Skip to main content

Symbiotic Associations Between Ciliates and Prokaryotes

  • Reference work entry
The Prokaryotes

Abstract

According to the huge diversity of protists, symbioses with eukaryotes and prokaryotes were established frequently during evolution. Ciliates were in focus of researchers since the beginning of research on unicellular organisms, after invention of the light microscope. Nowadays, in ciliates the known endosymbiotic diversity seems to be extraordinary but may be represented by only a small number of the existing diversity of endosymbiotic prokaryotes in ciliates worldwide. In this chapter, we provide information about the history, diversity, and cytology of prokaryotic symbionts within the ciliates, as well as we describe some methods for the isolation, cultivation, and identification of these symbionts. Future research may broaden the knowledge presented here, to enhance our knowledge how these associations evolved, how they were established into permanent associations, and how they interact. and their interactions.

Electronic supplementary material. Supplementary material is available in the online version of this article at (link) and is accessible for authorized users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abamo F, Dohra H, Fujishima M (2008) Fate of the 83-kDa periplamic protein of the infectious form of the endonuclear symbiotic bacterium Holospora obtusa during the infection process. FEMS Microbiol Lett 280:21–27

    PubMed  CAS  Google Scholar 

  • Allen SL, Nerad TA (1978) Method for the simultaneous establishment of many axenic cultures of Paramecium. J Protozool 25:134–139

    PubMed  CAS  Google Scholar 

  • Amann R, Springer N, Ludwig W, Görtz H-D, Schleifer K-H (1991) Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature 351:161–164

    PubMed  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Bak AL, Black FT, Christiansen C, Freundt EA (1969) Genome size of mycoplasmal DNA. Nature 224:1209–1210

    PubMed  CAS  Google Scholar 

  • Ball GH (1969) Organisms living on and in protozoa. In: Chen TT (ed) Research in protozoology. Pergamon, Oxford, pp 565–718

    Google Scholar 

  • Bauer-Nebelsick M, Bardele CF, Ott J (1996a) A symbiosis between Zoothamnium niveum (Hemprich and Ehrenberg 1831) Ehrenberg 1838 (Oligohymenophorea, Peritrichida) and thiotrophic bacteria. I: redescription of the species based on light and scanning electron microscopic technique. Eur J Protistol 32:18–30

    Google Scholar 

  • Bauer-Nebelsick M, Bardele CF, Ott J (1996b) Electron microscopic studies of Zoothamnium niveum (Hemprich & Ehrenberg 1831) Ehrenberg 1838 (Oligohymenophorea, Peritrichida), a ciliate with ectosymbiotic, chemmoautotrophic bacteria. Eur J Protistol 32:202–215

    Google Scholar 

  • Beale GH, Jurand A (1966) Three different types of mate-killer (mu) particle in Paramecium aurelia (syngen 1). J Cell Sci 1:31–34

    PubMed  CAS  Google Scholar 

  • Beale GH, Jurand A, Preer JR Jr (1969) The classes of endosymbionts of Paramecium aurelia. J Cell Sci 5:65–91

    PubMed  CAS  Google Scholar 

  • Bedingfield G, Gibson I, Horne RW (1984) A comparative study of the structure of isolated refractile bodies (R-bodies) from Paramecium 1: the effect of treatment with EDTA and EGTA. Micron Microsc Acta 15:235–246

    Google Scholar 

  • Beier CL, Horn M, Michel R, Schweikert M, Görtz H-D, Wagner M (2002) The genus Caedibacter comprises endosymbionts of Paramecium spp. related to the Rickettsiales (Alphaproteobacteria) and to Francisella tularensis (Gammaproteobacteria). Appl Environ Microbiol 68(12):6043–6050

    PubMed  CAS  Google Scholar 

  • Borchsenius ON, Skoblo II, Ossipov DV (1983) Holospora curviuscula – a new species of macronuclear symbiotic bacteria of Paramecium bursaria. Cytologia 25:91–97

    Google Scholar 

  • Boss AO-L, Borchsenius ON, Ossipov DV (1987) Pseudolyticum multiflagellatum n. g, n. sp. – a new symbiotic bacterium in the cytoplasm of Paramecium caudatum (Ciliata, Protozoa). Cytologia 29:94–97

    Google Scholar 

  • Bütschli O (1876) Studien über die ersten entwicklungsvorgänge der eizelle, die zelltheilung und die conjugation der infusorien. Abh Senckenb Naturforsch Ges 10:213–464

    Google Scholar 

  • Bütschli O (1889) Protozoa. Abt. 111: infusoria und system der radiolaria. In: Bronn HG (ed) Klassen und ordnungen des thierreichs, vol 1. C.F. Winter, Leipzig, pp 1098–2035

    Google Scholar 

  • Chen TT (1955) Paramecin 34, a killer substance produced by Paramecium bursaria. Proc Soc Exp Biol Med 88:541–543

    PubMed  CAS  Google Scholar 

  • Corliss JO (1985) Concept, definition, prevalence, and host-interactions of xenosomes (cytoplasmic and nuclear endosymbionts). J Protozool 32:373–376

    Google Scholar 

  • Demar-Gervais C, Genermont J (1976) Recherches génétiques sur Euplotes vannus: les charactères “monster” et “killer”. J Protozool 23 (Suppl) 8A

    Google Scholar 

  • Dilts JA (1976) Covalently closed, circular DNA in kappa endosymbionts of Paramecium. Genet Res 627:161–170

    Google Scholar 

  • Dilts JA (1986) The importance of the refractile body in expression of the killer trait in Paramecium. In: Wickner RB, Hinnebusch A, Lambowitz AM, Gunsalus IC, Hollaender A (eds) Extrachromosomal elements in lower eukaryotes. Plenum, New York

    Google Scholar 

  • Dilts JA, Quackenbush RL (1986) A mutation in the R body-coding sequence destroys expression of the killer trait in P tetraurelia. Science 232:641–643

    PubMed  CAS  Google Scholar 

  • Dini F, Luporini P (1976) The mate-killer trait in a stock of Euplotes crassus (Dujardin) (Ciliata, Hypotrichida). Monitore Zool Ital (NS) 10:15–24

    Google Scholar 

  • Dini F, Luporini P (1982) The inheritance of the mate-killer trait in Euplotes crassus (Hypotrichida, Ciliophora). Protistologica 18:179–184

    Google Scholar 

  • Doddema HJ, Vogels GD (1978) Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 36:752–754

    PubMed  CAS  Google Scholar 

  • Dohra H, Fujishima M (1999a) Cell structure of the infectious form of Holospora, an endonuclear symbiotic bacterium of the ciliate Paramecium. Zool Sci 16:93–98

    Google Scholar 

  • Dohra H, Fujishima M (1999b) Effects of antibiotics on the early infection process of the macronuclear endosymbiotic bacterium Holospora obtusa of Paramecium caudatum. FEMS Microbiol Lett 179:473–477

    PubMed  CAS  Google Scholar 

  • Dohra H, Fujishima M, Hoshide K (1994) Monoclonal antibodies specific for periplasmic materials of the macronuclear specific bacterium Holospora obtusa of the ciliate Paramecium caudatum. Eur J Protistol 30:288–294

    Google Scholar 

  • Dohra H, Yamamoto K, Fujishima M, Ishikawa H (1997) Cloning and sequencing of gene coding for a periplasmic 5.4 kDa peptide of the macronucleus-specific symbiont Holospora obtusa of the ciliate Paramecium caudatum. Zool Sci 14:69–75

