar 

  • Baross JA, Morita RY (1978) Microbial life at low temperatures: ecological aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 9–71

    Google Scholar 

  • Bartha R, Atlas RM (1977) The microbiology of aquatic oil spills. Adv Appl Microbiol 22:225–266

    PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S, Nickerson WJ (1962) Nutrition, growth and morphogenesis of Mucor rouxii. J Bacteriol 84:841–858

    PubMed  CAS  Google Scholar 

  • Bauchop T (1971) Mechanism of hydrogen formation in Tritrichomonas foetus. J Gen Microbiol 68:27–33

    PubMed  CAS  Google Scholar 

  • Bauchop T (1977) Foregut fermentation. In: Clarke RTJ, Bauchop T (eds) Microbial ecology of the gut. Academic, London, pp 223–310

    Google Scholar 

  • Bauld J, Brock TD (1973) Ecological studies of Chloroflexus, a gliding photosynthetic bacterium. Archiv für Mikrobiologie 92:267–284

    Google Scholar 

  • Baumann P, Baumann L (1977) Biology of the marine enterobacteria: genera Beneckea and Photobacterium. Ann Rev Microbiol 31:39–61

    CAS  Google Scholar 

  • Baumann L, Baumann P, Mandel M, Allen RD (1972) Taxonomy of aerobic marine bacteria. J Bacteriol 110:402–429

    PubMed  CAS  Google Scholar 

  • Bavendamm W (1924) Die farblosen und roten Schwefelbakterien des Süss-und Salzwassers Pflanzenforschung 2:1–156

    Google Scholar 

  • Bayley ST, Morton RA (1978) Recent developments in the molecular biology of extremely halophilic bacteria. CRC Crit Rev Microbiol 6:151–205

    PubMed  CAS  Google Scholar 

  • Bayley ST, Morton RA (1979) Biochemical evolution of halobacteria. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 109–124

    Google Scholar 

  • Bazylinski DA, Frankel RB, Jannasch HW (1988) Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature 334:518–519

    Google Scholar 

  • Beijerinck MW (1895) Über Spirillum desulfuricans als Ursache von Sulfatreduktion Zentralblatt für Bakteriologie, Parasitenkunde Infektionskrankheiten und Hygiene, Abt. 2, 1:1–9

    Google Scholar 

  • Beijerinck MW (1921–1940) Verzammelde Geschriften Nijhoff, Den Haag, pp 1–6

    Google Scholar 

  • Belkin S, Wirsen CO, Jannasch HW (1986a) A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent. Appl Environ Microbiol 51:1180–1185

    PubMed  CAS  Google Scholar 

  • Belkin S, Nelson DC, Jannasch HW (1986b) Symbiotic assimilation of CO2 in two hydrothermal vent animals, the mussel Bathymodiolus thermophilus and the tube worm Riftia pachyptila. Biol Bull 170:110–121

    Google Scholar 

  • Benemann JR (1973) Nitrogen fixation in termites. Science 181:164–165

    PubMed  CAS  Google Scholar 

  • Bennett AF (1978) Activity metabolism of the lower vertebrates. Ann Rev Physiol 40:447–469

    CAS  Google Scholar 

  • Berg B, van Hofsten B, Pettersson G (1972) Electron microscopic observations on the degradation of cellulose fibers by Cellvibrio fulvus and Sporocytophaga myxococcoides. J Appl Bacteriol 35:215–219

    PubMed  CAS  Google Scholar 

  • Bergensen FJ, Hipsley EH (1970) The presence of N2-fixing bacteria in the intestine of man and animals. J Gen Microbiol 60:61–65

    Google Scholar 

  • Berkeley RCW, Lynch JM, Melling J, Rutter PR, Vincent B (1980) Microbial adhesion to surfaces. Ellis Horwood, Chichester

    Google Scholar 

  • Berndt H, Ostwal K-P, Lalucat J, Schumann CH, Mayer F, Schlegel HG (1976) Identification and physiological characterization of the nitrogen fixing bacterium Corynebacterium autotrophicum GZ 29. Arch Microbiol 108:17–26

    PubMed  CAS  Google Scholar 

  • Bezdek HG, Carlucci AF (1972) Surface concentration of marine bacteria. Limnol Oceanogr 17:566–569

    Google Scholar 

  • Bhuiya ZH, Walker N (1977) Autotrophic nitrifying bacteria in acid tea soils from Bangladesh and Sri Lanka. J Appl Bacteriol 42:253–257

    PubMed  CAS  Google Scholar 

  • Biebl H, Pfennig N (1978) Growth yield of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol 117:9–16

    CAS  Google Scholar 

  • Bitton G, Marshall KC (1980) Adsorption of microorganisms to surfaces. Wiley, New York

    Google Scholar 

  • Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379

    PubMed  CAS  Google Scholar 

  • Blakemore RP, Maratea D, Wolfe RS (1979) Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol 140:720–729

    PubMed  CAS  Google Scholar 

  • Blakemore RP, Frankel RB, Kalmijn AJ (1980) South-seeking magnetotactic bacteria in the Southern Hemisphere. Nature 286:384–385

    Google Scholar 

  • Bland JA, Staley JT (1978) Observations on the biology of Thiothrix. Arch Microbiol 117:79–87

    Google Scholar 

  • Blumershine RV, Savage DC (1978) Filamentous microbes indigenous to the murine small bowel: a scanning electron microscopic study of their morphology and attachment to the epithelium. Microb Ecol 4:95–103

    Google Scholar 

  • Bokor R (1933) Die Mikrobiologie der Szik-(Salz-oder Alkali-) Böden mit besonderer Berücksichtigung ihrer Fruchtbarmachung. In: Fehäer D (ed) Untersuchungen über die Mikrobiologie des Waldbodens. Springer, Berlin, pp 221–258

    Google Scholar 

  • Bothe H, De Bruijn FJ, Newton WE (eds) (1988) Nitrogen fixation: hundred years after. Gustav-Fischer-Verlag, Stuttgart

    Google Scholar 

  • Bousfield IJ, MacKenzie AR (1976) Inactivation of bacteria by freeze-drying. Soc Appl Bacteriol Symp Ser 5:329–344

    CAS  Google Scholar 

  • Boyd SA, Shelton DR, Berry D, Tiedje JM (1983) Anaerobic biodegradation of phenolic compounds in digested sludge. Appl Environ Microbiol 46:50–54

    PubMed  CAS  Google Scholar 

  • Boyer EV, Ingle MB, Merver GD (1973) Bacillus alcalophilus subsp. halodurans subsp. nov.: an alkaline-amylase-producing, alkalophilic organism. Int J Syst Bacteriol 23:238–242

    Google Scholar 

  • Boylen CW (1973) Survival of Arthrobacter crystallopoietes during prolonged periods of extreme desiccation. J Bacteriol 113:33–37

    PubMed  CAS  Google Scholar 

  • Breznak JA, Brill WJ, Mertins JW, Coppel HC (1973) Nitrogen fixation in termites. Nature 244:577–579

    PubMed  CAS  Google Scholar 

  • Brierley CL (1977) Thermophilic microorganisms in extraction of metals from ores. In: Underkofler LA (ed) Developments in industrial microbiology. Proceedings of the 33rd general meeting of the society for industrial microbiology, vol 18. Washington American Institute of Biological Sciences, Washington, DC, pp 273–284

    Google Scholar 

  • Brierley CL (1978a) Bacterial leaching. CRC Crit Rev Microbiol 6:207–262

    PubMed  CAS  Google Scholar 

  • Brierley JA (1978b) Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Appl Environ Microbiol 36:523–525

    PubMed  CAS  Google Scholar 

  • Brierley CL, Brierley JA (1973) A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Can J Microbiol 19:183–188

    PubMed  CAS  Google Scholar 

  • Brierley JA, Lockwood SJ (1977) The occurrence of thermophilic iron-oxidizing bacteria in a copper leaching system. FEMS Microbiol Lett 2:163–165

    CAS  Google Scholar 

  • Briston J, Courtois D, Denis F (1974) Microbiological study of a hypersaline lake in French Somaliland. Appl Microbiol 27:819–822

    Google Scholar 

  • Brock TD (1967) Life at high temperatures. Science 158:1012–1019

    PubMed  CAS  Google Scholar 

  • Brock TD (1969) Microbial growth under extreme conditions. Soc Gen Microbiol Symp 19:15–41

    Google Scholar 

  • Brock TD (1970) High temperature systems. Ann Rev Ecol Syst 1:191–220

    Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New York

    Google Scholar 

  • Brock TD (1979) Ecology of saline lakes. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 39–47

    Google Scholar 

  • Brock TD (ed) (1986) Thermophiles: general, molecular and applied microbiology. Wiley, New York

    Google Scholar 

  • Brock TD (1987) The study of microorganisms in situ: progress and problems. In: Fletscher M, Gray TRG, Jones JG (eds) Ecology of microbial communities. Cambridge University Press, Cambridge, pp 1–17

    Google Scholar 

  • Brock TD, Boylen KL (1973) Presence of thermophilic bacteria in laundry and domestic hot-water heaters. Appl Microbiol 25:72–76

    PubMed  CAS  Google Scholar 

  • Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. J Bacteriol 98:289–297

    PubMed  CAS  Google Scholar 

  • Brock TD, Brock ML, Bott TL, Edwards MR (1971) Microbial life at 90 °C: The sulfur bacteria of Boulder Spring. J Bacteriol 107:303–314

    PubMed  CAS  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archiv für Mikrobiologie 84:54–68

    PubMed  CAS  Google Scholar 

  • Brown AD (1978) Microbial water stress. Bacteriol Rev 40:803–846

    Google Scholar 

  • Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Archiv für Mikrobiologie 59:20–31

    PubMed  CAS  Google Scholar 

  • Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169

    PubMed  CAS  Google Scholar 

  • Buchner P (1953) Endosymbiose der Tiere mit pflanzlichen Mikroorganismen. Birkhäuser Verlag, Basel

    Google Scholar 

  • Buder J (1919) Zur Biologie des Bacteriopurpurins und der Purpurbakterien. Jahrbücher der Wissenschaftlichen Botanik 58:525–628

    Google Scholar 

  • Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990) Archaeoglobus profundus sp. nov., represents a new species of within the sulfate-reducing archaebacteria. Syst Appl Microbiol 10:24–28

    Google Scholar 

  • Butlin KR, Postgate JR (1954) The microbiological formation of sulphur in Cyrenaican lakes. In: Cloudsley-Thompson JL (ed) Biology of deserts. Institute of Biology, London, pp 112–122

    Google Scholar 

  • Cagle GD (1975) Fine structure and distribution of extracellular polymer surrounding selected aerobic bacteria. Can J Microbiol 21:395–408

    PubMed  CAS  Google Scholar 

  • Cappenberg TH-E (1974a) Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake I. Field of observations. Antonie van Leeuwenhoek J Microbiol Serol 40:285–295

    CAS  Google Scholar 

  • Cappenberg TH-E (1974b) Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments. Antonie van Leeuwenhoek J Microbiol Serol 40:297–306

