Skip to main content

Aircraft Wake Vortices: From Fundamental Research to Operational Application

  • Chapter
  • First Online:
Atmospheric Physics

Part of the book series: Research Topics in Aerospace ((RTA))

Abstract

Aircraft trailing vortices constitute both a kaleidoscope of instructive fluid dynamics phenomena and a challenge for the sustained development of the safety and capacity of the air-transportation system. This section gives an overview of the wake vortex issue commencing at its historical roots, proceeding with a sketch of the nature and characteristics of wake vortices resulting from field measurement and numerical simulation, and concluding with a depiction of the design and performance of wake vortex simulation systems established for the prediction of dynamic aircraft separations in different flight phases and for sensitivity and risk analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The bound vortex is a hypothetical vortex filament located on a lifting line which represents a straight wing. In a uniform flow perpendicular to its axis, the bound vortex experiences a lift force according to the Kutta-Zhukhovski lift theorem.

References:

  • Gerz, T., Dürbeck, T., Konopka, P.: Transport and effective diffusion of aircraft emissions. J. Geophys. Res. 103, 25905–25913 (1998). doi:10.1029/98JD02282

    Article  ADS  Google Scholar 

  • Gerz, T., Holzäpfel, F., Darracq, D.: Commercial aircraft wake vortices. Prog. Aerosp. Sci. 38, 181–208 (2002). doi:10.1016/S0376-0421(02)00004-0

    Article  Google Scholar 

  • Gerz, T., Holzäpfel, F., Gerling, W., Scharnweber, A., Frech, M., Kober, K., Dengler, K., Rahm, S.: The wake vortex prediction and monitoring system WSVBS Part II: performance and ATC integration at Frankfurt airport. Air Traffic Control Quart. 17(4), 323–346 (2009)

    Google Scholar 

  • Greene, G.C.: An approximate model of vortex decay in the atmosphere. J. Aircraft 23(7), 566–573 (1986)

    Article  Google Scholar 

  • Gurke, T., Lafferton, H.: The development of the wake vortex warning system for Frankfurt airport: theory and implementation. Air Traffic Control Quart. 5(1), 3–29 (1997)

    Google Scholar 

  • Hennemann, I.: Deformation und Zerfall von Flugzeugwirbelschleppen in turbulenter und stabil geschichteter Atmosphäre. Dissertation, DLR-Forschungsbericht 2010–21, pp. 146 (2010)

    Google Scholar 

  • Hennemann, I., Holzäpfel, F.: Large-eddy simulation of aircraft wake vortex deformation and topology, Proceedings of the Institution of Mechanical Engineers, Part G. J. Aerosp. Eng. 225(12), 1336–1350 (2011). doi:10.1177/0954410011402257

    Google Scholar 

  • Hinton, D.A.: An Aircraft Vortex Spacing System (AVOSS) for Dynamical Wake Vortex Spacing Criteria, The Characterization and Modification of Wakes from Lifting Vehicles in Fluids. AGARD, CP-584, 23.21–23.11.(1996)

    Google Scholar 

  • Hofbauer, T.: Numerische Untersuchungen zum Einfluss von Windscherung und Turbulenz auf Flugzeugwirbelschleppen. Dissertation, DLR-Forschungsbericht 2003–01, pp. 115 (2003)

    Google Scholar 

  • Holzäpfel, F., Gerz, T., Frech, M., Dörnbrack, A.: Wake vortices in a convective boundary layer and their influence on following aircraft. J. Aircraft 37(6), 1001–1007 (2000). doi:10.2514/2.2727

    Article  Google Scholar 

  • Holzäpfel, F., Gerz, T., Baumann, R.: The turbulent decay of trailing vortex pairs in stably stratified environments. Aerosp. Sci. Technol. 5(2), 95–108 (2001). doi:10.1016/S1270-9638(00)01090-7

    Article  MATH  Google Scholar 

  • Holzäpfel, F.: Probabilistic two-phase wake vortex decay and transport model. J. Aircraft 40(2), 323–331 (2003). doi:10.2514/2.3096

    Article  Google Scholar 

  • Holzäpfel, F., Hofbauer, T., Darracq, D., Moet, H., Garnier, F., Ferreira Gago, C.: Analysis of wake vortex decay mechanisms in the atmosphere. Aerosp. Sci. Technol. 7(4), 263–275 (2003). doi:10.1016/S1270-9638(03)00026-9

    Article  MATH  Google Scholar 

  • Holzäpfel, F.: Probabilistic two-phase aircraft wake-vortex model: further development and assessment. J. Aircraft 43(3), 700–708 (2006). doi:10.2514/1.16798

    Article  Google Scholar 

  • Holzäpfel, F., Frech, M., Gerz, T., Tafferner, A., Hahn, K.-U., Schwarz, C., Joos, H.-D., Korn, B., Lenz, H., Luckner, R., et al.: Aircraft wake vortex scenarios simulation package—WakeScene. Aerosp. Sci. Technol. 13(1), 1–11 (2009a). doi:10.1016/j.ast.2007.09.008