    PubMed  CAS  Google Scholar 

  • Dohra H, Fujishima M, Ishikawa H (1998) Structure and expression of a GroE-homologous operon of a macronucleus-specific symbiont Holospora obtusa of the ciliate Paramecium caudatum. J Eukaryot Microbiol 4:71–79

    Google Scholar 

  • Dorner RW (1957) Stability of paramecin 34 at different temperatures and pH values. Science 126:1243–1244

    PubMed  CAS  Google Scholar 

  • Ehrsam E, Görtz H-D (1999) Surface proteins of the gram-negative bacterium Holospora obtusa bind to macronuclear proteins of its host Paramecium caudatum. Eur J Protistol 35:304–308

    Google Scholar 

  • Embley TM, Finlay BJ (1994) The use of small subunit rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology 140:225–235

    PubMed  CAS  Google Scholar 

  • Eschbach E, Pfannkuchen M, Schweikert M, Drutschmann D, Brümmer F, Fokin S, Ludwig W, Görtz HD (2009) “Candidatus Paraholospora nucleivisitans”, an intracellular bacterium in Paramecium sexaurelia shuttles between the cytoplasm and the nucleus of its host. Sys Appl Microbiol 32:490–500

    CAS  Google Scholar 

  • Estève J-C (1957) Une population de type “killer” chez Paramecium caudatum (Ehrenberg). Protistologica 14:201–207

    Google Scholar 

  • Euzeby JP (1997) Revised nomenclature of specific or subspecific epithets that do not agree in gender with generic names that end in-bacter. Int J Syst Bacteriol 47(2):585–592

    Google Scholar 

  • Fauré-Fremiet E (1909) Sur un cas de symbiose par un infusoir cilié. CR Soc Biol 67:113–114

    Google Scholar 

  • Fauré-Fremiet E (1950a) Caulobactéries épizoiques associées aux Centrophorella (Cilies holotriches). Bull Soc Zool France 75:134–137

    Google Scholar 

  • Fauré-Fremiet E (1950b) Ecologie des ciliés psammophiles litteraux. Bull Biol France-Belgique 84:35–75

    Google Scholar 

  • Fauré-Fremiet E (1951) The marine sand dwelling ciliates of cape cod. Biol Bull 100:59–70

    PubMed  Google Scholar 

  • Fauré-Fremiet E (1952) Symbionts bacteriens des ciliés du genre Euplotes. CR Acad Sci 235:402–403

    Google Scholar 

  • Favinger J, Stadtwald R, Gest H (1989) Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Ant V Leeuwenhoek 55:291–296

    CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1990) Anaerobic free-living protozoa: growth efficiencies and the structure of communities. FEMS Microbiol Ecol 74:269–276

    Google Scholar 

  • Fenchel T, Finlay BJ (1991a) The biology of free-living anaerobic ciliates. Eur J Protistol 26:200–216

    Google Scholar 

  • Fenchel T, Finlay BJ (1991b) Synchronous division of an endosymbiotic methanogenic bacterium in the anaerobic ciliate Plagiopyla frontata Kahl. J Protozool 38:22–28

    Google Scholar 

  • Fenchel T, Perry T, Thane A (1977) Anaerobiosis and symbiosis with bacteria in free-living ciliates. J Protozool 24:154–163

    PubMed  CAS  Google Scholar 

  • Figueroa-de Soto VE, Soldo AT (1977) Characterization and base sequence homologies of the DNA of xenosomes and related particles. Int Congr Protozool 5:339

    Google Scholar 

  • Finlay BL, Fenchel T (1989) Hydrogenosomes in some anaerobic protozoa resembling mitochondria. FEMS Microbiol Lett 65:187–190

    Google Scholar 

  • Finlay BL, Fenchel T (1991) An anaerobic protozoon, with symbiotic methanogens, living in municipal landfill material. FEMS Microbiol Lett 65:169–180

    Google Scholar 

  • Finlay BL, Fenchel T (1992) An anaerobic ciliate as a natural chemostat for the growth of endosymbiotic methanogens. Eur J Protistol 28:127–137

    PubMed  CAS  Google Scholar 

  • Finlay BJ, Embley TM, Fenchel T (1993) A new polymorphic methanogen, closely related to Methanocorpusculum parvum, living in stable symbiosis within the anaerobic ciliate Trimyema sp. J Gen Microbiol 139:371–378

    PubMed  CAS  Google Scholar 

  • Foissner W (1978) Euplotes moebiusi f. quadricirratus (Ciliata, Hypotrichida) II. The fine structure of some cytoplasmic organelles. Naturk Jahrb Stadt Linz 23:17–24

    Google Scholar 

  • Fok A, Allen RD (1979) Axenic Paramecium caudatum. 1: mass culture and structure. J Protozool 6:463–470

    Google Scholar 

  • Fok A, Allen RD (1988) The lysosome system. In: Görtz HD (ed) Paramecium. Springer, Berlin, pp 301–324

    Google Scholar 

  • Fokin SI (1988) A bacterial symbiont of the macronucleus perinuclear space in the ciliate Paramecium duboscqui. Cytologia 30:632–635

    Google Scholar 

  • Fokin SI (1991) Holospora recta sp. nov., a micronucleus-specific endobiont of the ciliate Paramecium caudatum (Russian with English summary). Cytologia 33:135–141

    Google Scholar 

  • Fokin SI, Chivilev SM (1999) Brackish water Paramecium species and Paramecium polycaryum: morphometric analysis and some biological peculiarities. Acta Protozool 38:105–117

    Google Scholar 

  • Fokin SI, Görtz HD (1993) Caedibacter macronucleorum sp. nov., a bacterium inhabiting the macronucleus of Paramecium duboscqui. Arch Protistenkd 143:319–324

    Google Scholar 

  • Fokin SI, Görtz HD (2009) Holospora bacteria in Paramecium and their characterization. In: Fujishima M (ed) Endosymbionts in Paramecium. Microbiology Monpographs, vol 12. Springer, Berlin, Heidelberg, pp161–199

    Google Scholar 

  • Fokin S, Karpov S (1995) Bacterial endocytobionts inhabiting the perinuclear space of Protista. Endocyt Cell Res 11:81–94

    Google Scholar 

  • Fokin SI, Ossipov DV (1986) Pseudocaedibacter glomeratus n. sp. – A cytoplasmic symbiont of the ciliate Paramecium pentaurelia. Cytologia 28:1000–1004

    Google Scholar 

  • Fokin SI, Sabaneyeva EV (1993) Bacterial endocytobionts of the ciliate Paramecium calkinsi. Eur J Protistol 29:390–395

    PubMed  CAS  Google Scholar 

  • Fokin SI, Sabaneyeva E (1997) Release of endonucleobiotic bacteria Holospora bacillata and Holospora curvata from the macronucleus of their host cells Paramecium woodruffi and Paramecium calkinsi. Endocyt Cell Res 12:49–55

    Google Scholar 

  • Fokin SI, Skovorodkin IN (1991) Holospora undulata – endonucleobiont of the ciliate Paramecium caudatum in search for micronucleus. Cytology 33:64–75

    Google Scholar 

  • Fokin SI, Skovorodkin IN (1997) Experimental analysis of the resistance of Paramecium caudatum (Ciliophora) against infection by bacterium Holospora undulata. Eur J Protisatol 33:214–218

    Google Scholar 

  • Fokin SI, Ossipov DV, Skoblo II, Rautian MS, Sabaneyeva EV (1987a) Nonospora macronucleata g. n., sp. n–a vegetative nucleus symbiont of the ciliate Paramecium caudatum. Cytologia 29:963–970

    Google Scholar 

  • Fokin SI, Boss AO-L, Ossipov DV (1987b) Virus-containing cytoplasmic symbiont of the ciliate Paramecium woodruffi. Cytologia 29:1303–1306

    Google Scholar 

  • Fokin SI, Brigge T, Brenner J, Görtz H-D (1996) Holospora species infecting the nuclei of Paramecium appear to belong into two groups of bacteria. Eur J Protistol 32(suppl 1):19–24

    Google Scholar 

  • Fokin SI, Schweikert M, Brümmer F, Gőrtz H-D (2005a) Spirostomum spp. (Ciliophora, Protista) – a new suitable system for endocytobiosis research. Protoplasma 255:93–102

    Google Scholar 

  • Fokin SI, Schweikert M, Fujishima M (2005b) Recovery of the ciliate Paramecium multimicronucleatum following bacterial infection with Holospora obtusa. Eur J Protistol 41:129–138

    Google Scholar 

  • Frankel J (1973) Dimensions of control of cortical patterns in Euplotes: the role of preexisting structure, the clonal life cycle, and the genotype. J Exp Zool 183:71–94

    Google Scholar 

  • Freiburg M (1985) Isolation and characterization of macronuclei of Paramecium caudatum infected with the macronucleus-specific bacterium Holospora obtusa. J Cell Sci 73:389–398

    PubMed  CAS  Google Scholar 

  • Fujishima M (1993) Control of morphological changes of the endonuclear symbiont Holospora of the ciliate Paramecium. In: Sato S, Ishida M, Ishikawa H (eds) Endocytobiology, vol V. Tübingen University Press, Tübingen, pp 505–508

    Google Scholar 

  • Fujishima M (2009) Infection and maintenance of Holospora species in Paramecium caudatum. In: Endosymbionts in Paramecium. Microbiology Monpographs Vol 12, Fujishima, M. (Ed.). Springer Berlin, Heidelberg, pp. 201–225

    Google Scholar 

  • Fujishima J, Fujita M (1985) Infection and maintenance of Holospora obtusa, a macronuclear-specific bacterium of the ciliate Paramecium caudatum. J Cell Sci 76:179–187

    PubMed  CAS  Google Scholar 

  • Fujishima M, Heckmann K (1984a) Intra-and interspecific transfer of endosymbionts in Euplotes. J Exp Zool 230:339–345

    Google Scholar 

  • Fujishima M, Nagahara K (1984b) Isolation of endonuclear symbiont Holospora obtusa from mass cultures of Paramecium caudatum. In: Proceedings of the annual meeting of the zoological society of Japan, vol 55. Toryokosku Press, Morioka, Japan, pp 36–40

    Google Scholar 

  • Fujishima J, Nagahara K, Kojima K (1990a) Changes in morphology, buoyant density and protein composition in differentiation from the reproductive short form to the infectious long form of Holospora obtusa, a macronucleus-specific symbiont of the ciliate Paramecium caudatum. Zool Sci 7:849–860

    CAS  Google Scholar 

  • Fujishima M, Sawabe H, Iwatsuki K (1990b) Scanning electron microscopic observation of differentiation from the reproductive short form to the infectious long form of Holospora obtusa. J Protozool 37:123–128

    Google Scholar 

  • Fujishima M, Dohra H, Kawai M (1997) Quantitative changes in periplasmic proteins of the macronucleus-specific bacterium Holospora obtusa in the infection process of the ciliate Paramecium caudatum. J Euk Microbiol 44:636–642

    PubMed  CAS  Google Scholar 

  • Fujishima M, Kawai M, Yamamoto M (2005) Paramecium caudatum acquires heat-shock resistance in ciliary movement by infection with the endonuclear symbiotic bacterium Holospora. Zool Sci 23:1161

    Google Scholar 

  • Gates MA, Curds CR (1979) The dargyroome of the genus Euplotes. Bull Br Mus Nat Hist (Zool) 35:127–200

    Google Scholar 

  • Gellissen G, Michaelis G (1987) Gene transfer: mitochondria to nucleus. In: Lee JJ, Fredrick R (eds) Endocytobiology, vol III. Academy of Science, New York, pp 391–401

    Google Scholar 

  • Gibson I (1974) The endosymbionts of Paramecium. Crit Rev Microbiol 3:243–273

    CAS  Google Scholar 

  • Gibson I (1984) A comparison of the refractile bodies (R-bodies) of certain bacteria. III. Nucleotide sequence homologies and R-body function. Micron Microsc Acta 15:253–273

    CAS  Google Scholar 

  • Gibson I, Beale GH (1961) Genic basis of the mate-killer trait in Paramecium aurelia stock 540. Genet Res 2:82–91

    Google Scholar 

  • Goosen NK, Hormenans AMC, Hillebrand SJW, Stumm CK, Vogels GD (1988) Cultivation of the sapropelic ciliate Plagiopyla nasuta Stein and isolation of the endosymbiont Methanobacterium formicicum. Arch Microbiol 150:165–170

    Google Scholar 

  • Görtz H-D (1981) Ein neues symbiontisches Bakterium in Paramecium sexaurelia. Verh Dtsch Zool Ges 74:227

    Google Scholar 

  • Görtz H-D (1983) Endonuclear symbionts in ciliates. In: Jeon KW (ed) Intracellular symbiosis. International review of cytology, supplement 14. Academic, New York, pp 145–176

    Google Scholar 

  • Görtz H-D (1987) Different endocytobionts simultaneously colonizing ciliate cells. Ann NY Acad Sci 503:261–268

    Google Scholar 

  • Görtz H-D (1992) Bactéries endosymbiotiques de Paramecium. Ann Biolog 73:41–49

    Google Scholar 

  • Görtz H-D (2001) Intracellular bacteria in ciliates. Int Microbiol 4(3):143–150

    PubMed  Google Scholar 

  • Görtz H-D, Dieckmann J (1980) Life cycle and infectivity of Holospora elegans Hafkine, a micronucleus-specific symbiont of Paramecium caudatum (Ehrenberg). Protistologica 16:591–603

    Google Scholar 

  • Görtz H-D, Fokin SI (2009) Diversity of endosymbiotic bacteria in Paramecium. In: Fujishima M (ed) Endosymbionts in Paramecium. Microbiology Monpographs, vol 12. Springer, Berlin/Heidelberg, pp 131–160

    Google Scholar 

  • Görtz H-D, Freiburg M (1984) Bacterial symbionts in the micronucleus of Paramecium bursaria. Endocyt Cell Res 1:37–46

    Google Scholar 

  • Görtz H-D, Fujishima M (1983) Conjugation and meiosis of Paramecium caudatum infected with the micronucleus-specific bacterium Holospora elegans. Eur J Cell Biol 32:86–91

    PubMed  Google Scholar 

  • Görtz H-D, Maier G (1991) A bacterial infection in a ciliate from sewage sludge. Endocyt Cell Res 8:45–52

    Google Scholar 

  • Görtz H-D, Wiemann M (1987) Colonization of the ciliate Stentor multiformis by three different endocytobionts. Endocyt Cell Res 4:177–184

    Google Scholar 

  • Görtz H-D, Wiemann M (1989) Route of infection of the bacteria Holospora elegans and Holospora obtusa into the nuclei of Paramecium caudatum. Eur J Protistol 24:101–1090

    PubMed  Google Scholar 

  • Görtz H-D, Freiburg M, Wiemann M (1988) Polypeptide differences between infectious and reproductive forms of Holospora obtusa, an endonucleobiotic bacterium in Paramecium caudatum. Endocyt Cell Res 5:233–244

    Google Scholar 

  • Görtz H-D, Ahlers N, Robenek H (1989) Ultrastructure of the infectious and reproductive forms of Holospora obtusa, a bacterium infecting the macronucleus of Paramecium caudatum. J Gen Microbiol 135:3079–3085

    Google Scholar 

  • Görtz H-D, Lellig S, Miosga O, Wiemann M (1990) Changes in fine structure and polypeptide pattern during development of Holospora obtusa, a bacterium infecting the macronucleus of Paramecium caudatum. J Bacteriol 172:5664–5669

    PubMed  Google Scholar 

  • Görtz H-D, Benting J, Ansorge I, Freiburg M (1992) Cell surface proteins of the infectious forms of the symbiotic bacterium Holospora obtusa. Symbiosis 14:391–397

    Google Scholar 

  • Grimes GW, Preer JR Jr (1971) Further observations on the correlation between kappa and phage-like particles in Paramecium. Genet Res 18:115–116

    Google Scholar 

  • Gromov BV, Ossipov DV (1981) Holospora (ex Hafkine 1890) nom. rev., a genus of bacteria inhabiting the nuclei of paramecia. Int J Syst Bacteriol 31:348–352

    Google Scholar 

  • Hackstein JHP, Stumm CK (1994) Methane production in terrestrial arthropods. Proc Natl Acad Sci 91:5441–5445

    PubMed  CAS  Google Scholar 

  • Hafkine M-W (1890) Maladies infectieuses des paramécies. Ann Inst Pasteur (Paris) 4:148–162

    Google Scholar 

  • Hahn MW (2003) Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 69:5248–5254

    PubMed  CAS  Google Scholar 

  • Hahn MW, Lang E, Brandt U, Wu QL, Scheuerl T (2009) Emended description of the genus Polynucleobacter and the species P necessarius and proposal of two subspecies P. necessarius subspecies necessarius subsp. nov. and P. necessarius subsp. A symbioticus subsp nov. Int J Syst Evol Microbiol 59(8):2002–2009

    PubMed  CAS  Google Scholar 

  • Hausmann K, Bradbury PC (eds) (1996) Ciliates—cells as organisms. Gustav Fischer-Verlag, Stuttgart

    Google Scholar 

  • Heatherington S (1934) The sterilization of protozoa. Biol Bull 67:315–321

    Google Scholar 

  • Heckmann K (1963) Paarungstypsystem und genabhängige Paarungstypdifferenzierung bei dem hypotrichen Ciliaten Euplotes vannus. O F Müller Arch Protistenk 106:393–421

    Google Scholar 

  • Heckmann K (1975) Omikron, ein essentieller Endosymbiont von Euplotes aediculatus. J Protozool 22:97–104

    Google Scholar 

  • Heckmann K (1983) Endosymbionts of Euplotes. In: Jeon KW (ed) Intracellular symbiosis International review of cytology. Academic, New York, pp 111–144

    Google Scholar 

  • Heckmann K, Frankel J (1968) Genic control of cortical pattern in Euplotes. J Exp Zool 168:11–38

    PubMed  CAS  Google Scholar 

  • Heckmann K, Görtz HD (1991) Prokaryotic symbionts of ciliates. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KD (eds) The prokaryotes, 2nd edn. Springer, New York, pp 3865–3890

    Google Scholar 

  • Heckmann K, Schmidt HJ (1987) Polynucleobacter necessarius gen. nov., spe nov., an obligately endosymbiotic bacterium living in the cytoplasm of Euplotes aediculatus. Int J Syst Bacteriol 37:456–457

    Google Scholar 

  • Heckmann K, Preer JR Jr, Straetling WH (1967) Cytoplasmic particles in the killers of Euplotes minuta and their relationship to the killer substance. J Protozool 1:360–363

    Google Scholar 

  • Heckmann K, ten Hagen R, Görtz H-D (1983) Fresh-water Euplotes species with a 9 type 1 cirrus pattern depend upon endosymbionts. J Protozool 30:284–289

    Google Scholar 

  • Heckmann K, Schmidt HJ, Fujishima M (1986) Omikron and omikron-like endosymbionts of Euplotes. In: Wickner RB, Hinnebusch A, Lambowitz AM, Gunsalus IC, Hollaender A (eds) Extrachromosomal elements of lower eukaryotes. Plenum, New York, pp 327–335

    Google Scholar 

  • Henry SM (1966) Symbiosis: vol I. Associations of microorganisms, plants, and marine organisms. Academic, New York/London

    Google Scholar 

  • Hernández-Romero D, Lucas-Elío P, López-Serrano D, Solano F, Sanchez-Amat A (2003) Marinomonas mediterranea is a lysogenic bacterium that synthesizes R-bodies. Microbiology 149:2679–2686

    PubMed  Google Scholar 

  • Heruth DP, Pond FR, Dilts JA, Quackenbush RL (1994) Characterization of genetic determinants for R body synthesis and assembly in Caedibacter taeniospiralis 47 and 116. J Bacteriol 176:3559–3567

    PubMed  CAS  Google Scholar 

  • Holtzman HE (1959) A kappa-like particle in a non-killer stock of Paramecium aurelia, syngen 5. J Protozool 6(Suppl):26

    Google Scholar 

  • Hori M, Fujishima M (2003) The endosymbionts bacterium Holospora obtusa enhances heat-shock gene expression of the host Paramecium caudatum. J Eukaryot Microbiol 50:293–298

    PubMed  CAS  Google Scholar 

  • Hori M, Fujii K, Fujishima M (2008) Micronucleus-specific bacterium Holospora elegans irreversibly enhances stress gene expression of the host Paramecium caudatum. J Eukaryot Microbiol 55:515–521

    PubMed  CAS  Google Scholar 

  • Iwatani K, Dohra H, Lang FB, Burger G, Hori M, Fujishima M (2005) Translocation of an 89-kDa periplasmic protein is associated with Holospora infection. Biochem Biophys Res Comm 337:1198–2015

    PubMed  CAS  Google Scholar 

  • Jenkins RA (1970) The fine structure of a nuclear envelope associated endosymbiont of Paramecium. J Gen Microbiol 61:355–359

    Google Scholar 

  • Jeon KW, Jeon MS (1976) Scanning electron microscope observations of Amoeba proteus during phagocytosis. J Protozool 23:83–86

    PubMed  CAS  Google Scholar 

  • Kahl A (1933) Ciliata libera et ectocommensalia. In: Grimpe G, Wagler E (eds) Die Tierwelt der Nord-und Ostsee, Teil II Akademische Verlagsgesellschaft Becker & Erler, Leipzig, Germany, pp 29–146

    Google Scholar 

  • Kahl A (1935) Urtiere oder protozoa I: Wimpertiere oder ciliata (infusoria). 4: peritricha und chonotricha nachtrag. In: Dahl F (ed) Die tierwelt Deutschlands. Gustav Fischer, Jena, pp 806–842

    Google Scholar 

  • Kanabrocki JA, Lalucat J, Cox BJ, Quackenbush RL (1986) Comparative study of refractile (R) bodies and their genetic determinants: relationship of type 51 R bodies to R bodies produced by Pseudomonas taeniospiralis. J Bacteriol 168:1019–1022

    PubMed  CAS  Google Scholar 

  • Kawai M, Fujishima M (2000) Invasion of the macronucleus of Paramecium caudatum by the bacterium Holospora obtusa: fates of the bacteria and timing of invasion steps. Eur J Protistol 36:46–52

    Google Scholar 

  • Kirby H Jr (1941) Organisms living on and in protozoa. In: Calkins GN, Summers FM (eds) Protozoa in biological research. Columbia University Press, New York, pp 1009–1113

    Google Scholar 

  • Kuhlmann H-W, Heckmann K (1989) Adolescence in Euplotes octocarinatus. J Exp Zool 251:316–328

    Google Scholar 

  • Kusch J, Stremmel M, Schweikert M, Adams V, Schmidt HJ (2000) The toxic symbiont Caedibacter caryophila in the cytoplasm of Paramecium novaurelia. Microb Ecol 40:330–335

    PubMed  CAS  Google Scholar 

  • Kusch J, Czubatinski L, Wegmann S, Hübner M, Alter M, Albrecht P (2001) Competitive advantages of Caedibacter-infected paramecia. Protist 153:47–58

    Google Scholar 

  • Lalucat J, Meyer O, Mayer F, Pares R, Schlegel HG (1979) R bodies in newly isolated free-living hydrogen-oxidizing bacteria. Arch Microbiol 121:9–15

    CAS  Google Scholar 

  • Lalucat J, Wells B, Gibson I (1986) Relationships between R bodies of certain bacteria. Micron Microsc Acta 17:243–245

    Google Scholar 

  • Landis WG (1981) The ecology, role of the killer trait, and interactions of five species of the Paramecium aurelia complex inhabiting the littoral zone. Can J Zool 59:1734–1743

    Google Scholar 

  • Landis WG (1987) Factors determining the frequency of the killer trait within populations of the Paramecium aurelia complex. Genetics 115:197–206

    PubMed  CAS  Google Scholar 

  • Lauterborn R (1901) Die “sapropelische” Lebewelt. Zool Anz 24:50–55

    Google Scholar 

  • Laval M (1970) Présence de bactéries intranucléaires chez Zoothamnium pelagicum. In: 7th Internernational Congress on Electron Microscoscopy, Grenoble, pp 403–404

    Google Scholar 

  • Liebmann H (1937) Bakteriensymbiose bei Faulschlammziliaten. Biol Zbl 57:442–445

    Google Scholar 

  • Liebmann H (1938) Biologie und Chemismus der Bleilochsperre. Arch Hydrobiol 33:1–81

    CAS  Google Scholar 

  • Luporini P (1974) Killer and autogamous strains of Euplotes crassus Dujardin from the Somalien coast. Monit Zool Ital (NS) 5(Suppl):129–132

    Google Scholar 

  • Margulis L, Fester R (1991) Symbiosis as the source of evolutionary innovation. MIT Press, Cambridge, MA

    Google Scholar 

  • Meenaghan H, Reilly K, Wells B, Gibson I (1984) A comparison of the refractile bodies (R-bodies) of certain bacteria. II: effects of pH on the structure. Micron Microsci Acta 15:247–252

    Google Scholar 

  • Mueller JA (1963) Separation of kappa particles with infective activity from those with killing activity and identification of the infective particles in Paramecium aurelia. Exp Cell Res 30:492–508

    Google Scholar 

  • Müller J (1856) Beobachtungen an Infusorien. Monatsber Königl Preuβ Akad Wissensch, Berlin, Juli, pp 389–393

    Google Scholar 

  • Müller M (1988) Energy metabolism of protozoa without mitochondria. Ann Rev Microbiol 42:465–488

    Google Scholar 

  • Nakamura Y, Aki M, Aikawa T, Hori M, Fujishima M (2004) Differences in gene expression of the ciliate Paramecium caudatum caused by endonuclear symbiosis with Holospora obtusa, revealed using differential display reverse transcribed PCR. FEMS Microbiol Lett 240:209–213

    PubMed  CAS  Google Scholar 

  • Narayanan N, Krishnakumar B, Anupama VN, Manilal VB (2009) Methanosaeta sp., the major endosymbionts of Metopus es. Res Microbiol 160:600–607

    PubMed  CAS  Google Scholar 

  • Nobili R, Rosati G, Verni F (1976) The killer-trait in Euplotes crassus. Boll Zool 43:251–258

    Google Scholar 

  • Ossipov DV (1973) Specific infectious specificity of the omega-particles, micronuclear symbiotic bacteria of Paramecium caudatum. Cytologia 15:211–217

    Google Scholar 

  • Ossipov DV (1981) Problems of nuclear heteromorphism in the unicellular organisms. Nauka, Leningrad

    Google Scholar 

  • Ossipov DV, Podlipaev SA (1977) Electron microscope examinations of early stages of infection of Paramecium caudatum by bacterial symbionts of the macronucleus (Iota-bacteria). Acta Protozool 16:289–308

    Google Scholar 

  • Ossipov DV, Skoblo II, Rautian MS (1975) Iota-particles, macronuclear symbiotic bacteria of the ciliate Paramecium caudatum clone M 115. Acta Protozool 14:263–280

    Google Scholar 

  • Ossipov DV, Skoblo II, Borchsenius ON, Rautian MS, Podlipaev SA (1980) Holospora acuminata – a new species of symbiotic bacterium from the micronucleus of the cilíate Paramecium bursaria. Focke Cytolog 22:922–929

    Google Scholar 

  • Ossipov DV, Skoblo II, Borchsenius ON, Lebedeva NA (1993) Interactions between Paramecium bursaria (Protozoa, Ciliophora, Hymenostomatida) and their nuclear symbionts. I: phenomenon of symbiogenic lysis of the bacterium Holospora acuminata. Eur J Protistol 29:61–71

    PubMed  CAS  Google Scholar 

  • Paulin JJ (1996) Morphology and cytology of ciliate. In: Hausmann K, Bradbury PC (eds) Ciliates: cells as organisms. Gustav Fischer-Verlag, Stuttgart, pp 1–40

    Google Scholar 

  • Petroni G, Spring S, Schleifer KH, Verni F, Rosati G (2000) Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc Natl Acad Sci USA 97:1813–1817

    PubMed  CAS  Google Scholar 

  • Petroni G, Dini F, Verni F, Rosati G (2001) A molecular approach to the tangled intragenic relationships underlying phylogeny in Euplotes (Ciliophora, Spirotricha). Molec Phylogenet Evol 22(1):118–130

    Google Scholar 

  • Pond FR, Gibson I, Lalucat J, Quackenbush RL (1989) R-body producing bacteria. Microbiol Rev 53:25–67

    PubMed  CAS  Google Scholar 

  • Preer JR Jr (1948a) A study of some properties of the cytoplasmic factor “kappa” in Paramecium aurelia, variety 2. Genetics 33:349–404

    PubMed  CAS  Google Scholar 

  • Preer JR Jr (1948b) The killer cytoplasmic factor kappa: Its rate of reproduction, the number of particles per cell, and its size. Am Natural 82:35–42

    Google Scholar 

  • Preer JR Jr (1950) Microscopically visible bodies in the cytoplasm of the “killer” strains of Paramecium aurelia. Genetics 35:344–362

    PubMed  Google Scholar 

  • Preer LB (1969) Alpha, an infectious macronuclear symbiont of Paramecium aurelia. J Protozool 16:570–578

    PubMed  CAS  Google Scholar 

  • Preer JR Jr (1977) The killer system in Paramecium-kappa and its viruses. Microbiology 1977:576–578

    Google Scholar 

  • Preer LB (1981) Prokaryotic symbionts of Paramecium. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, New York, pp 2127–2136

    Google Scholar 

  • Preer JR Jr, Jurand A (1968) The relationship between virus-like particles and R bodies of Paramecium aurelia. Genet Res 12:331–340

    PubMed  Google Scholar 

  • Preer LB, Preer JR Jr (1964) Killing activity from lysed particles of Paramecium. Genet Res 5:230–239

    Google Scholar 

  • Preer JR Jr, Preer LB (1967) Virus-like bodies in killer-paramecia. Proc Natl Acad Sci USA 58:1774–1781

    PubMed  Google Scholar 

  • Preer JR Jr, Preer LB (1982) Revival of names of protozoan endosymbionts and proposal of Holospora caryophila nom. nov. Int J Syst Bacteriol 32:140–141

    Google Scholar 

  • Preer JR Jr, Preer LB (1984) Endosymbionts of protozoa. In: Krieg NR (ed) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 795–811

    Google Scholar 

  • Preer JR Jr, Stark P (1953) Cytological observations on the cytoplasmic factor “kappa” in Paramecium aurelia. Exp Cell Res 5:478–491

    PubMed  CAS  Google Scholar 

  • Preer JR Jr, Hufnagel LA, Preer LB (1966) Structure and behavior of “R” bodies from killer paramecia. J Ultrastr Res 15:131–143

    Google Scholar 

  • Preer JR Jr, Preer LB, Rudman B, Jurand A (1971) Isolation and composition of bacteriophage-like particles from kappa of killer paramecia. Mole Gen Genet 111:202–208

    CAS  Google Scholar 

  • Preer LB, Jurand A, Preer JR Jr, Rudman B (1972) The classes of kappa in Paramecium aurelia. J Cell Sci 11:581–600

    PubMed  CAS  Google Scholar 

  • Preer JR Jr, Preer LB, Jurand A (1974a) Kappa and other endosymbionts of Paramecium aurelia. Bacteriol Rev 38:113–163

    PubMed  CAS  Google Scholar 

  • Preer LB, Rudman B, Preer JR Jr (1974b) Induction of R bodies by ultraviolet light in killer paramecia. J Gen Microbiol 80:209–215

    Google Scholar 

  • Przybosz E, Fokin SI (1997) Species of the Paramecium aurelia complex Sonneborn in Germany. Arch Protistenkd 148:167–172

    Google Scholar 

  • Quackenbush RL (1978) Genetic relationships among bacterial endosymbionts of Paramecium aurelia: polynucleotide sequence relationship among members of Caedobacter. J Gen Microbiol 108:181–187

    CAS  Google Scholar 

  • Quackenbush RL (1982) Validation of the publication of new names and new combinations previously published outside the IJSB. List No. 8. Int J Syst Bacteriol 32:266–268

    Google Scholar 

  • Quackenbush RL (1983) Plasmids from bacterial endosymbionts of hump-killer paramecia. Plasmid 9:298–306

    PubMed  CAS  Google Scholar 

  • Quackenbush RL (1988) Endosymbionts of killer paramecia. In: Görtz HD (ed) Paramecium. Springer, Berlin, pp 406–418

    Google Scholar 

  • Quackenbush RL, Burbach JA (1983) Cloning and expression of DNA sequences associated with the killer trait of Paramecium tetraurelia stock 47. Proc Natl Acad Sci USA 80:250–254

    PubMed  CAS  Google Scholar 

  • Quackenbush RL, Cox BJ, Kanabrocki JA (1986) Extrachromosomal elements of extrachromosomal elements of Paramecium and their extrachromosomal elements. In: Wickner RB, Hinnebusch A, Lambowitz AM, Gunsalus IC, Hollaender A (eds) Extrachromosomal elements in lower eukaryotes. Plenum, New York, pp 265–278

    Google Scholar 

  • Raikov IB (1971) Bactéries épizoiques et mode de nutrition du cilié psammophile Kentrophorus fistulosum Fauré-Fremiet (étude au microscope electronique). Protistologica 7:365–378

    Google Scholar 

  • Raikov IB (1974) Etude ultrastructurale des bactéries épizoiques et éndozoiques de Kentrophorus latum Raikov, cilié holotriche mésopsammique. Cahiers de Biologie Marine 15:379–393

    Google Scholar 

  • Read CP (1970) Parasitism and symbiology. Ronald Press, New York

    Google Scholar 

  • Roller C, Ludwig W, Schleifer K-H (1992) Gram-positive bacteria with a high DNA G-C content are characterized by a common insertion with their 23S rRNA genes. J Gen Microbiol 138:1167–1175

    PubMed  CAS  Google Scholar 

  • Rosati G (1999) Epixenosomes: symbionts of the hypotrich ciliate Euplotidium itoi. Symbiosis 26:1–24

    Google Scholar 

  • Rosati G, Verni F (1975) Macronuclear symbionts in Euplotes crassus (Ciliata, Hypotrichida). Bull Zool 42:231–232

    Google Scholar 

  • Rosati G, Verni F (1977) Bacteria-like endosymbionts in Euplotes crassus. In: Hutner SH (ed) 5th Iternational Congress of Protozoology, Abstract Society of Protozoology, New York, 443 pp

    Google Scholar 

  • Rosati G, Verni F, Luporini P (1976) Cytoplasmic bacteria-like endosymbionts in Euplotes crassus (Dujardin) (Ciliata, Hypotrichida). Monitore Zool Ital (NS) 10:449–460

    Google Scholar 

  • Rosati G, Lenzi P, Verni F (1993a) “Epixenosomes”: peculiar epibionts of the protozoon ciliate Euplotidium itoi. Do their cytoplasmic tubules consist of tubulin? Micron 24:465–471

    Google Scholar 

  • Rosati G, Verni F, Lenzi P (1993b) “Epixenosomes”: peculiar epibionts of the ciliate Euplotidium itoi. The formation of the extrusive apparatus and the ejecting mechanism. Eur J Protistol 29:238–245

    PubMed  CAS  Google Scholar 

  • Rosati G, Petroni G, Quochi S, Modeo L, Verni F (1999) Epixenosomes: peculiar epibionts of the hyprotrich ciliate Euplotidium itoi defend their host against predators. J Eukaryot Microbiol 46:278–282

    Google Scholar 

  • Ruthmann A, Heckmann K (1961) Formwechsel und struktur des makronukleus von Bursaria truncatella. Arch Protistenkd 105:313–340

    Google Scholar 

  • Sabaneyeva EV, Derkacheva ME, Benken KA, Fokin SI, Vainio S, Skovorodkin IN (2009) Actin-based mechanism of holospora obtusa trafficking in Paramecium caudatum. Protist 160:205–219

    PubMed  CAS  Google Scholar 

  • Sauerbrey E (1928) Beobachtungen über einige neue oder wenig bekannte marine Ciliaten. Arch Protistenkd 61:355–407

    Google Scholar 

  • Schmidt HJ (1982) Isolation of omikron-endosymbionts from mass cultures of Euplotes aediculatus and characterization of their DNA. Exp Cell Res 140:417–425

    PubMed  CAS  Google Scholar 

  • Schmidt HJ (1984) Studies on protein synthesis in kappa particles. J Gen Microbiol 130:1517–1523

    CAS  Google Scholar 

  • Schmidt HJ, Freiburg M, Görtz HD (1987a) Comparison of the infectious forms of two bacterial endonucleobionts, Holospora elegans and H. obtusa, from the ciliate Paramecium caudatum. Microbios 49:189–197

    CAS  Google Scholar 

  • Schmidt HJ, Görtz HD, Quackenbush RL (1987b) Caedibacter caryophila sp. nov., a killer symbiont inhabiting the macronucleus of Paramecium caudatum. Int J Syst Bacteriol 37:459–462

    Google Scholar 

  • Schmidt HJ, Pond FR, Görtz HD (1987c) Refractile bodies (R bodies) from the macronuclear killer particle Caedibacter caryophila. J Cell Sci 88:177–184

    Google Scholar 

  • Schmidt HJ, Görtz HD, Pond FR, Quackenbush RL (1988) Characterization of Caedibacter endonucleobionts from the macronucleus of Paramecium caudatum and the identification of a mutant with blocked R-body synthesis. Exp Cell Res 174:49–57

    PubMed  CAS  Google Scholar 

  • Schneller MV (1958) A new type of killing action in a stock of Paramecium aurelia from Panama. Proc Ind Acad Sci 67:302

    Google Scholar 

  • Schneller MV, Sonneborn TM, Mueller JA (1959) The genetic control of kappa-like particles in Paramecium aurelia. Genetics 44:533–534

    Google Scholar 

  • Schönefeld U, Alfermann AW, Schultz JE (1986) Economic mass cultivation of Paramecium tetraurelia on a 200-liter scale. J Protozool 33:222–225

    Google Scholar 

  • Schrallhammer M, Schweikert M (2009) The killer effect of Paramecium and its causative agents. In: Fujishima M (ed) Endosymbionts in Paramecium. Microbiology Monpographs, vol 12. Springer, Dortrecht/Heidelberg/London/New York, pp 228–246

    Google Scholar 

  • Schrallhammer M, Schweikert M, Vallesi A, Verni F, Petroni G (2010) Detection of a novel subspecies of Francisella noatunensis as endosymbiont of Euplotes raikovi. Microb Ecol 61:455–464

    PubMed  Google Scholar 

  • Siegel RW (1953) A genetic analysis of the mate-killer trait in Paramecium aurelia, variety 8. Genetics 38:550–560

    PubMed  CAS  Google Scholar 

  • Siegel RW, Heckmann K (1966) Inheritance of autogamy and the killer trait in Euplotes minuta. J Protozool 13:34–48

    PubMed  CAS  Google Scholar 

  • Simon EM, Schneller MV (1973) The preservation of ciliated protozoa at low temperature. Cryobiology 10:421–426

    PubMed  CAS  Google Scholar 

  • Sitte P (1993) Symbiogenetic evolution of complex cells and complex plastids. Eur J Protistol 29:131–143

    PubMed  CAS  Google Scholar 

  • Skoblo II, Lebedeva NA (1986) Infection of the nuclear apparatus of Paramecium bursaria (Ciliata) by the symbiotic bacterium Holospora curviuscula. Cytologia 28:367–372

    Google Scholar 

  • Skoblo II, Borchsenius ON, Lebedeva NA, Ossipov DV (1985) A new species of symbiotic bacteria of Paramecium bursaria, Ciliophora, Protozoa. Cytologia 27:1292–1297

    Google Scholar 

  • Skoblo II, Borchsenius ON, Lebedeva NA, Ossipov DV (1990) Symbiogenic lysis of bacteria Holospora acuminata in the generative nucleus of the ciliate Paramecium bursaria. Cytologia 32:515–519

    Google Scholar 

  • Smith IE (1961) Purification of kappa particles of Paramecium aurelia, stock 51. Am Zool 1:390

    Google Scholar 

  • Smith-Sonneborn JE, Van Wagtendonk WJ (1964) Purification and chemical characterization of kappa of stock 51, Paramecium aurelia. Exp Cell Res 33:50–59

    PubMed  CAS  Google Scholar 

  • Smurov AO, Fokin SI (1999) Resistence of Paramecium species (Ciliophor, Peniculia) to salinity of environment. Protistology 1:43–53

    Google Scholar 

  • Soldo AT (1963) Axenic culture of Paramecium: some observations on the growth behavior and nutritional requirements of a particle-bearing strain of Paramecium aurelia 299 lambda. Ann NY Acad Sci 108:380–388

    PubMed  CAS  Google Scholar 

  • Soldo AT (1974) Intracellular particles in Paramecium. In: Van Wagtendonk WJ (ed) Paramecium: a current survey. Elsevier, Amsterdam, pp 377–442

    Google Scholar 

  • Soldo AT (1983) The biology of the xenosome, an intracellular symbiont. In: Jeon KW (ed) Intracellular symbiosis. Int Rev Cytol, Suppl 14. Academic Press, New York, pp 79–109

    Google Scholar 

  • Soldo AT (1987) Parauronema acutum and its xenosomes, a model system. J Protozool 34:447–451

    PubMed  CAS  Google Scholar 

  • Soldo AT, Brickson SA (1978) Observation on the ultrastructure, mode of infectivity and host range of xenosomes. Tissue Cell 10:609–618

    PubMed  CAS  Google Scholar 

  • Soldo AT, Godoy GA (1973a) Molecular complexity of Paramecium symbiont lambda deoxyribonucleic acid: evidence for the presence of a multicopy genome. J Mol Biol 73:93–108

    PubMed  CAS  Google Scholar 

  • Soldo AT, Godoy GA (1973b) Observations on the production of folic acid by symbiont lambda particles of Paramecium aurelia stock 299. J Protozool 20:502

    Google Scholar 

  • Soldo AT, Godoy GA (1974) The molecular complexity of mu and pi symbiont DNA of Paramecium aurelia. Nucl Acid Res 1:387–396

    CAS  Google Scholar 

  • Soldo AT, Van Wagtendonk WJ (1969) The nutrition of Paramecium aurelia, stock 299. J Protozool 16:500–506

    PubMed  CAS  Google Scholar 

  • Soldo AT, Godoy GA, Van Wagtendonk WJ (1966) Growth of particle-bearing and particle-free Paramecium aurelia in axenic culture. J Protozool 13:492–497

    Google Scholar 

  • Soldo AT, Van Wagtendonk WJ, Godoy GA (1970) Nucleic acid and protein content of purified endosymbiote particles of Paramecium aurelia. Biochim Biophys Acta 204:325–333

    PubMed  CAS  Google Scholar 

  • Soldo AT, Godoy GA, Brickson SA (1974) Infectious particles in a marine ciliate. Nature 249:284–286

    PubMed  CAS  Google Scholar 

  • Soldo AT, Brickson SA, Larin F (1983) The size and structure of the DNA genome of symbiont xenosome particles in the ciliate Parauronema acutum. J Gen Microbiol 129:1317–1325

    PubMed  CAS  Google Scholar 

  • Soldo AT, Brickson SA, Castiglione GA, Freytag AF (1986a) Association of transformation of xenosomes from nonkiller to killer with extrachromosomal DNA. J Bacteriol 169:96–102

    Google Scholar 

  • Soldo AT, Brickson SA, Freytag A (1986b) Structure and characterization of extrachromosomal DNA of killer xenosomes, intracellular symbionts of a marine protozoan. In: Wickner RB, Hinnebusch A, Lam AM, Gunsalus IC, Hollaender A (eds) Extrachromosomal elements in lower eukaryotes. Plenum, New York, pp 291–302

    Google Scholar 

  • Soldo AT, Brickson SA, Castiglione GA (1987) Inclusion bodies in xenosomes purified on percoll gradients as revealed by electron microscopy. J Protozool 34:6–9

    Google Scholar 

  • Sonneborn TM (1938) Mating types, toxic interactions and heredity in Paramecium aurelia. Science 88:503

    Google Scholar 

  • Sonneborn TM (1943) Gene and cytoplasm. I: the determination and inheritance of the killer character in variety 4 of P aurelia. II: the bearing of determination and inheritance of characters in P aurelia on problems of cytoplasmic inheritance, pneumococcus transformation, mutations and development. Proc Natl Acad Sci USA 29:329–343

    PubMed  CAS  Google Scholar 

  • Sonneborn TM (1950) Methods in the general biology and genetics of Paramecium aurelia. J Exp Zool 113:87–148

    Google Scholar 

  • Sonneborn TM (1959) Kappa and related particles in Paramecium. Adv Virus Res 6:229–356

    Google Scholar 

  • Sonneborn TM (1970) Methods in Paramecium research. In: Prescott M (ed) Methods in cell physiology, vol 4. Academic, New York, pp 241–339

    Google Scholar 

  • Sonneborn TM (1975) The Paramecium aurelia complex of fourteen sibling species. Trans Am Microsci Soc 94:155–178

    Google Scholar 

  • Sonneborn TM, Mueller JA, Schneller MV (1959) The classes of kappa-like particles in Paramecium aurelia. Anat Rec 134:642

    Google Scholar 

  • Springer N, Ludwig W, Amann R, Schmidt HJ, Görtz HD, Schleifer KH (1993) Occurrence of fragmented 16S rRNA in an obligate bacterial endosymbiont of Paramecium caudatum. Proc Natl Acad Sci USA 90:9892–9895

    PubMed  CAS  Google Scholar 

  • Springer N, Amann R, Ludwig W, Schleifer K-H, Schmidt HJ (1996) Polynucleobacter necessarius, an obligate bacterial endosymbiont of the hypotrichous ciliate Euplotes aediculatus, is a member of the beta-subclass of Proteobacteria. FEMS Microbiol Lett 135:333–336

    PubMed  CAS  Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kampfe P, Maiden MC, Nesme X, Rossello-Mora R, Swings J, Truper HG, Vauterin L, Ward AC, Whitma WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. IJSEM 52:1043–1047

    PubMed  CAS  Google Scholar 

  • Stumm CK, Vogels GD (1989) Relations of autotrophic bacteria to protozoa. In: Schlegel HG, Bwien B (eds) Autotrophic bacteria. Springer, Berlin, pp 177–191

    Google Scholar 

  • Stumm CK, Gijzen HJ, Vogels GD (1982) Association of methanogenic bacteria with bovine rumen ciliates. Br J Nutr 47:95–99

    PubMed  CAS  Google Scholar 

  • Takayanagi T, Hayashi S (1964) Cytological and cytogenetical studies on Paramecium polycarium V Lethal interactions in certain stocks. J Protozool 11:128–132

    PubMed  CAS  Google Scholar 

  • Thiele JO, Honer-Schmid J, Wahl GK, Schultz JE (1980) A new method for axenic mass cultivation of Paramecium tetraurelia. J Protozool 27:118–121

    Google Scholar 

  • Van Bruggen JJA, Stumm CK, Vogels GD (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol 136:89–95

    Google Scholar 

  • Van Bruggen JJA, Zwart KB, Van Assema RM, Stumm CK, Vogels GD (1984) Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Methopus striatus. McMurrich Arch Microbiol 139:1–7

    Google Scholar 

  • Van Bruggen JJA, Zwart KB, Hermans JGF, Van Hove EM, Stumm CK, Vogels GD (1986) Isolation and characterization of Methanoplanus endosymbiosus sp nov., an endosymbiont of the marine sapropelic ciliate Methopus contortus. Quennerstedt Arch Microbiol 144:367–374

    Google Scholar 

  • Van Wagtendonk WJ, Soldo AT (1970) Methods used in the axenic cultivation of Paramecium aureli. In: Prescott M (ed) Methods in cell physiology, vol 4. Academic, New York, pp 117–130

    Google Scholar 

  • Vannini C, Rosati G, Verni F, Petroni G (2004) Identification of the bacterial endosymbionts of the marine ciliate Euplotes magnicirratus (Ciliophora, Hypotrichia) and proposal of “Candidatus Devosia euplotis”. Int J Sys Evol Microbiol 54:1151–1156

    CAS  Google Scholar 

  • Vannini C, Petroni G, Verni F, Rosati G (2005) Polynucleobacter bacteria in the brackish-water species Euplotes harpa (Ciliata, Hypotrichia). J Euk Microbol 52:116–122

    CAS  Google Scholar 

  • Vannini C, Ferrantini F, Schleifer KH, Ludwig W, Verni F, Petroni G (2010) “Candidatus Anadelfobacter veles” and “Candidatus Cyrtobacter comes” two new Rickettsiales species hosted by the protist ciliate Euplotes harpa (Ciliophora, Spirotrichea). Appl Env Microbiol 76:4047–4054

    CAS  Google Scholar 

  • Vannini C, Pöckl M, Petroni G, Wu QL, Lang E, Stackebrandt E, Schrallhammer M, Richardson PM, Hahn MW (2007) Endosymbiosis in statu nascendi: close phylogenetic relationship between obligatory endosymbiotic and obligately free-living Polynucleobacter strains (Betaproteobacteria). Environ Microbiol 9(2):347–359.

    PubMed  CAS  Google Scholar 

  • Verni F, Rosati G (1990) Peculiar epibionts in Euplotidium itoi (Ciliata, Hypotrichida). J Protozool 37:337–343

    Google Scholar 

  • Vogels GD, Hoppe WF, Stumm CK (1980) Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol 40:608–612

    PubMed  CAS  Google Scholar 

  • Wagener S, Pfennig N (1987) Monoxenic culture of the anaerobic ciliate Trimyema compressum Lackey. Arch Microbiol 149:4–11

    CAS  Google Scholar 

  • Wagener S, Bardele CF, Pfennig N (1990) Functional integration of Methanobacterium formicicum into the anaerobic ciliate Trimyema compressum. Arch Microbiol 153:496–501

    CAS  Google Scholar 

  • Wells B, Horne RW (1983) The ultrastructure of Pseudomonas avena. II: intracellular refractile (R body) structure. Micron Microsc Acta 14:329–344

    Google Scholar 

  • Wichterman R (1953) The biology of Paramecium. Plenum Press, New York

    Google Scholar 

  • Wiemann M (1989) The release of Holospora obtusa from Paramecium caudatum observed with a new device for extended in vivo microscopy. J Protozool 36:176–179

    Google Scholar 

  • Wiemann J, Görtz H-D (1989) Release of the endonucleobiotic bacterium Holospora elegans from its host cell Paramecium caudatum. Eur J Protistol 25:100–108

    PubMed  CAS  Google Scholar 

  • Wiemann M, Görtz H-D (1991) Identification and localization of major stage-specific polypeptides of infectious Holospora obtusa with monoclonal antibodies. J Bacteriol 173:4842–4850

    PubMed  CAS  Google Scholar 

  • Yarlett N, Hann AC, Lloyd D, Williams A (1981) Hydrogenosomes in the rumen protozoon Dasytricha ruminantium Schuberg. Biochem J 200:365–372

    PubMed  CAS  Google Scholar 

  • Zwart KB, Goosen NK, Van Schijndel MW, Broers CAM, Stumme CK, Vogels GD (1988) Cytochemical localization of hydrogenase activity in the anaerobic protozoa Trichomonas vaginalis, Plagiopyla nasuta and Trimyema compressum. J Gen Microbiol 134:2165–2170

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schweikert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schweikert, M., Fujishima, M., Görtz, HD. (2013). Symbiotic Associations Between Ciliates and Prokaryotes. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30194-0_18

Download citation

Publish with us

Policies and ethics