    CAS  Google Scholar 

  • Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33:476–504

    PubMed  CAS  Google Scholar 

  • Castenholz RW (1976) The effect of sulfide on the blue-green algae of hot springs. I. New Zealand and Iceland. J Phycol 12:54–68

    CAS  Google Scholar 

  • Castenholz RW (1977) The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microb Ecol 3:79–105

    CAS  Google Scholar 

  • Castenholz RW (1979) Evolution and ecology of thermophilic microorganisms. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 373–392

    Google Scholar 

  • Cavanaugh CM, Gardiner SL, Jones MLS, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm. Riftia pachyptila: possible chemoautotrophic symbionts. Science 213:340–342

    PubMed  CAS  Google Scholar 

  • Characklis WG, Marshall KC (1990) Biofilms. Wiley Interscience, New York

    Google Scholar 

  • Chen M, Wolin MJ (1977) Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium. Appl Environ Microbiol 34:756–759

    PubMed  CAS  Google Scholar 

  • Chet I, Mitchell R (1976) Ecological aspects of microbial chemotactic behavior. Ann Rev Microbiol 30:221–239

    CAS  Google Scholar 

  • Childress JJ, Fisher CR, Brook JM, Kennicutt MC II, Bridigare R, Anderson AE (1986) A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science 233:1306–1308

    PubMed  CAS  Google Scholar 

  • Chislett ME, Kushner DJ (1961) A strain of Bacillus circulans capable of growing under highly alkaline conditions. J Gen Microbiol 24:187–190

    PubMed  CAS  Google Scholar 

  • Clark FE (1967) Bacteria in soil. In: Burges A, Raw F (eds) Soil biology. Academic, London, pp 15–49

    Google Scholar 

  • Clark AE, Walsby AE (1978a) The occurrence of gas-vacuolate bacteria in lakes. Arch Microbiol 118:223–228

    Google Scholar 

  • Clark AE, Walsby AE (1978b) The development and vertical distribution of populations of gas-vacuolate bacteria in a eutrophic, monomictic lake. Arch Microbiol 118:229–233

    Google Scholar 

  • Clarke RTJ (1977) The gut and its micro-organisms. In: Clarke RTJ, Bauchop T (eds) Microbial ecology of the gut. Academic, London, pp 35–71

    Google Scholar 

  • Coates ME, Fuller R (1977) The gnotobiotic animal in the study of gut microbiology. In: Clark RTJ, Bauchop T (eds) Microbial ecology of the gut. Academic, London, pp 311–346

    Google Scholar 

  • Cohen Y, Rosenberg E (1989) Microbial mats: physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Cohen Y, Padan E, Shilo M (1975) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol 123:855–861

    PubMed  CAS  Google Scholar 

  • Cohen Y, Krumbein WE, Goldberg M, Shilo M (1977) Solar lake (Sinai). I. Physical and chemical limnology. Limnol Oceanogr 22:597–608

    CAS  Google Scholar 

  • Cohen-Bazire G, Stainer RY (1958) Inhibition of carotenoid synthesis in photosynthetic bacteria. Nature 181:250–252

    PubMed  CAS  Google Scholar 

  • Cohen-Bazire G, Kunisawa R, Pfennig N (1969) Comparative study of the structure of gas vacuoles. J Bacteriol 100:1049–1061

    PubMed  CAS  Google Scholar 

  • Cohn F (1881) Gutachten über die Abwässer verschiedener Zuckerfabriken im Winter 1881 Quoted from Kolkwitz 1906

    Google Scholar 

  • Colmer AR, Temple KL, Hinkle ME (1950) An iron-oxidizing bacterium from the drainage of some bituminous coal mines. J Bacteriol 59:317–328

    PubMed  CAS  Google Scholar 

  • Cornax R, Morinigo MA, Romero P, Borrego JJ (1990) Survival of pathogenic microorganisms in seawater. Curr Microbiology 220:293–298

    Google Scholar 

  • Costerton JW, Cheng KJ (1981) The Bacterial glycocalyx in nature and disease. Ann Rev Microbiol 35:299–324

    CAS  Google Scholar 

  • Costerton JW, Ingram JM, Cheng K-J (1974) Structure and function of the cell envelope of Gram-negative bacteria. Bacteriol Rev 38:87–110

    PubMed  CAS  Google Scholar 

  • Costerton JW, Geesey GG, Cheng K-J (1978) How bacteria stick. Sci Am 238:86–95

    PubMed  CAS  Google Scholar 

  • Costerton JW, Irvin RT, Cheng KJ (1981) The role of bacterial surface structures in pathogenesis. Crit Rev Microbiol 8:303–338

    PubMed  CAS  Google Scholar 

  • Costerton JW, Marrie TJ, Cheng KJ (1985) Phenomena of bacterial adhesion. In: Savage DC, Fletcher M (eds) Bacterium adhesion. Plenum, New York, pp 3–43

    Google Scholar 

  • Costerton JW, Cheng K-J, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Ann Rev Microbiol 41:435–464

    CAS  Google Scholar 

  • Cross T (1968) Thermophilic actinomycetes. J Appl Bacteriol 31:36–53

    PubMed  CAS  Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    PubMed  CAS  Google Scholar 

  • Cundell AM, Sleeter TD, Mitchell R (1977) Microbial populations associated with the surface of the brown alga Ascophyllum nodosum. Microb Ecol 4:81–91

    Google Scholar 

  • Dazzo FB, Yanke WE, Brill WJ (1978) Trifoliin: a RHIZOBIUM recognition protein from white clover. Biochim Biophys Acta 539:276–286

    PubMed  CAS  Google Scholar 

  • De Bont JAM, Mulder EG (1974) Nitrogen fixation and co-oxidization of ethylene by a methane-utilizing bacterium. J Gen Microbiol 83:113–121

    Google Scholar 

  • Degens ET, Ross DA (1974) The Black Sea: geology, chemistry and biology Memoir 20. American Association of Petroleum, Tulsa

    Google Scholar 

  • Dehority BA (1971) Carbon dioxide requirement of various species of rumen bacteria. J Bacteriol 105:70–76

    PubMed  CAS  Google Scholar 

  • DeLong EF, Wickham GS, Pace NR (1988) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363

    Google Scholar 

  • Deming JW, Colwell RR (1982) Barophilic bacteria associated with digestive tracts of abyssal holothurians. Appl Environ Microbiol 44:1222–1230

    PubMed  CAS  Google Scholar 

  • Deming JW, Tabor PS, Colwell RR (1981) Barophilic growth from intestinal tracts of deep-sea invertebrates. Microb Ecol 7:85–94

    Google Scholar 

  • Demoll R, Liebmann H (1952) Über die Verteilung von Sphaerotilus natans im Fluss. Schweizerische Zeitschrift für Hydrologie 14:289–297

    Google Scholar 

  • Dietz AS, Yayanos AA (1978) Silica gel for isolating and studying bacteria under hydrostatic pressure. Appl Environ Microbiol 36:966–968

    PubMed  CAS  Google Scholar 

  • Distel DL, Lane DJ, Olsen GJ, Giovannoni SJ, Pace B, Pace NR, Stahl DA, Felbeck H (1988) Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J Bacteriol 170:2506–2510

    PubMed  CAS  Google Scholar 

  • Dondero NC (1961) Sphaerotilus, its nature and economic significance. Adv Appl Microbiol 3:77–107

    PubMed  CAS  Google Scholar 

  • Dondero NC (1975) The Sphaerotilus-Leptothrix group. Ann Rev Microbiol 29:407–465

    CAS  Google Scholar 

  • Drasar BS, Barrow PA (1985) Intestinal microbiology (Aspects of Microbiology 10).van Nostrand Reinholf, England

    Google Scholar 

  • Drasar BS, Hill MJ (1974) Human intestinal flora. Academic, London

    Google Scholar 

  • Duckworth RB (1975) Water relations in foods. Proceedings of an international symposium in Glasgow, Sept 1974. Academic, London

    Google Scholar 

  • Duda VI, Makaer’eva DE (1977) Morphogenesis and function of gas caps on spores of anaerobic bacteria of the genus Clostridium. Mikrobiologiya 46:689–694, In Russian, with English summary

    CAS  Google Scholar 

  • Dugan PR, MacMillan CB, Pfister RM (1970) Aerobic heterotrophic bacteria indigenous to pH 2.8 acid mine water: microscopic examination of acid streamers. J Bacteriol 101:973–981

    PubMed  CAS  Google Scholar 

  • Dundas IED (1977) Physiology of Halobacteriaceae. Adv Microb Physiol 15:85–120

    PubMed  CAS  Google Scholar 

  • Dundas ID, Larsen H (1962) The physiological role of the carotenoid pigments of Halobacterium salinarium. Archiv für Mikrobiologie 44:233–239

    CAS  Google Scholar 

  • Ebisu S, Kato K, Kotani S, Misaki A (1975) Structural differences in fructans elaborated by Streptococcus mutans and S. salivarius. J Biochem 78:879–887

    PubMed  CAS  Google Scholar 

  • Ellwood DC, Hedger JN, Latham MH, Lynch JM, Slater JH (1980) Contemporary microbial ecology. Academic, London

    Google Scholar 

  • Ensign JC, Wolfe RS (1964) Nutritional control of morphogenesis in Arthrobacter crystallopoietes. J Bacteriol 87:924–932

    PubMed  CAS  Google Scholar 

  • Eutick ML, O’Brien RW, Slaytor M (1978) Bacteria from the gut of Australian termites. Appl Environ Microbiol 35:823–828

    PubMed  CAS  Google Scholar 

  • Fairbairn D (1970) Biochemical adaptation and loss of genetic capacity in helminth parasites. Biol Rev 45:29–72

    PubMed  CAS  Google Scholar 

  • Felbeck H, Childress JJ, Somero GN (1981) Calvin-Benson cycle and sulphide oxidation enzymes in -animals from sulphiderich habitats. Nature 293:291–293

    CAS  Google Scholar 

  • Fenchel TM (1969) The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem. Ophelia 6:1–182

    Google Scholar 

  • Fenchel TM, Jørgensen BB (1977) Detritus food chains in aquatic ecosystems: the role of bacteria. Adv Microb Ecol 1:1–58

    CAS  Google Scholar 

  • Fenchel TM, Riedl RJ (1970) The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar Biol 7:255–268

    CAS  Google Scholar 

  • Fenchel TM, Staarup BJ (1971) Vertical distribution of photosynthetic pigments and the penetration of light in marine sediments. Oikos 22:172–182

    CAS  Google Scholar 

  • Ferry JG, Wolfe RS (1976) Anaerobic degradation of benzoate to methane by a microbial consortium. Arch Microbiol 107:33–40

    PubMed  CAS  Google Scholar 

  • Fiala G, Stetter KO, Jannasch HW, Langworthy TA, Madon J (1986) Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98 °C. Syst Appl Microbiol 8:106–113

    Google Scholar 

  • Fisher CR, Childress JJ, Minnich E (1989) Autotrophic carbon fixation by the chemoautotrophic symbionts of Riftia pachyptila. Biol Bull 177:372–385

    CAS  Google Scholar 

  • Fletcher M, Loeb GI (1979) Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl Environ Microbiol 37:67–72

    PubMed  CAS  Google Scholar 

  • Fletcher M, Marshall KC (1982) Are solid surfaces of ecological significance to aquatic bacteria? In: Marshall KC (ed) Advances in microbial ecology. Plenum, New York

    Google Scholar 

  • Fliermans CB, Brock TD (1972) Ecology of sulfur-oxidizing bacteria in hot acid soils. J Bacteriol 111:343–350

    PubMed  CAS  Google Scholar 

  • Focht DD, Verstraete W (1977) Biochemical ecology of nitrification and denitrification. Adv Microb Ecol 1:135–214

    CAS  Google Scholar 

  • Foglesong MA, Walker DH Jr, Puffer JS, Markovetz AJ (1975) Ultrastructural morphology of some prokaryotic microorganisms associated with the hindgut of cockroaches. J Bacteriol 123:336–345

    PubMed  CAS  Google Scholar 

  • Foster JW (1949) Chemical activities of fungi. Academic, New York

    Google Scholar 

  • Frankel RB, Blakemore RP, Wolfe RS (1979) Magnetite in freshwater magnetotactic bacteria. Science 203:1355–1356

    PubMed  CAS  Google Scholar 

  • Fridovich I (1974) Superoxide dismutases. Adv Enzymol 41:35–97

    PubMed  CAS  Google Scholar 

  • Fridovich I (1975) Oxygen: boon and bane. Am Sci 63:54–59

    PubMed  CAS  Google Scholar 

  • Fridovich I (1976) Oxygen radicals, hydrogen peroxide, and oxygen toxicity. In: Pryor WA (ed) Free radicals in biology, vol 1. Academic, New York, pp 239–277

    Google Scholar 

  • Gerber NN (1975) Prodigiosin-like pigments. CRC Crit Rev Microbiol 3:469–485

    PubMed  CAS  Google Scholar 

  • Germaine GR, Chludzinski AM, Schachtele CF (1974) Streptococcus mutans dextransucrase: requirement for primer dextran. J Bacteriol 120:287–294

    PubMed  CAS  Google Scholar 

  • Gillespy TG, Thorpe RH (1968) Occurrence and significance of thermophiles in canned foods. J Appl Bacteriol 31:59–65

    PubMed  CAS  Google Scholar 

  • Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170:720–726

    PubMed  CAS  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345(6270):60–63

    PubMed  CAS  Google Scholar 

  • Golovacheva RS (1976) Thermophilic nitrifying bacteria from hot springs. Mikrobiologiya 45:377–379, In Russian, with English summary

    Google Scholar 

  • Golovacheva RS (1979) Attachment of Sulfobacillus thermosulfidooxidans cells to the surface of sulfide minerals. Mikrobiologiya 48:528–533, In Russian, with English summary

    CAS  Google Scholar 

  • Golovacheva RS, Karavaiko GI (1978) Sulfobacillus, a new genus of thermophilic sporeforming bacteria. Mikrobiologiya 47:815–822, In Russian, with English summary

    CAS  Google Scholar 

  • Gorini L (1960) Antagonism between substrate and repressor in controlling the formation of a biosynthetic enzyme. Proc Nat Acad Sci USA 46:682–690

    PubMed  CAS  Google Scholar 

  • Gorlenko WM, Dubinina GA, Kuznezow SJ (1977) Ecology of aquatic microorganisms. Nauka, Moscow

    Google Scholar 

  • Goto E, Kodama T, Minoda Y (1977) Isolation and culture conditions of thermophilic hydrogen bacteria. Agric Biol Chem 41:685–690

    CAS  Google Scholar 

  • Gottlieb SF (1971) Effect of hyperbaric oxygen on microorganisms. Ann Rev Microbiol 25:111–152

    CAS  Google Scholar 

  • Grant WD, Mills AA, Schofield AK (1979) An alkalophilic species of Ectothiorhodospira from a Kenyan soda lake. J Gen Microbiol 110:137–142

    Google Scholar 

  • Grassle JF (1986) The ecology of deep-sea hydrothermal vent communities. Adv Mar Biol Ecol 23:301–362

    Google Scholar 

  • Greenberg EP, Hastings JW, Ulitzur S (1979) Induction of luciferase synthesis in Beneckea harveyi by other marine bacteria. Arch Microbiol 120:87–91

    CAS  Google Scholar 

  • Griffin DM (1981) Water and microbial stress. Adv Microb Ecol 5:91–136

    CAS  Google Scholar 

  • Griffin DM, Luard EJ (1979) Water stress and microbial ecology. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 49–63

    Google Scholar 

  • Gromet-Elhanan Z (1977) Electron transport and photophosphorylation in photosynthetic bacteria. In: Trebst A, Avron M (eds) Encyclopaedia of plant physiology, vol 5. Springer, Berlin, pp 637–662

    Google Scholar 

  • Gunner HB, Alexander M (1964) Anaerobic growth of Fusarium oxysporum. J Bacteriol 87:1309–1316

    PubMed  CAS  Google Scholar 

  • Hansen MH, Ingvorsen K, Jørgensen BB (1978) Mechanisms of hydrogen sulfide release from coastal marine sediments to the atmosphere. Limnol Oceanogr 23:68–76

    CAS  Google Scholar 

  • Harder W, Veldkamp H (1968) Physiology of an obligate psychrophilic marine Pseudomonas species. J Appl Bacteriol 31:12–33

    CAS  Google Scholar 

  • Harder W, Veldkamp H (1971) Competition of marine psychrophilic bacteria at low temperatures. Antonie van Leeuwenhoek J Microbiol Serol 37:51–63

    CAS  Google Scholar 

  • Hardie JM, Bowden GH (1974) The normal microbial flora of the mouth. In: Skinner FA, Carr JG (eds) The normal microbial flora of man. Academic, London, pp 47–83

    Google Scholar 

  • Harold R, Stanier RY (1955) The genera Leucothrix and Thiothrix. Bacteriol Rev 19:49–58

    PubMed  CAS  Google Scholar 

  • Harris RH, Mitchell R (1973) The role of polymers in microbial aggregation. Ann Rev Microbiol 27:27–50

    CAS  Google Scholar 

  • Hassan HM, Fridovich I (1979) Superoxide dismutase and its role for survival in the presence of oxygen. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 179–193

    Google Scholar 

  • Hastings JW, Nealson KH (1977) Bacterial bioluminescence. Ann Rev Microbiol 31:549–595

    CAS  Google Scholar 

  • Hattori T, Ishida Y, Maruyama Y, Morita RY, Uchida A (1989) Recent advances in microbial ecology. In: Proceedings of the 5th international symposium on microbial ecology, Japan Science Society Press, Tokyo

    Google Scholar 

  • Hazelbauer GL (1988) The bacterial chemosensory system. Can J Microbiol 34:466–474

    PubMed  CAS  Google Scholar 

  • Heinen W (1974) Proceedings of the first European workshop on microbial adaptation to extreme environments. Biosystems 6:57–80

    Google Scholar 

  • Held AA (1970) Nutrition and fermentative energy metabolism of the water mold Aqualinderella fermentans. Mycologia 62:339–358

    CAS  Google Scholar 

  • Held AA, Emerson R, Fuller MS, Gleason FH (1969) Blastocladia and Aqualinderella: fermentative water molds with high carbon dioxide optima. Science 165:706–708

    PubMed  CAS  Google Scholar 

  • Henrici AT, Johnson DE (1935) Studies of freshwater bacteria. II. Stalked bacteria, a new order of Schizomycetes. J Bacteriol 30:61–86

    PubMed  CAS  Google Scholar 

  • Herdman M, Janvier M, Waterbury JB, Rippka R, Stanier RY (1979) Deoxyribonucleic acid base composition of cyanobacteria. J Gen Microbiol 111:63–71

    CAS  Google Scholar 

  • Heukelekian H, Heller A (1940) Relation between food concentration and surface for bacterial growth. J Bacteriol 40:547–558

    PubMed  CAS  Google Scholar 

  • Heumann W, Marx R (1964) Feinstruktur und Funktion der Fimbrien bei dem sternbildenden Bakterium Pseudomonas echinoides. Archiv für Mikrobiologie 47:325–337

    Google Scholar 

  • Hirsch P (1974) Budding bacteria. Ann Rev Microbiol 28:392–444

    Google Scholar 

  • Hirsch P (1979) Life under conditions of low nutrient concentrations. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 357–372

    Google Scholar 

  • Hirsch P, Pankratz St H (1970) Study of bacterial populations in natural environments by use of submerged electron microscope grids. Zeitschrift für Allgemeine Mikrobiologie 10:589–605

    PubMed  CAS  Google Scholar 

  • Hobson PN (1988) The rumen microbial ecosystem. Elsevier Science, London

    Google Scholar 

  • Hochachka PW, Mustafa T (1972) Invertebrate facultative anaerobiosis. Science 178:1056–1060

    PubMed  CAS  Google Scholar 

  • Hochachka PW, Somero GN (1973) Strategies of biochemical adaptation. WB Saunders, London

    Google Scholar 

  • Hoffmann C (1942) Beiträge zur Vegetation des FarbstreifenSandwattes. Kieler Meeresforschungen 4:85–108

    Google Scholar 

  • Holben WE, Jansson J, Chelm B, Tiedje T (1988) DNA probe method for detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54:703–711

    PubMed  CAS  Google Scholar 

  • Holdemann LV, Cato EP, Moore WEC (1977) Anaerobe laboratory manual, 4th edn. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  • Horikoshi K, Akiba T (1982) Alkalophilic microorganisms. A new microbial world. Japan Scientific Societies Press/Springer, Berlin/New York

    Google Scholar 

  • Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333

    CAS  Google Scholar 

  • Huber R, Huber G, Segerer A, Seger J, Stetter KO (1987a) Aerobic and anaerobic extremely thermophilic autotrophs. In: van Verseveld HW, Duine JA (eds) Proceedings of the 5th international symposium. Martinus Nijhoff, Dordrecht, pp 44–51

    Google Scholar 

  • Huber R, Kristjansson J, Stetter KO (1987b) Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100 °C. Arch Microbiol 149:95–101

    CAS  Google Scholar 

  • Huber R, Kurr M, Jannasch HW, Stetter KO (1989) A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110 °C. Nature 342:833–834

    Google Scholar 

  • Huber R, Stoffers P, Cheminee JL, Richnow HH, Stetter KO (1990) Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount. Nature 345:179–181

    Google Scholar 

  • Hughes MN, Poole RK (1989) Metals and microorganisms. Chapman and Hall, London

    Google Scholar 

  • Hungate RE (1950) The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49

    PubMed  CAS  Google Scholar 

  • Hungate RE (1962) Ecology of bacteria. In: Gunsalus JC, Stanier RY (eds) The bacteria, vol IV, The physiology of growth. Academic, New York, pp 95–119

    Google Scholar 

  • Hungate RE (1966) The rumen and its microbes. Academic, New York

    Google Scholar 

  • Hungate RE (1967) Hydrogen as an intermediate in the rumen fermentation. Archiv für Mikrobiologie 59:158–164

    PubMed  CAS  Google Scholar 

  • Hungate RE (1975) The rumen microbial ecosystem. Ann Rev Ecol Syst 6:39–66

    CAS  Google Scholar 

  • Hussain HM (1973) Ökologische Untersuchungen über die Bedeutung thermophiler Mikroorganismen für die Selbsterhitzung von Heu. Zeitschrift für Allgemeine Mikrobiologie 13:323–334

    PubMed  CAS  Google Scholar 

  • Hustede E, Liebergesell M, Schlegel HG (1989) The photophobic response of various sulfur and nonsulfur purple bacteria. Photochem Photobiol 50:809–815

    Google Scholar 

  • Iannotti EL, Kafkewit D, Wolin MJ, Bryant MP (1973) Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2. J Bacteriol 114:1231–1240

    PubMed  CAS  Google Scholar 

  • Imhoff JF, Trüper HG (1977) Ectothiorhodospira halochloris sp. nov., a new extremely halophilic bacterium containing bacteriochlorophyll b. Arch Microbiol 114:115–121

    CAS  Google Scholar 

  • Inniss WE (1975) Interaction of temperature and psychrophilic microorganisms. Ann Rev Microbiol 29:445–465

    CAS  Google Scholar 

  • Inniss WE, Ingraham JL (1978) Microbial life at low temperatures: mechanisms and molecular aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 73–104

    Google Scholar 

  • Jaggar J (1983) Physiological effects of near-ultraviolet radiation on bacteria. Photochem Photobiol Rev 7:1–75

    Google Scholar 

  • Jannasch HW (1955) Zur Ökologie der zymogenen planktischen Bakterienflora natürlicher Gewässer. Archiv für Mikrobiologie 23:146–180

    PubMed  CAS  Google Scholar 

  • Jannasch HW (1957) Die bakterielle Rotfärbung der Salzseen des Wadi Natrun (Ägypten). Archiv für Hydrobiologie 53:425–433

    Google Scholar 

  • Jannasch HW (1958) Studies of planktonic bacteria by means of a direct membrane filter method. J Gen Microbiol 18:609–620

    PubMed  CAS  Google Scholar 

  • Jannasch HW (1960) Versuche über Denitrifikation und die Verfügbarketi des Sauerstoffes in Wasser und Schlamm. Archiv für Hydrobiologie 56:335–369

    Google Scholar 

  • Jannasch HW (1967) Enrichment of aquatic bacteria in continuous culture. Archiv für Mikrobiologie 59:165–173

    PubMed  CAS  Google Scholar 

  • Jannasch HW (1977) Growth kinetics of aquatic bacteria. Soc Appl Bacteriol Symp Ser 6:55–68

    Google Scholar 

  • Jannasch HW (1978) Microorganisms and their aquatic habitat. In: Krumbein WE (ed) Environmental biogeochemistry and geomicrobiology, vol 1. Ann Arbor Scientific, Ann Arbor, pp 17–24

    Google Scholar 

  • Jannasch HW (1979) Microbial ecology of aquatic low-nutrient habitats. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 243–260

    Google Scholar 

  • Jannasch HW (1984) Microbial processes at deep sea hydrothermal vents. In: Rona PA, Bostrom K, Laubier L, Smith KL (eds) Hydrothermal processes at seafloor spreading centers. Plenum, New York, pp 677–709

    Google Scholar 

  • Jannasch HW (1989) Chemosynthetically sustained ecosystems in the deep sea. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, Berlin, pp 147–166

    Google Scholar 

  • Jannasch HW, Mateles RI (1974) Experimental bacterial ecology studies in continuous culture. Adv Microb Physiol 11:165–212

    Google Scholar 

  • Jannasch HW, Pritchard PH (1972) The role of inert particulate matter in the activity of aquatic microorganisms. In: Melchiorri-Santolinie U, Hopton JW (ed) Detritus and its role in aquatic ecosystems. Memorie dell’Istituto Italiano di Idrobiologia Dott Marco de Marchi Pallanza Italy Suppl 29:289–308

    Google Scholar 

  • Jannasch HW, Taylor CD (1984) Deep-sea microbiology. Ann Rev Microbiol 37:487–514

    Google Scholar 

  • Jannasch HW, Wirsen CO (1973) Deep-sea microorganisms: in situ response to nutrient enrichment. Science 180:641–643

    PubMed  CAS  Google Scholar 

  • Jannasch HW, Wirsen CO (1977) Retrieval of concentrated and undecompressed microbial populations from the deep sea. Appl Environ Microbiol 33:642–646

    PubMed  CAS  Google Scholar 

  • Jannasch HW, Wirsen CO (1979) Chemosynthetic primary production at East Pacific sea floor spreading centers. Bioscience 29:592–598

    CAS  Google Scholar 

  • Jannasch HW, Wirsen CO (1981) Morphological survey of microbial mats near deep sea thermal vents. Appl Environ Microbiol 41:528–538

    PubMed  CAS  Google Scholar 

  • Jannasch HW, Wirsen CO (1982) Microbial activities in undecompressed and decompressed deep-seawater samples. Appl Environ Microbiol 43:1116–1124

    PubMed  CAS  Google Scholar 

  • Jannasch HW, Trüper HG, Tuttle JH (1974) The microbial sulfur cycle in the Black Sea. Dergens ET, Ross DA (ed) The Black Sea: its geology, chemistry and biology, Memoir 20. American Association of Petroleum, Tulsa

    Google Scholar 

  • Jannasch HW, Wirsen CO, Taylor CD (1976) Undecompressed microbial populations from the deep sea. Appl Environ Microbiol 32:360–367

    PubMed  CAS  Google Scholar 

  • Jannasch HW, Wirsen CO, Taylor CD (1982) Deep-sea bacteria: isolation in the absence of decompression. Science 216:1315–1317

    PubMed  CAS  Google Scholar 

  • Jannasch HW, Huber R, Belkin S, Stetter KO (1988) Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch Microbiol 150:103–104

    Google Scholar 

  • Jannasch HW, Nelson DC, Wirsen CO (1989) Massive natural occurrence of unusually large bacteria (Beggiatoa sp.) at a hydrothermal deep-sea vent site. Nature 342:834–836

    CAS  Google Scholar 

  • Jones OTG (1977) Electron transport and ATP synthesis in the photosynthetic bacteria. In: Haddock BA, Hamilton WA (eds) Microbial energetics. Cambridge University Press, Cambridge, pp 151–183

    Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii, sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 163:154–261

    Google Scholar 

  • Jones WJ, Stugard CE, Jannasch HW (1989) Comparison of thermophilic methanogens from submarine hydrothermal vents. Arch Microbiol 151:314–318

    CAS  Google Scholar 

  • Jørgensen BB (1982) Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environments. Phil Tran R Soc Lond Biol Sci 298:543–561

    Google Scholar 

  • Jørgensen BB, Revsbech NP (1983) Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp., in O2 and H2S microgradients. Appl Environ Microbiol 45:1261–1270

    PubMed  Google Scholar 

  • Jørgensen BB, Zawacki LX, Jannasch HW (1990) Thermophilic bacterial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent site (Gulf of California). Deep-Sea Res 37:695–710

    Google Scholar 

  • Kato G, Maruyama Y, Nakamura M (1979) Role of lectins and lipopolysaccharides in the recognition process of specific legume-Rhizobium symbiosis. Agric Biol Chem 43:1085–1092

    CAS  Google Scholar 

  • Kefford B, Kjelleberg S, Marshall KC (1982) Bacterial scavenging: utilization of fatty acids localized at a solid-liquid interface. Arch Microbiol 133:257–260

    CAS  Google Scholar 

  • Kelly MT, Brock TD (1969) Physiological ecology of Leucothrix mucor. J Gen Microbiol 59:153–162

    PubMed  CAS  Google Scholar 

  • Kjelleberg S, Hermansson M, Mardén P, Jones GW (1987) The transient phase between growth and non growth of heterotrophic bacteria, with emphasis on the marine environment. Annu Rev Microbiol 41:25–49

    PubMed  CAS  Google Scholar 

  • Kluyver AJ, Donker HJL (1925) The unity of the chemistry of the fermentative sugar dissimilation processes of microbes. Proc Roy Acad Amsterdam 28:297–313

    CAS  Google Scholar 

  • Kluyver AJ, Donker HJL (1926) Die Einheit in der Biochemie Chemie der Zelle und Gewebe 13:134–190

    Google Scholar 

  • Koch AL (1979) Microbial growth in low concentrations of nutrients. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 261–279

    Google Scholar 

  • Kolkwitz R (1904–1906) Mykologie und Reinigung der städtischen und der Zuckerfabriksabwässer 391. In: Lafar F (ed) Handbuch der technischen Mykologie, vol 3. Jena Gustav, Fischer Verlag

    Google Scholar 

  • Korhonen TK, Nurmiaho E-L, Tuovinen OH (1978) Fimbriation in Thiobacillus A2. FEMS Microbiol Lett 3:195–198

    Google Scholar 

  • Koshland DE Jr (1974) The chemotactic response in bacteria. In: Jaenicke L (ed) Biochemistry of sensory functions. Springer, Berlin, pp 133–160

    Google Scholar 

  • Koshland DE Jr (1976) Bacterial chemotaxis as a simple model for a sensory system. Trends Biochem Sci 1:1–3

    CAS  Google Scholar 

  • Koshland DE (1980) Bacterial chemotaxis as a model behavioral system. Raven, New York

    Google Scholar 

  • Koshland DE (1981) Biochemistry of sensing and adaptation in a simple bacterial system. Ann Rev Biochem 50:765–782

    PubMed  CAS  Google Scholar 

  • Krinsky NI (1979) Carotenoid pigments: multiple mechanisms for coping with the stress of photosensitized oxidations. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 163–177

    Google Scholar 

  • Krul JM, Hirsch P, Staley JT (1970) Toxothrix trichogenes (Chol.) Beger et Bringmann: the organism and its biology. Antonie van Leeuwenhoek J Microbiol Serol 36:409–420

    CAS  Google Scholar 

  • Krulwich TA, Guffanti AA (1983) Physiology of acidophilic and alkalophilic bacteria. Adv Microb Physiol 24:173–214

    PubMed  CAS  Google Scholar 

  • Kuenen JG, Boonstra HG, Schröder J, Veldkamp H (1977) Competition for inorganic substrates among chemoorganotrophic and chemolithotrophic bacteria. Microb Ecol 3:119–130

    CAS  Google Scholar 

  • Kushner DJ (1971) Life in extreme environments. In: Buvet R, Ponnamperuma C (eds) Chemical evolution and origin of life. North-Holland, Amsterdam, pp 485–491

    Google Scholar 

  • Kushner DJ (1978) Life in high salt and solute concentrations: halophilic bacteria. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 317–368

    Google Scholar 

  • Kuznezow SI (1959) Die Rolle der Mikroorganismen im Stoffkreislauf der Seen. Berlin VEB Deutscher Verlag der Wissenschaften

    Google Scholar 

  • Kuznezow SI (1977) Trends in the development of ecological microbiology. In: Droop MR, Jannasch HW (eds) Advances in aquatic microbiology. Academic, London, pp 1–48

    Google Scholar 

  • la Riviére JWM (1963) Cultivation and properties of Thiovulum majus Hinze. In: Oppenheimer CH (ed) Marine microbiology. Charles C Thomas, Springfield, pp 61–72

    Google Scholar 

  • la Riviére JWM (1965) Enrichment of colorless sulfur bacteria Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl 1:17–27

    Google Scholar 

  • Langworthy TA (1978) Microbial life in extreme pH values. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 279–315

    Google Scholar 

  • Lanyi JK (1979) Physical-chemical aspects of salt-dependence in Halobacteria. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 93–107

    Google Scholar 

  • Lapage SP, Shelton JE, Mitchell TG, MacKenzie AR (1970) Culture collections and the preservation of bacteria. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3A. Academic, London

    Google Scholar 

  • Larsen H (1967) Biochemical aspects of extreme halophilism. Adv Microb Physiol 1:97–132

    CAS  Google Scholar 

  • Larsen H (1971) Halophilism, microbial. In: McGraw-Hill encyclopedia of science and technology, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Larsen H (1973) The halobacteria’s confusion to biology. The fourth A.J. Kluyver memorial lecture delivered before the Netherlands Society for Microbiology, April 1972 at the Delft University of Technology. Antonie van Leeuwenhoek J Microbiol Serol 39:383–396

    Google Scholar 

  • Larsen H (1986) Halophilic and halotolerant microorganisms—an overview and historical perspective. FEMS Microbiol Rev 39:3–7

    CAS  Google Scholar 

  • Latham MJ, Wolin MJ (1977) Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl Environ Microbiol 34:297–301

    PubMed  CAS  Google Scholar 

  • Latham MJ, Brooker BE, Pettipher GL, Harris PJ (1978) Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl Environ Microbiol 35:156–165

    PubMed  CAS  Google Scholar 

  • Le Roux NW, Wakerley DS, Hunt SD (1977) Thermophilic Thiobacillus-type bacteria from Icelandic thermal areas. J Gen Microbiol 100:197–201

    Google Scholar 

  • Leathen WW, Braley SA Sr, McIntyre LD (1953) The role of bacteria in the formation of acid from certain sulfuritic constituents associated with bituminous coal. II. Ferrous iron oxidizing bacteria. Appl Microbiol 1:65–68

    PubMed  CAS  Google Scholar 

  • Lee A, Phillips M (1978) Isolation and cultivation of spirochetes and other spiral-shaped bacteria associated with the cecal mucosa of rats and mice. Appl Environ Microbiol 35:610–613

    PubMed  CAS  Google Scholar 

  • Leifson E (1962) The bacterial flora of distilled and stored water. I. General observations, techniques and ecology. Int Bull Bacteriol Nomen Taxon 12:133–153

    Google Scholar 

  • Levi P, Linkletter A (1989) Metals, microorganisms and biotechnology. In: Hughes MN, Poole RK (eds) Metals and microorganisms. Chapman and Hall, London

    Google Scholar 

  • Liener IE (1976) Phytohemagglutinins (phytolectins). Ann Rev Plant Physiol 27:291–319

    CAS  Google Scholar 

  • Loesche WJ (1969) Oxygen sensitivity of various anaerobic bacteria. Appl Microbiol 18:723–727

    PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1987) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    Google Scholar 

  • Madigan MT, Brock TD (1977) Adaptation by hot springs phototrophs to reduced light intensities. Arch Microbiol 113:111–120

    PubMed  CAS  Google Scholar 

  • Mandel M, Leadbetter ER, Pfennig N, Trüper HG (1971) Deoxyribonucleic acid base compositions of phototrophic bacteria. Int J Syst Bacteriol 21:222–230

    Google Scholar 

  • Mann S, Sparks NH, Frankel RB, Bazylinski DA, Jannasch HW (1990) Biomineralization of ferrimagnetic greigite (FeS) and iron pyrite (FeS) in a magnetotactic bacterium. Nature 343:258–261

    CAS  Google Scholar 

  • Marchlewitz B, Schwartz W (1961) Untersuchungen über die Mikroben-Assoziation saurer Grubenwässer. Zeitschrift für Allgemeine Mikrobiologie 1:100–114

    CAS  Google Scholar 

  • Marples MJ (1965) The ecology of the human skin. Thomas Charles C, Springfield

    Google Scholar 

  • Marples MJ (1974) The normal microbial flora of the skin. In: Skinner FA, Carr JG (eds) The normal microbial flora of man. Academic, London, pp 7–12

    Google Scholar 

  • Marples MJ (1976) Life on the human skin. Sci Am 220:108–115

    Google Scholar 

  • Marquis RE (1976) High-pressure microbial physiology. In: Rose AH, Tempest DW (eds) Advances in microbial physiology, vol 14. Academic, London, pp 159–241

    Google Scholar 

  • Marquis RE, Matsumara P (1978) Microbial life under pressure. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 105–158

    Google Scholar 

  • Marshall KC (1976) Interfaces in microbial ecology. Harvard University Press, Cambridge/London

    Google Scholar 

  • Marshall KC (1979) Growth at interfaces. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim

    Google Scholar 

  • Marshall KC (ed) (1984) Microbial adhesion and aggregation. Dahlem workshop reports, Life Science, vol 31. Springer, New York

    Google Scholar 

  • Martin SM (1964) Conservation of microorganisms. Ann Rev Microbiol 18:1–16

    CAS  Google Scholar 

  • Martin HH (1969) Die Struktur der Zellwand bei Gram-negativen. Bakterien Arzneimittel-Forschung 19:266–272

    CAS  Google Scholar 

  • Marx JL (1977) Looking at lectins: do they function in recognition processes? Science 196:1429–1430

    PubMed  CAS  Google Scholar 

  • Marx R, Heumann W (1962) Uber Geisselfeinstrukturen und Fimbrien bei zwei Psuedomonas-Stämmen. Archiv für Mikrobiologie 43:245–254

    PubMed  CAS  Google Scholar 

  • Matin A (1979) Microbial regulatory mechanisms at low nutrient concentrations as studies in chemostat. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 323–339

    Google Scholar 

  • Matin A, Veldkamp H (1978) Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment. J Gen Microbiol 105:187–197

    PubMed  CAS  Google Scholar 

  • Matin A, Veldhuis C, Stegemann V, Veenhuis M (1979) Selective advantage of a Spirillum sp. in a carbon-limited environment. Accumulation of poly-β-hydroxybutyric acid and its role in starvation. J Gen Microbiol 112:349–355

    PubMed  CAS  Google Scholar 

  • Matin A, Auger EA, Blum PH, Schultz JE (1989) Genetic basis of starvation survival in nondifferentiating bacteria. Ann Rev Microbiol 43:293–316

    CAS  Google Scholar 

  • Matthews MM, Sistrom WR (1959) Function of carotenoid pigments in non-photosynthetic bacteria. Nature 184:1892–1893

    Google Scholar 

  • Mayer F (1971) Elektronenmikroskopische Untersuchung der Fimbrienkontraktion bei dem sternbildenden Bodenbakterium Pseudomonas echinoides. Archiv für Mikrobiologie 76:166–173

    PubMed  CAS  Google Scholar 

  • Mayer F, Schmitt R (1971) Elektronenmikroskopische, diffraktometrische und disc-elektrophoretische Untersuchungen an Fimbrien des sternbildenden Bodenbakteriums Pseudomonas echinoides und einer nicht-sternbildenden. Mutante Archiv für Mikrobiologie 79:311–326

    Google Scholar 

  • Mazanec K, Kocur M, Martinec T (1965) Electron microscopy of ultrathin sections of Sporosarcina ureae. J Bacteriol 90:808–816

    PubMed  CAS  Google Scholar 

  • McBee RH (1977) Fermentation in the hindgut. In: Clarke RTJ, Bauchop T (eds) Microbial ecology of the gut. Academic, London, pp 185–222

    Google Scholar 

  • McLeod RA (1968) On the role of inorganic ions in the physiology of marine bacteria. Adv Microbiol Sea 1:95

    Google Scholar 

  • Meers JL (1973) Growth of bacteria in mixed cultures. CRC Crit Rev Microbiol 2:139–184

    CAS  Google Scholar 

  • Megusar F, Gantar M (eds) (1986) Perspectives in microbial ecology. Slovene Society for Microbiology Ljubljana, Yugoslavia

    Google Scholar 

  • Menzel DW, Ryther JH (1970) Distribution and cycling of organic matter in the oceans. In: Hood DW (ed) Organic matter in natural waters. Alaska Institute of Marine-Sciences, Alaska

    Google Scholar 

  • Millar WN (1973) Heterotrophic bacterial population in acid coal mine water: Flavobacterium acidurans, sp. n. Int J Syst Bacteriol 23:142–150

    Google Scholar 

  • Miller WD (1890) The micro-organisms of the human mouth. Basel Karger, Philadelphia, unaltered reprint from original work

    Google Scholar 

  • Miller RE, Simons LA (1962) Survival of bacteria after twenty-one years in the dried state. J Bacteriol 84:1111–1114

    PubMed  CAS  Google Scholar 

  • Minato H, Suto T (1978) Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom. J Gen Appl Microbiol 24:1–16

    Google Scholar 

  • Mitskevich IN (1979) The total number of biomass of microorganisms in deep waters of the Black Sea (In Russian, with English summary). Mikrobiologiya 48:552–557

    CAS  Google Scholar 

  • Moore WEC, Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–979

    PubMed  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    PubMed  CAS  Google Scholar 

  • Morita RY (1976) Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria. In: Gray TGR, Postgate JR (eds) The survival of vegetative microbes. Cambridge University Press, Cambridge, pp 279–298

    Google Scholar 

  • Morris JG (1975) The physiology of obligate anaerobiosis. Adv Microb Physiol 12:169–246

    CAS  Google Scholar 

  • Morris JG (1976) Fifth Stenhouse-Williams Memorial Lecture—oxygen and the obligate anaerobe. J Appl Bacteriol 40:229–244

    PubMed  CAS  Google Scholar 

  • Morris JG (1978) The biochemistry of anaerobiosis. Biochem Soc Trans 6:353–356

    PubMed  CAS  Google Scholar 

  • Morris JG (1979) Nature of oxygen toxicity in anaerobic microorganisms. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 149–162

    Google Scholar 

  • Morris JG, O’Brien RW (1971) Oxygen and clostridia: a review. In: Barker AN, Gould GW, Wolf J (eds) Spore research 1971. Academic, London, pp 1–37

    Google Scholar 

  • Mossel DAA (1975) Water and micro-organisms in foods—a synthesis. In: Duckworth RB (ed) Water relations of foods. Academic, London, pp 347–361

    Google Scholar 

  • Mossel DAA, Ingram M (1955) The physiology of the microbial spoilage of foods. J Appl Bacteriol 18:232–268