    Article  Google Scholar 

  • Holzäpfel, F., Gerz, T., Frech, M., Tafferner, A., Köpp, F., Smalikho, I., Rahm, S., Hahn, K.-U., Schwarz, C.: The wake vortex prediction and monitoring system WSVBS—Part I: design. Air Traffic Control Quart. 17(4), 301–322 (2009b)

    Google Scholar 

  • Holzäpfel, F., Kladetzke, J.: Assessment of wake vortex encounter probabilities for crosswind departure scenarios. J. Aircraft 48(3), 812–822 (2011). doi:10.2514/1.C000236

    Article  Google Scholar 

  • Jackson, W., Yaras, M., Harvey, J., Winckelmans, G., Fournier, G., Belotserkovsky, A.: Wake vortex prediction—an overview, transport Canada, Montreal, Rept. TP 13629E (2001)

    Google Scholar 

  • Kauertz, S., Holzäpfel, F., Kladetzke, J.: Wake vortex encounter risk assessment for crosswind departures. J. Aircraft 49(1), 281–291 (2012). doi:10.2514/1.C031522

    Article  Google Scholar 

  • Köpp, F.: Doppler lidar investigation of wake vortex transport between closely spaced parallel runways. AIAA J. 32(4), 805–810 (1994). doi:10.2514/3.12057

    Article  Google Scholar 

  • Köpp, F., Smalikho, I., Rahm, S., Dolfi, A., Cariou, J.-P., Harris, M., Young, R.I., Weekes, K., Gordon, N.: Characterization of aircraft wake vortices by multiple-lidar triangulation. AIAA J. 41(6), 1081–1088 (2003). doi:10.2514/2.2048

    Article  ADS  Google Scholar 

  • Köpp, F., Rahm, S., Smalikho, I.: Characterization of aircraft wake vortices by 2-µm pulsed Doppler lidar. J. Atmos. Ocean. Technol. 21(2), 194–206 (2004). 10.1175/1520-0426(2004) 021<0194:COAWVB>2.0.CO;2

    Article  Google Scholar 

  • Lanchester, F.W.: Aerodynamics. Constable, London (1907)

    MATH  Google Scholar 

  • Manhart, M.: A zonal grid algorithm for DNS of turbulent boundary layers. Comput. Fluids 33(3), 435–461 (2004). doi:10.1016/S0045-7930(03)00061-6

    Article  MATH  Google Scholar 

  • Misaka, T., Holzäpfel, F., Gerz, T., Manhart, M., Schwertfirm, F.: Vortex bursting and tracer transport of a counter-rotating vortex pair. Phys. Fluids 24(2), 25104-25101--25104-25121 (2012). doi: 10.1063/1.3684990

    Google Scholar 

  • Prandtl, L.: Tragflügeltheorie. I. Mitteilung. Nachrichten der K. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 451–477 (1918)

    Google Scholar 

  • Proctor, F.H., Switzer, G.F.: Numerical simulation of aircraft trailing vortices. In: Proceedings of the 9th Conference on Aviation, Range and Aerospace Meteorology, vol. 7.12, pp. 511–516 (2000)

    Google Scholar 

  • Rahm, S., Smalikho, I.: Aircraft wake vortex measurement with airborne coherent Doppler lidar. J. Aircraft 45, 1148–1155 (2008). doi:10.2514/1.32896

    Article  Google Scholar 

  • Robins, R.E., Delisi, D.P.: Numerical simulation of three-dimensional trailing vortex evolution in stratified fluid. AIAA J. 36(6), 981–985 (1998). doi:10.2514/2.468

    Article  ADS  Google Scholar 

  • Sarpkaya, T., Robins, R.E., Delisi, D.P.: Wake-vortex eddy-dissipation model predictions compared with observations. J. Aircraft 38(4), 687–692 (2001). doi:10.2514/2.2820

    Article  Google Scholar 

  • Schumann, U. (ed.): Air traffic and the environment—background, tendencies and potential global atmospheric effects. Lecture Notes in Engineering 60. Springer-V, (1990)

    Google Scholar 

  • Schwarz, C.W., Hahn, K.-U.: Full-flight simulator study for wake vortex hazard area Investigation. Aerosp. Sci. Technol. 10(2), 136–143 (2006). doi:10.1016/j.ast.2005.09.005

    Article  Google Scholar 

  • Smalikho, I., Köpp, F., Rahm, S.: Measurement of atmospheric turbulence by 2-µm Doppler lidar. J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005). doi:10.1175/JTECH1815.1

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Holzäpfel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holzäpfel, F., Gerz, T. (2012). Aircraft Wake Vortices: From Fundamental Research to Operational Application. In: Schumann, U. (eds) Atmospheric Physics. Research Topics in Aerospace. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30183-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30183-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30182-7

  • Online ISBN: 978-3-642-30183-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics