Skip to main content

Oxidation of Inorganic Nitrogen Compounds as an Energy Source

  • Reference work entry
The Prokaryotes

Abstract

This chapter covers one of the microbiological steps of the nitrogen cycle, nitrification, which is the biological oxidation of reduced forms of inorganic nitrogen to nitrite and nitrate. Nitrifying bacteria use the oxidation of inorganic nitrogen compounds as their major energy source. Reactions are catalyzed by two physiological groups of bacteria: ammonia-oxidizing bacteria, which gain energy from oxidation of ammonia to nitrite, and nitrite-oxidizing bacteria, which thrive by oxidizing nitrite to nitrate. Because of the toxic nature of nitrite, its rapid conversion to nitrate, assimilated by plants and microorganisms, is essential. Ammonia oxidizers are lithoautotrophic organisms using carbon dioxide as the main carbon source; ammonia monooxygenase oxidizes ammonia to hydroxylamine, which is converted to nitrite by the hydroxylamine oxidoreductase. When grown lithotrophically with nitrite, nitrite is oxidized to nitrate by the nitrite oxidoreductase and the oxygen atom in the nitrate molecule is derived from water. The enzyme also reduces nitrite to nitrate when Nitrobacter strains are grown heterotrophically in the presence of nitrate. Detailed schemes for electron flow and energy transduction as well as energy generation schemes are outlined and the role of nitrifying bacteria in the environment highlighted. The two groups of nitrifying bacteria are phylogenetically unrelated, as they are found in different classes of Proteobacteria and members of the nitrite oxidizers are even found in different phyla. This chapter also covers the physiology and phylogeny of recently detected anaerobic ammonium-oxidizing deep-branching members of the phylum Planctomycetes and of Nitrosomonas eutropha.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aakra A, Utaker JB, Nes IF (1999) RFLP of rRNA genes and sequencing of the 16S-23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: a phylogenetic approach. Int J Syst Bacteriol 49:123–130

    PubMed  CAS  Google Scholar 

  • Abeliovich A, Vonshak A (1992) Anaerobic metabolism of Nitrosomonas europaea. Arch Microbiol 158:267–270

    CAS  Google Scholar 

  • Abeliovich A, Vonshak A (1993) Factors inhibiting nitrification of ammonia in deep wastewater reservoirs. Water Res 27:1585–1590

    CAS  Google Scholar 

  • Ahlers B, König W, Bock E (1990) Nitrite reductase activity in Nitrobacter vulgaris. FEMS Microbiol Lett 67:121–126

    CAS  Google Scholar 

  • Aleem MIH (1965) Path of carbon and assimilatory power in chemosynthetic bacteria. I. Nitrobacter agilis. Biochim Biophys Acta 107:14–28

    PubMed  CAS  Google Scholar 

  • Aleem MIH, Hoch GE, Varner JE (1965) Water is the source of oxidant and reductant in bacterial chemosynthesis. Proc Natl Acad Sci USA 54:869–873

    PubMed  CAS  Google Scholar 

  • Aleem MIH (1966) Generation of reducing power in chemosynthesis II: energy-linked reduction of pyridine nucleotides in the chemoautotroph Nitrosomonas europaea. Biochim Biophys Acta 113:216–224

    PubMed  CAS  Google Scholar 

  • Aleem MIH (1968) Mechanism of oxidative phosphorylation in the chemoautotroph Nitrobacter agilis. Biochim Biophys Acta 162:338–347

    PubMed  CAS  Google Scholar 

  • Aleem MIH, Sewell DL (1981) Mechanism of nitrite oxidation and oxidoreductase-systems in Nitrobacter agilis. Curr Microbiol 5:267–272

    CAS  Google Scholar 

  • Aleem MIH, Sewell DL (1984) Oxidoreductase systems in Nitrobacter agilis. In: Strohl WR, Tuovinen OH (eds) Microbial chemoautotrophy. Ohio State University Press, Columbus, pp 185–210

    Google Scholar 

  • Allison SM, Prosser JI (1993) Survival of ammonia oxidizing bacteria in air-dried soil. FEMS Microbiol Lett 79:65–68

    Google Scholar 

  • Alzerreca JJ, Norton JM, Klotz MG (1999) The amo operon in marine ammonia-oxidizing gamma-proteobacteria. FEMS Microbiol Lett 180:21–29

    PubMed  CAS  Google Scholar 

  • Andersson KK, Hooper AB (1983) O2 and H2O are each the source of one O in NO2-produced from NH3 by Nitrosomonas; 15N-NMR evidence. FEBS Lett 164:236–240

    CAS  Google Scholar 

  • Andersson KK, Kent TA, Lipscomb JD, Hooper AB, Münck E (1984) Mössbauer, EPR and optical studies of the P-460 center of hydroxylamine oxidoreductase from Nitrosomonas. J Biol Chem 259:6833–6840

    PubMed  CAS  Google Scholar 

  • Andersson IC, Levine JS (1986) Relative rates of NO and N2O production by nitrifiers, denitrifiers and nitrate respirers. Appl Environ Microbiol 51:938–945

    Google Scholar 

  • Andersson KK, Lipscomb DJ, Valentine M, Munck E, Hooper AB (1986) Tetraheme cytochrome c-554 from Nitrosomonas europaea: heme-heme interactions and ligand bindings. J Biol Chem 261:1126–1138

    PubMed  CAS  Google Scholar 

  • Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid. J Wat Poll Control Fed 48:835–852

    CAS  Google Scholar 

  • Anthony C (1982) The biochemistry of methanotrophs. Academic, London

    Google Scholar 

  • Arciero DM, Balny C, Hooper AB (1991) Spectroscopic and rapid kinetic studies of reduction of cytochrome c554 by hydroxylamine oxidoreductase from Nitrosomonas europaea. Biochemistry 30:11466–11472

    PubMed  CAS  Google Scholar 

  • Arciero DM, Hooper AB (1993) Hydroxylamine oxidoreductase from Nitrosomonas europaea is a multimer of an octa-heme subunit. J Biol Chem 268:14645–14654

    PubMed  CAS  Google Scholar 

  • Arciero DM, Hooper AB (1994) A di-heme cytochrome c peroxidase from Nitrosomonas europaea catalytically active in both the oxidized and half-reduced state. J Biol Chem 269:11878–11886

    PubMed  CAS  Google Scholar 

  • Barraclough D, Puri G (1995) The use of 15N pool dilution and enrichment to separate the heterotrophic and autotrophic pathways of nitrification. Soil Biol Biochem 27:17–22

    CAS  Google Scholar 

  • Bartosch S, Wolgast I, Spieck E, Bock E (1999) Identification of nitrite-oxidizing bacteria with monoclonal antibodies recognizing the nitrite oxidoreductase. Appl Environ Microbiol 65:4126–4233

    PubMed  CAS  Google Scholar 

  • Batchelor SE, Cooper M, Chhabra SR, Glover LA, Stewart GS, Williams P, Prosser JI (1997) Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria. Appl Environ Microbiol 63:2281–2286

    PubMed  CAS  Google Scholar 

  • Baumgärtner M (1991) Umsetzung von Stickoxiden (NOx) in Böden, auf Gebäudeoberflächen und in Mikroorganismen. Konstanzer Dissertationen Nr. 327. Hartung-Gorre Konstanz Germany. Konstanzer Dissertationen Nr. 327

    Google Scholar 

  • Baumgärtner M, Koschorreck M, Conrad R (1996) Oxidative consumption of nitric oxide by heterotrophic bacteria in soil. FEMS Microbiol Ecol 19:165–170

    Google Scholar 

  • Bedard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH +4 , and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84

    PubMed  CAS  Google Scholar 

  • Belser LW, Schmidt EL (1978) Serological diversity within a terrestrial ammonia-oxidizing population. Appl Environ Microbiol 36:589–593

    PubMed  CAS  Google Scholar 

  • Belser LW (1979) Population ecology of nitrifying bacteria. Ann Rev Microbiol 33:309–333

    CAS  Google Scholar 

  • Belser LW, Mays EL (1982) Use of nitrifier activity measurements to estimate the efficiency of viable nitrifier counts in soils and sediments. Appl Environ Microbiol 43:945–948

    PubMed  CAS  Google Scholar 

  • Berben G (1996) Nitrobacter winogradskyi cytochrome c oxidase genes are organized in a repeated gene cluster. Ant v Leeuwenhoek 69:305–315

    CAS  Google Scholar 

  • Bergmann DJ, Hooper AB (1994a) Primary structure of cytochrome P-460 of Nitrosomonas. FEBS Lett 353:324–326

    PubMed  CAS  Google Scholar 

  • Bergmann DJ, Hooper AB (1994b) Sequence of the gene amoB for the 43 kDa polypeptide of ammonia monooxygenase of Nitrosomonas europaea. Biochim Biophys Res Comm 204:759–762

    CAS  Google Scholar 

  • Bergmann DJ, Arciero D, Hooper AB (1994) Organization of the HAO gene cluster of Nitrosomonas europaea: genes for two tetraheme cytochromes. J Bacteriol 176:3148–3153

    PubMed  CAS  Google Scholar 

  • Bergmann DJ, Zahn JA, DiSpirito AA (2000) Primary structure of cytochrome c′ of Methylococcus capsulatus bath: evidence of a phylogenetic link between P460 and c′-type cytochromes. Arch Microbiol 173:29–34

    PubMed  CAS  Google Scholar 

  • Blasco F, Lobbi C, Ratouchniak J, Bonnefoy V, Chippaux M (1990) Nitrate reductases of Escherichia coli: sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon. Molec Gen Genet 222:104–111

    PubMed  CAS  Google Scholar 

  • Bock E (1965) Vergleichende Untersuchungen über die Wirkung sichtbaren Lichtes auf Nitrosomonas europaea und Nitrobacter winogradskyi. Arch Mikrobiol 51:18–41

    PubMed  CAS  Google Scholar 

  • Bock E (1970) Untersuchungen über die Wechselwirkung zwischen Licht und Chemosynthese am Beispiel von Nitrobacter winogradskyi. Arch Mikrobiol 70:217–239

    PubMed  CAS  Google Scholar 

  • Bock E (1976) Growth of Nitrobacter in the presence of organic matter. II. Chemoorganotrophic growth of Nitrobacter agilis. Arch Microbiol 108:305–312

    PubMed  CAS  Google Scholar 

  • Bock E, Wilderer PA, Freitag A (1988) Growth of Nitrobacter in the absence of dissolved oxygen. Water Res 22:245–250

    CAS  Google Scholar 

  • Bock E, Koops H-P, Möller UC, Rudert M (1990) A new facultatively nitrite oxidizing bacterium Nitrobacter vulgaris sp. nov. Arch Microbiol 153:105–110

    Google Scholar 

  • Bock E, Koops H-P, Harms H, Ahlers B (1991) The biochemistry of nitrifying organisms. In: Shively JM (ed) Variations of autotrophic life. Academic, London, pp 171–200

    Google Scholar 

  • Bock E, Koops H-P (1992) The genus Nitrobacter and related genera. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, New York, pp 2302–2309, http://www.prokaryotes.com

  • Bock E, Sand W (1993) The microbiology of masonry biodeterioration. J Appl Bacteriol 74:503–514

    CAS  Google Scholar 

  • Bock E, Stüven R, Schmidt I, Zart D (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium, or hydroxylamine as electron donors and nitrite as electron acceptor. Arch Microbiol 163:16–20

    CAS  Google Scholar 

  • Bodelier PL, Frenzel P (1999) Contribution of methanotrophic and nitrifying bacteria to CH4 and NH +4 oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl Environ Microbiol 65:1826–1833

    PubMed  CAS  Google Scholar 

  • Bodenstein M (1918) Die Geschwindigkeit der Reaktion zwischen Stickoxid und Sauerstoff Z. f. Elektroch. 24:183–201

    Google Scholar 

  • Bömeke H (1954) Über das Verhältnis des oxidierten Stickstoffs zum reduzierten Kohlenstoff beim Nitratbildner. Arch Mikrobiol 20:176–182