    CAS  Google Scholar 

  • Mountfort DO, Asher RA (1983) Role of catabolic regulatory mechanism in control of carbohydrate utilization by the rumen anaerobic fungus Neocallimastix frontalis. Appl Environ Microbiol 46:1331–1338

    PubMed  CAS  Google Scholar 

  • Mulder EG, Brotonegoro S (1974) Free-living heterotrophic nitrogen-fixing bacteria. In: Quispel A (ed) The biology of nitrogen fixation. North-Holland, Amsterdam, pp 37–85

    Google Scholar 

  • Müller M (1975) Biochemistry of protozoan microbodies: peroxisomes, glycerophosphate oxidase bodies, hydrogenosomes. Annu Rev Microbiol 29:467–483

    PubMed  Google Scholar 

  • Müller-Neuglück M, Engel H (1961) Photoinaktivierung von Nitrobacter winogradskyi Buch. Archiv für Mikrobiologie 39:130–138

    Google Scholar 

  • Nasim A, James AP (1978) Life under conditions of high irradiation. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 409–439

    Google Scholar 

  • Neijssel OM, Hueting S, Crabbendam KJ, Tempest DW (1975) Dual pathways of glycerol assimilation in Klebsiella aerogenes NCIB 418. Their regulation and possible functional significance. Arch Microbiol 104:83–87

    PubMed  CAS  Google Scholar 

  • Nelson DC, Jannasch HW (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136:262–269

    CAS  Google Scholar 

  • Nelson DC, Jørgensen BB, Revsbech NP (1986) Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients. Appl Environ Microbiol 53:225–233

    Google Scholar 

  • Nelson DC, Wirsen CO, Jannasch HW (1989) Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin. Appl Environ Microbiol 55:2909–2917

    PubMed  CAS  Google Scholar 

  • Noble WC, Pitcher DG (1979) Microbial ecology of the human skin. Adv Microb Ecol 2:245–289

    Google Scholar 

  • Noble WC, Somerville DA (1974) Microbiology of human skin. Saunders, London

    Google Scholar 

  • Nottingham PM, Hungate RE (1969) Methanogenic fermentation of benzoate. J Bacteriol 98:1170–1172

    PubMed  CAS  Google Scholar 

  • Nultsch W (1975) Phototaxis and photokinesis. In: Carlile MJ (ed) Primitive sensory and communication systems: the taxes and tropisms of microorganisms and cells. Academic, London, pp 29–90

    Google Scholar 

  • O’Brien RW, Morris JG (1971) Oxygen and the growth and metabolism of Clostridium acetobutylicum. J Gen Microbiol 68:307–318

    PubMed  Google Scholar 

  • Odum EP (1977) Ecology: the link between the natural and the social sciences, 2nd edn. Holt, Rinehart & Winston, London

    Google Scholar 

  • Ohta K, Kiyomiya A, Koyama N, Nosoh Y (1975) The basis of the alkalophilic property of a species of bacillus. J Gen Microbiol 86:259–266

    Google Scholar 

  • Okon Y, Albrecht SL, Burris RH (1976) Factors affecting growth and nitrogen fixation of Spirillum lipoferum. J Bacteriol 127:1248–1254

    PubMed  CAS  Google Scholar 

  • Oren A, Padan E (1978) Induction of anaerobic, photoautotrophic growth in the cyanobacterium Oscillatoria limnetica. J Bacteriol 133:558–563

    PubMed  CAS  Google Scholar 

  • Oren A, Shilo M (1979) Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation. Arch Microbiol 122:77–84

    CAS  Google Scholar 

  • Orpin CG (1972) The culture in vitro of the rumen bacterium Quin’s oval. J GenMicrobiol 73:523–530

    CAS  Google Scholar 

  • Orpin CG (1973) The intracellular polysaccharide of the rumen bacterium Eadie’s oval. Archiv für Mikrobiologie 90:247–254

    PubMed  CAS  Google Scholar 

  • Orpin CG, Joblin KN (1988) The rumen anaerobic fungi. In: Hobson PN (ed) The rumen microbial ecosystem. Elsevier Science, London

    Google Scholar 

  • Ottow JCG (1975) Ecology, physiology, and genetics of fimbriae and pili. Annu Rev Microbiol 29:79–108

    PubMed  CAS  Google Scholar 

  • Overbeck J (1972) Zur Struktur und Funktion des aquatischen Ökosystems Berichte der Deutschen Botanischen Gesellschaft 85:553–579

    Google Scholar 

  • Pace NR, Stahl D, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microbiol Ecol 9:1–55

    CAS  Google Scholar 

  • Padan E (1979a) Facultative anoxygenic photosynthesis in cyanobacteria. Ann Rev Plant Physiol 30:27–40

    CAS  Google Scholar 

  • Padan E (1979b) Impact of facultatively anaerobic photoautotrophic metabolism on ecology of cyanobacteria (blue-green algae). Adv Microb Ecol 3:1–48

    CAS  Google Scholar 

  • Pask-Hughes RA, Williams RAD (1975) Extremely thermophilic Gram-negative bacteria from hot tap water. J Gen Microbiol 88:321–328

    PubMed  CAS  Google Scholar 

  • Pask-Hughes RA, Williams RAD (1977) Yellow-pigmented strains of Thermus spp. from Icelandic hot springs. J Gen Microbiol 102:375–383

    CAS  Google Scholar 

  • Patterson H, Irvin R, Costerton JW, Cheng K-J (1975) Ultrastructure and adhesion properties of Ruminococcus albus. J Bacteriol 122:278–287

    PubMed  CAS  Google Scholar 

  • Pfennig N (1961) Eine vollsynthetische Nährlösung zur selektiven. Anreicherung einiger Schwefelpurpurbakterien Naturwissenschaften 48:136

    Google Scholar 

  • Pfennig N (1965) Anreicherungskulturen für rote und grüne Schwefelbakterien Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl 1:179–189, 503–504

    Google Scholar 

  • Pfennig N (1967) Photosynthetic bacteria. Ann Rev Microbiol 21:286–324

    Google Scholar 

  • Pfennig N (1979) General physiology and ecology of photosynthetic bacteria. In: Sistrom WR, Clayton R (eds) Photosynthetic bacteria. Plenum, New York, pp 3–18

    Google Scholar 

  • Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110:3–12

    PubMed  CAS  Google Scholar 

  • Pfennig N, Cohen-Bazire G (1967) Some properties of the green bacterium Pelodictyon clathratiforme. Arch Mikrobiol 59:226–236

    PubMed  CAS  Google Scholar 

  • Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs. Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24

    PubMed  CAS  Google Scholar 

  • Poindexter JS (1964) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231–295

    PubMed  CAS  Google Scholar 

  • Poindexter JS (1979) Morphological adaptation to low nutrient concentrations. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 341–356

    Google Scholar 

  • Prebble J, Huda S (1977) The photosensitivity of the malate oxidase system of a pigmented strain and a carotenoidless mutant of Sarcina lutea (Micrococcus luteus). Arch Microbiol 113:39–42

    PubMed  CAS  Google Scholar 

  • Pringsheim EG (1957) Observations on Leucothrix mucor and Leucothrix cohaercus nov. sp. with a survey of colorless filamentous organisms. Bacteriol Rev 21:69–81

    PubMed  CAS  Google Scholar 

  • Prins RA (1977) Biochemical activities of gut microorganisms. In: Clarke RTJ, Bauchop T (eds) Microbial ecology of the gut. Academic, London, pp 73–183

    Google Scholar 

  • Raj HD (1977) Leucothrix. CRC Crit Rev Microbiol 5:271–301

    PubMed  CAS  Google Scholar 

  • Ramaley RF, Hixson J (1970) Isolation of a nonpigmented, thermophilic bacterium similar to Thermus aquaticus. J Bacteriol 103:527–528

    PubMed  CAS  Google Scholar 

  • Reddy CA, Bryant MP, Wolin MJ (1972a) Characteristics of S organism isolated from Methanobacillus omelianskii. J Bacteriol 109:539–545

    PubMed  CAS  Google Scholar 

  • Reddy CA, Bryant MP, Wolin MJ (1972b) Ferredoxin-independent conversion of acetaldehyde to acetate and H2 in extracts of S organism. J Bacteriol 110:133–138

    PubMed  CAS  Google Scholar 

  • Reichelt JL, Baumann P (1973) Taxonomy of the marine, luminous bacteria. Arch für Mikrobiol 94:283–330

    Google Scholar 

  • Repaske DR, Adler J (1981) Change in intracellular pH of escherichia coli mediates the chemotactic response to certain attractants and repellents. J Bacteriol 145:1196–1208

    PubMed  CAS  Google Scholar 

  • Repeta DJ, Simpson DJ, Jørgensen BB, Jannasch HW (1989) Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea. Nature 342:69–72

    PubMed  CAS  Google Scholar 

  • Richards FR (1975) The Cariaco basin (Trench). Oceanogr Marine Biol Ann Rev 13:11–67

    CAS  Google Scholar 

  • Richards FA, Vaccaro RF (1958) The Cariaco Trench, an anaerobic basin in the Caribbean Sea. Deep-Sea Res 3:214–228

    Google Scholar 

  • Rittenberg SC (1979) Bdellovibrio: a model of biological interactions in nutrient impoverished environments? In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 305–322

    Google Scholar 

  • Robinson JB, Salonius PO, Chase FE (1965) A note on the differential response of Arthrobacter spp. and Pseudomonas spp. to drying in soil. Can J Microbiol 11:746–748

    PubMed  CAS  Google Scholar 

  • Rose AH (1968) Physiology of microorganisms at low temperatures. J Appl Bacteriol 31:1–11

    PubMed  CAS  Google Scholar 

  • Rosebury T (1972) Der Reinlichkeitstick. Hoffmann & Campe Verlag, Hamburg

    Google Scholar 

  • Rudd JWM, Taylor CD (1980) Methane cycling in aquatic environments. Adv Aquat Microbiol 2:77–150

    CAS  Google Scholar 

  • Rupela OP, Tauro P (1973) Isolation and characterization of Thiobacillus from alkali soils. Soil Biol Biochem 5:891–897

    CAS  Google Scholar 

  • Russell C, Melville TH (1978) A review: bacteria in the human mouth. J Appl Bacteriol 44:163–181

    PubMed  CAS  Google Scholar 

  • Rutter PR, Abbott A (1978) A study of the interaction between oral streptococci and hard surfaces. J Gen Microbiol 105:219–226

    PubMed  CAS  Google Scholar 

  • Sadoff HL (1973) Comparative aspects of morphogenesis in three prokaryotic genera. Ann Rev Microbiol 27:133–153

    CAS  Google Scholar 

  • Sadoff HL (1975) Encystment and germination in Azotobacter vinelandii. Bacteriol Rev 39:516–539

    PubMed  CAS  Google Scholar 

  • Savage DC (1977a) Microbial ecology of the gastrointestinal tract. Ann Rev Microbiol 31:107–133

    CAS  Google Scholar 

  • Savage DC (1977b) Interactions between the host and its microbes. In: Clarke RTJ, Bauchop T (eds) Microbial ecology of the gut. Academic, London

    Google Scholar 

  • Savage DC, Fletcher M (1985) Bacterial adhesion. Plenum, New York

    Google Scholar 

  • Scarr MP (1968) Thermophiles in sugar. J Appl Bacteriol 31:66–74

    PubMed  CAS  Google Scholar 

  • Schenk A, Aragno M (1979) Bacillus schlegelii, a new species of thermophilic, facultatively chemolithoautotrophic bacterium oxidizing molecular hydrogen. J Gen Microbiol 115:333–341

    Google Scholar 

  • Schenk EA, Schwemmler W (1983) Endocytobiology II. Walter de Gruyter, Berlin

    Google Scholar 

  • Schlegel HG (ed) (1965) Anreicherungskultur und Mutantenauslese Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1 Orig., Suppl. 1:179–189

    Google Scholar 

  • Schlegel HG, Bowien B (1989) Autotrophic bacteria. Science Tech/Springer, Madison/New York

    Google Scholar 

  • Schlegel HG, Jannasch HW (1967) Enrichment cultures. Ann Rev Microbiol 21:49–70

    CAS  Google Scholar 

  • Schlegel HG, Pfennig N (1961) Die Anreicherungskultur einiger Schwefelpurpurbakterien. Archiv für Mikrobiologie 38:1–39

    PubMed  CAS  Google Scholar 

  • Schmaljohann R, Flügel HJ (1987) Methane-oxidizing bacteria in Pogonophora. Sarsia 72:91–98

    CAS  Google Scholar 

  • Schmidt JM (1971) Prosthecate bacteria. Ann Rev Microbiol 25:93–110

    CAS  Google Scholar 

  • Schmidt-Lorenz W (1967) Behavior of microorganisms at low temperatures. Bulletin de l’Institut International du Froid 1–59

    Google Scholar 

  • Schnaitman C, Lundgren DG (1965) Organic compounds in the spent medium of Ferrobacillus ferrooxidans. Can J Microbiol 11:23–27

    PubMed  CAS  Google Scholar 

  • Schön GH, Engel H (1962) Der Einfluss des Lichtes auf Nitrosomonas europaea. Win Archiv für Mikrobiologie 42:415–428

    Google Scholar 

  • Schroff G, Schöttler U (1977) Anaerobic reduction of fumarate in the body wall musculature of Arenicola marina (Polychaeta). J Comp Physiol 116:325–336

    CAS  Google Scholar 

  • Schultz JE, Breznak JA (1978) Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Appl Environ Microbiol 35:930–936

    PubMed  CAS  Google Scholar 

  • Schultz JE, Breznak JA (1979) Cross-feeding of lactate between Streptococcus lactis and Bacteroides sp. isolated from termite hindguts. Appl Environ Microbiol 37:1206–1210

    PubMed  CAS  Google Scholar 

  • Schweinfurth G, Lewin L (1898) Beiträge zur Topographie und Geochemie des ägyptischen Natron-thals. Zeitschrift für die Gesamte Erdkunde 33:1–25

    CAS  Google Scholar 

  • Schwemmler W, Schenk EA (1980) Endocytobiology. Walter de Gruyter, Berlin

    Google Scholar 

  • Shilo M (ed) (1979) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim

    Google Scholar 

  • Shokes RF, Trabant PK, Presley BJ, Reid DF (1977) Anoxic, hypersaline basin in the northern. Gulf of Mexico Sci 196:1443–1446

    CAS  Google Scholar 

  • Siñeriz F, Pirt SJ (1977) Methane production from glucose by a mixed culture of bacteria in the chemostat: the role of Citrobacter. J Gen Microbiol 101:57–64

    Google Scholar 

  • Singer CE, Ames BN (1970) Sunlight ultraviolet and bacterial DNA base ratios. Science 170:822–826

    PubMed  CAS  Google Scholar 

  • Skopintsev BA, Karpov AV, Vershinina OA (1959) Study of the dynamics of some sulfur compounds in the Black Sea under experimental conditions. Soviet Oceanogr Ser 4:55–72, English translation

    Google Scholar 

  • Sleat R, Robinson JP (1984) The bacteriology of anaerobic degradation of aromatic compounds. J Appl Bacteriol 57:381–394

    PubMed  CAS  Google Scholar 

  • Smith DW (1978) Water relations of microorganisms in nature. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 369–380

    Google Scholar 

  • Sneath PHA (1962) Longevity of micro-organisms. Nature 195:643–646

    PubMed  CAS  Google Scholar 

  • Somerville CC, Knight IT, Straube WL, Colwell RR (1989) Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbiol 55:548–554

    PubMed  CAS  Google Scholar 

  • Sorokin YI (1964) On the primary production and bacterial activities in the Black Sea. Journal du Conseil Conseil International pour l’Exploration de la Mer 29:41–60

    CAS  Google Scholar 

  • Sorokin YI (1970) Interrelations between sulphur and carbon turnover in meromictic lakes. Archiv für Hydrobiologie 66:391–446

    Google Scholar 

  • Sorokin YI (1972) The bacterial population and process of sulfide oxidation in the Black Sea. J Cons Int Explor Mer 34:423–454

    CAS  Google Scholar 

  • Souza KA, Deal PH (1977) Characterization of a novel extremely alkaline bacterium. J Gen Microbiol 101:103–109

    Google Scholar 

  • Souza KA, Deal PH, Mack HM, Turnbill CE (1974) Growth and reproduction of microorganisms under extremely alkaline conditions. Appl Microbiol 28:1066–1068

    PubMed  CAS  Google Scholar 

  • Stahl DA, Lane DJ, Olsen GJ, Pace NR (1985) Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences. Appl Environ Microbiol 49:1379–1384

    PubMed  CAS  Google Scholar 

  • Stahl DA, Flesher B, Mansfield HR, Montgomery L (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol 54:1079–1084

    PubMed  CAS  Google Scholar 

  • Stanier RY (1942) The cytophaga group: a contribution to the biology of Mycobacteria. Bacteriol Rev 6:143–196

    PubMed  CAS  Google Scholar 

  • Stapp C, Bortels H (1931) Der Pflanzenkrebs und sein Erreger Pseudomonas tumefaciens. II. Mitteilung: Über den Lebenskreislauf von Pseudomonas tumefaciens Zeitschrift für Parasitenkunde 4:101–125

    Google Scholar 

  • Stapp C, Knösel D (1954) Zur Genetik sternbildender Bakterien Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 2. 108:244–259

    Google Scholar 

  • Steinbüchel A (1986) Anaerobic pyruvate metabolism of Trichomonas foetus and Trichomonas vaginalis hydrogenosomes. Mole Biochem Parasitol 20:57–65

    Google Scholar 

  • Stetter KO (1986) Diversity of extremely thermophilic archaebacteria. In: Brock TD (ed) Thermophiles, general, molecular and applied microbiology. Wiley, New York, pp 39–74

    Google Scholar 

  • Stetter KO (1989) Extremely thermophilic chemolithoautotrophic archaebacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison, pp 167–176

    Google Scholar 

  • Stetter KO, Zillig W (1985) Thermoplasma and the thermophilic sulfur-dependent archaebacteria. In: Wolfe RS, Woese CR (eds) The bacteria, vol 8. Academic, New York, pp 85–170

    Google Scholar 

  • Stetter KO, König H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105 °C. Syst Appl Microbiol 4:535–551

    PubMed  CAS  Google Scholar 

  • Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyperthermophilic microorganisms. FEMS Microbiol Rev 75:117–124

    Google Scholar 

  • Stockhausen F (1907) Okologie, “Anhäufungen” nach Beijerinck. Institut für Gärungsgewerbe, Berlin

    Google Scholar 

  • Strange RE (1976) Microbiol response to mild stress. Meadowfield Press, Durham

    Google Scholar 

  • Strength WJ, Isani B, Linn DM, Williams FD, Vandermolen GE, Laughon BE, Krieg NR (1976) Isolation and characterization of Aquaspirillum fascilus sp. nov., a rod-shaped, nitrogen-fixing bacterium having unusual flagella. Int J Syst Bacteriol 26:253–268

    Google Scholar 

  • Strohl WR, Larkin JM (1979) Enumeration, isolation, and characterization of Beggiatoa from freshwater sediments. Appl Environ Microbiol 36:755–770

    Google Scholar 

  • Stumm CK, Zwart KB (1986) Symbiosis of protozoa with hydrogen-utilizing methanogens. Microbiol Sci 3:100–105

    PubMed  CAS  Google Scholar 

  • Sverdrup HW, Johnson MW, Fleming RH (1942) The oceans. Prentice-Hall, London

    Google Scholar 

  • Swart-Füchtbauer H, Rippel-Baldes A (1951) Die baktericide Wirkung des Sonnenlichtes. Archiv für Mikrobiologie 16:358–362

    Google Scholar 

  • Switalski L, Hook M, Beachey EH (1989) Molecular mechanisms of microbial adhesion. Springer, New York

    Google Scholar 

  • Tannock GW (1990) The Microecology of lactobacilli inhabiting the gastrointestinal tract. Adv Microb Ecol 11:147–171

    Google Scholar 

  • Tansey MR, Brock TD (1978) Microbial life at high temperatures: ecological aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 159–216

    Google Scholar 

  • Tempest DW, Neijssel OM (1976) Microbial adaptation of low-nutrient environments. In: Dean ACR, Ellwood DC, Evans CGT, Melling J (eds) Continuous culture 6: applications and new fields. Ellis Horwood, Chichester, pp 283–296

    Google Scholar 

  • Tempest DW, Neijssel OM (1979) Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments. Adv Microb Ecol 2:105–153

    Google Scholar 

  • Tempest DW, Meers JL, Brown CM (1970) Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochem J 117:405–407

    PubMed  CAS  Google Scholar 

  • Tempest DW, Meers JL, Brown CM (1973) Glutamate synthetase (Gogat): a key enzyme in the assimilation of ammonia by prokaryotic organisms. In: Prusiner S, Stadtman ER (eds) The enzymes of glutamine metabolism. Academic, New York, pp 167–182

    Google Scholar 

  • Thiele HH (1968) Die Verwertung einfacher organischer Substrate durch Thiorhodaceae. Archiv für Mikrobiologie 60:124–138

    PubMed  CAS  Google Scholar 

  • Tindall BJ, Trüper HG (1986) Ecophysiology of the aerobic halophilic archaebacteria. Syst Appl Microbiol 7:202–212

    CAS  Google Scholar 

  • Torma AE (1977) The role of Thiobacillus ferrooxidans in hydrometallurgical processes. Adv Biochem Engin 6:1–37

    CAS  Google Scholar 

  • Torsvik VL, Goksoyr J (1978) Determination of bacterial DNA in soil. Soil Biol Biochem 10:7–12

    Google Scholar 

  • Trüper HG (1969) Bacterial sulfate reduction in the Red Sea hot brines. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 262–271

    Google Scholar 

  • Trüper HG (1976) Higher taxa of the phototrophic bacteria: Chloroflexaceae fam. nov., a family for the gliding filamentous, phototrophic “green” bacteria. Int J Syst Bacteriol 26:74–75

    Google Scholar 

  • Tschech A (1989) Der anaerobe Abbau von aromatischen Verbindungen Forum. Mikrobiologie 12:251–264

    CAS  Google Scholar 

  • Tuovinen OH, Kelly DP (1972) Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores. Zeitschrift für Allgemeine Mikrobiologie 12:311–346

    PubMed  CAS  Google Scholar 

  • Tuttle JH, Randles CI, Dugan PR (1968) Activity of microorganisms in acid mine water. I. Influence of acid water on aerobic heterotrophs of a normal stream. J Bacteriol 95:1495–1503

    PubMed  CAS  Google Scholar 

  • Uesugi I, Yajima M (1978) Oxygen and “strictly anaerobic” intestinal bacteria. I. Effects of dissolved oxygen on growth. Zeitschrift für Allgemeine Mikrobiologie 18:287–295

    PubMed  CAS  Google Scholar 

  • Umbreit TH, Pate JL (1978) Characterization of the holdfast region of wild-type cells of holdfast mutants of Asticcacaulis biprosthecum. Arch Microbiol 118:157–168

    Google Scholar 

  • Unterman PM, Baumann P, McLean DL (1989) Pea aphid symbiont relationships established by analysis of 16S rRNAs. J Bacteriol 171:2970–2974

    PubMed  CAS  Google Scholar 

  • van Gemerden H (1974) Coexistence of organisms competing for the same substrate: an example among the purple sulfur bacteria. Microb Ecol 1:104–119

    Google Scholar 

  • van Niel CB (1932) On the morphology and physiology of the purple and green sulphur bacteria. Archiv für Mikrobiologie 3:1–112

    Google Scholar 

  • van Niel CB (1936) On the metabolism of the Thiorhodaceae. Archiv für Mikrobiologie 7:323–358

    Google Scholar 

  • van Niel CB (1955) The microbe as a whole. In: Waksman SA (ed) Perspectives and horizons in microbiology. Rutgers University Press, New Brunswick, pp 3–12

    Google Scholar 

  • van Veen WL, Mulder EG, Deinema MH (1978) The Sphaerotilus-Leptothrix group of bacteria. Microbiol Rev 42:329–356

    PubMed  Google Scholar 

  • Vedder A (1934) Bacillus alcalophilus sp. nov., benevens enkle ervaringen met sterk alcalische voedingsbodems. Antonie van Leeuwenhoek J Microbiol Serol 1:141–147

    Google Scholar 

  • Veldkamp H (1970) Enrichment cultures of prokaryotic organisms. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3A. Academic, London, pp 305–361

    Google Scholar 

  • Veldkamp H (1976) Continuous culture in microbial physiology and ecology patterns of progress. Meadowfield Press, Durham

    Google Scholar 

  • Veldkamp H, Jannasch HW (1972) Mixed culture studies with the chemostat. J Appl Chem Biotechnol 22:105–123

    CAS  Google Scholar 

  • Veldkamp H, van den Berg G, Zevenhuizen LPTM (1963) Glutamic acid production by Arthrobacter globiformis. Antonie van Leeuwenhoek J Microbiol Serol 29:35–51

    CAS  Google Scholar 

  • Voelz H, Dworkin M (1962) Fine structure of Myxococcus xanthus during morphogenesis. J Bacteriol 84:943–952

    PubMed  CAS  Google Scholar 

  • Völker H, Schweisfurth R, Hirsch P (1977) Morphology and ultrastructure of Crenothrix polyspora Cohn. J Bacteriol 131:306–313

    PubMed  Google Scholar 

  • Walsby AE (1970) The gas vesicles of aquatic prokaryotes Regulations between structure and function in the prokaryotic cell. In: Society for General Microbiology Symposium, vol 28. Cambridge University Press, London, New York, Melbourne, pp 327–357

    Google Scholar 

  • Walsby AE (1975) Gas vesicles. Ann Rev Plant Physiol 26:427–439

    CAS  Google Scholar 

  • Walsby AE (1977) The gas vacuoles of blue-green algae. Sci Am 237:90–97

    CAS  Google Scholar 

  • Wangersky PJ (1976) The surface film as a physical environment. Ann Rev Ecol Syst 7:161–176

    Google Scholar 

  • Watson SW, Waterbury JB (1969) The sterile hot brines of the Red Sea. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposit in the Red Sea. Springer, New York, pp 272–281

    Google Scholar 

  • Weibull C (1960) Movement. In: Gunsalus IC, Stanier RY (eds) The bacteria, vol 1, Structure. Academic, New York, pp 153–205

    Google Scholar 

  • Weimer PJ, Zeikus JG (1977) Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum. Appl Environ Microbiol 33:289–297

    PubMed  CAS  Google Scholar 

  • Weiner RM, Devine RA, Powell DM, Dagasan L, Moore RL (1985) Hyphomonas oceanitis spec. nov., H. hirschiana spec. nov. and H. jannaschiana spec. nov. Int J System Bact 35:237–243

    Google Scholar 

  • Weiss RL (1973) Attachment of bacteria to sulphur in extreme environments. J Gen Microbiol 77:501–507

    CAS  Google Scholar 

  • Weller R, Ward DM (1989) Selective recovery of 16 S rRNA sequences from natural microbial communities in the form of cDNA. Appl Environ Microbiol 55:1818–1822

    PubMed  CAS  Google Scholar 

  • Whittaker RH, Levin SA, Root RB (1973) Niche, habitat and ecotope. Am Nat 107:321–338

    Google Scholar 

  • Whittenbury R, Davies SL, Davey JF (1970) Exospores and cysts formed by methane-utilizing bacteria. J Gen Microbiol 61:219–226

    PubMed  CAS  Google Scholar 

  • Wiegel J, Schlegel HG (1976) Enrichment and isolation of nitrogen fixing hydrogen bacteria. Arch Microbiol 107:139–142

    PubMed  CAS  Google Scholar 

  • Wiegel J, Wilke D, Baumgarten J, Opitz R, Schlegel HG (1978) Transfer of the nitrogen fixing hydrogen bacterium Corynebacterium autotrophicum (Baumgarten et al.) to Xanthobacter gen. nov. Int J Syst Bacteriol 28:573–581

    Google Scholar 

  • Wiley WR, Stokes JL (1963) Effect of pH and ammonium ions on the permeability of Bacillus pasteurii. J Bacteriol 86:1152–1156

    PubMed  CAS  Google Scholar 

  • Williams AG (1986) Rumen holotrich ciliate protozoa. Microbiol Rev 50:25–49

    PubMed  CAS  Google Scholar 

  • Windberger E, Huber R, Trincone A, Fricke H, Stetter KO (1989) Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental sulfataric springs. Arch Microbiol 151:506–512

    CAS  Google Scholar 

  • Winfrey MR, Zeikus JG (1977) Effect of sulfate on carbon and electron flow during microbial methanogenesis in fresh-water sediments. Appl Environ Microbiol 33:275–281

    PubMed  CAS  Google Scholar 

  • Winogradksy SN (1926) Études sur la microbiologie du sol. Sur les microbes fixateurs d’azote. Annales de l’Institut Pasteur 40:455–520

    Google Scholar 

  • Winogradsky SN (1925) Etudes sur la microbiologie du sol. I. Sur la m;aaethode. Annales de l’Institut Pasteur 39:299–354

    Google Scholar 

  • Winogradsky SN (1947) Principles de la Microbiologie Ecologique. Antonie van Leeuwenhoek J Microbiol Serol 12:5–15

    CAS  Google Scholar 

  • Winogradsky SN (1949) Microbiologie du sol: problèmes et méthodes. Masson et Cie, Paris

    Google Scholar 

  • Wirsen CO, Jannasch HW (1975) Activity of marine psychrophilic bacteria at elevated hydrostatic pressures and low temperatures. Mar Biol 31:201–209

    CAS  Google Scholar 

  • Wirsen CO, Jannasch HW (1978) Physiological and morphological observations on Thiovulum sp. J Bacteriol 136:765–774

    PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Wolfe RS (1960) Observations and studies of Crenothrix polyspora. J Am Water Works Assoc 52:915–918

    Google Scholar 

  • Wolin MJ (1976) Interactions between H2-producing and methane-producing species. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Microbial production and utilization of gases. Goltze, Göttingen, pp 141–150

    Google Scholar 

  • Wolin MJ, Miller TL (1982) Interspecies hydrogen transfer: 15 years later. ASM-News 48:561–565

    Google Scholar 

  • Woodroffe RCS, Shaw DA (1974) Natural control and ecology of microbial populations on skin and hair. In: Skinner FA, Carr JG (eds) The normal microbial flora of man. Academic, London, pp 13–34

    Google Scholar 

  • Yayanos AA, Dietz AS (1983) Death of a hadal deep-sea bacterium after decompression. Science 220:497–498, Washington

    PubMed  CAS  Google Scholar 

  • Yayanos AA, Dietz AS, Van Boxtel R (1979) Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808–810, Washington

    PubMed  CAS  Google Scholar 

  • Yayanos AA, Dietz AS, Van Boxtel R (1981) Obligately barophilic bacterium from the Marianas Trench. Proc Nat Acad Sci USA 78:5212–5215

    PubMed  CAS  Google Scholar 

  • Yayanos AA, Dietz AS, Van Boxtel R (1982) Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria. Appl Environ Microbiol 44:1356–1361

    PubMed  CAS  Google Scholar 

  • Zaitsev Yu-P (1971) Vinogradov KA (ed) Marine neustonology. Keter Press, Jerusalem

    Google Scholar 

  • Zebe E (1977) Anaerober Stoffwechsel bei wirbellosen Tieren Vorträge der Rheinisch-Westfälischen Akademie der Wiseenschaften

    Google Scholar 

  • Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713

    PubMed  CAS  Google Scholar 

  • Zhao H, Wood AG, Widdel F, Bryant MP (1988) An extremely thermophilic Methanococcus from a deep-sea hydrothermal vent and its plasmids. Arch Microbiol 150:178–183

    CAS  Google Scholar 

  • Zillig W, Stetter KO, Schäfer W, Janekovic D, Wunderl S, Holz I, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras Zlb. Bakt. Hyg., I. Abt. Orig. C 2:205–227

    Google Scholar 

  • Zillig W, Schnabel R, Tu J, Stetter KO (1982) The phylogeny of archaebacteria, including novel anaerobic thermoacidophiles in the light of RNA polymerase structure. Naturwiss 69:197–204

    CAS  Google Scholar 

  • ZoBell CE (1946) Marine microbiology, a monograph on hydrobacteriology. Chronica Botanica, Waltham

    Google Scholar 

  • ZoBell CE (1970) Pressure effects of morphology and life processes. In: Zimmermann A (ed) High pressure effects on cellular processes. Academic, London, pp 85–130

    Google Scholar 

  • ZoBell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189

    PubMed  CAS  Google Scholar 

  • ZoBell CE, Morita RY (1957) Barophilic bacteria in some deep sea sediments. J Bacteriol 73:563–568

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schlegel, H.G., Jannasch, H.W. (2013). Prokaryotes and Their Habitats. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30194-0_8

Download citation

Publish with us

Policies and ethics