    PubMed  Google Scholar 

  • Böttcher B, Koops H-P (1994) Growth of lithotrophic ammonia-oxidizing bacteria on hydroxylamine. FEMS Microbiol Lett 122:263–266

    Google Scholar 

  • Bouwman AF, Fung I, Matthews E, John J (1993) Global analysis of the potential for N2O production in natural soils. Global Biogeochem Cycles 7:557–597

    CAS  Google Scholar 

  • Brady NC (1984) The nature and properties of soils. Macmillan, New York, pp 283–302

    Google Scholar 

  • Braun C, Zumft WG (1991) Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway of Pseudomonas stutzeri at nitric oxide. J Biol Chem 266:22785–22788

    PubMed  CAS  Google Scholar 

  • Broda E (1977) Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol 17:491–493

    PubMed  CAS  Google Scholar 

  • Brown CM (1988) Nitrate metabolism in aquatic bacteria. In: Austin B (ed) Methods in aquatic bacteriology. Wiley, New York, pp 367–388

    Google Scholar 

  • Buchanan RE (1917) Studies on the nomenclature and classification of bacteria. J Bacteriol 2:347–350

    PubMed  CAS  Google Scholar 

  • Burrell PC, Keller J, Blackall LL (1998) Microbiology of a nitrite-oxidizing bioreactor. Appl Environ Microbiol 64:1878–1883

    PubMed  CAS  Google Scholar 

  • Carr GJ, Ferguson SJ (1990) Nitric oxide formed by nitrite reductase of Paracoccus denitrificans is sufficiently stable to inhibit cytochrome oxidase activity and is reduced by its reductase under aerobic conditions. Biochim Biophys Acta 1017:57–62

    PubMed  CAS  Google Scholar 

  • Casciotti KL, Ward BB (2001) Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria. Appl Environ Microbiol 67:2213–2221

    PubMed  CAS  Google Scholar 

  • Castignetti D, Gunner HB (1980) Sequential nitrification by an Alcaligenes sp. and Nitrobacter agilis. Can J Microbiol 26:1114–1119

    PubMed  CAS  Google Scholar 

  • Castignetti D, Hollocher TC (1984) Heterotrophic nitrification among denitrifiers. Appl Environ Microbiol 47:620–623

    PubMed  CAS  Google Scholar 

  • Chaudhry GR, Suzuki I, Duckworth HW, Lees H (1981) Isolation and properties of cytochrome c553, cytochrome c550, and cytochrome c549, 554 from Nitrobacter agilis. Biochim Biophys Acta 637:18–27

    CAS  Google Scholar 

  • Clark C, Schmidt EL (1967) Growth response of Nitrosomonas europaea to amino acids. J Bacteriol 93:1302–1309

    PubMed  CAS  Google Scholar 

  • Cobley JB (1976a) Energy-conserving reactions in phosphorylating electron-transport particles from Nitrobacter winogradskyi. Activation of nitrite oxidation by the electrical component of the proton motive force. Biochem J 156:481–491

    PubMed  CAS  Google Scholar 

  • Cobley JB (1976b) Reduction of cytochromes by nitrite in electron-transport particles from Nitrobacter winogradskyi. Biochem J 156:493–498

    PubMed  CAS  Google Scholar 

  • Collins MJ, Arciero DM, Hooper AB (1993) Optical spectropotentiometric resolution of the hemes of hydroxylamine oxidoreductase Heme quantitation and pH dependence of EM. J Biol Chem 268:14655–14662

    PubMed  CAS  Google Scholar 

  • Conrad R (1996) Metabolism of nitric oxide in soil and soil microorganisms and regulation of flux into the atmosphere. In: Murrell JC, Kelly DP (eds) Microbiology of atmospheric trace gases: sources, sinks and global change processes. NATO ASI Series, Springer, Berlin, pp 167–203

    Google Scholar 

  • Crossmann LC, Moir JWB, Enticknap JJ, Richardson DJ, Spiro S (1997) Heterologous expression of heterotrophic nitrification genes. Microbiology 143:3775–3783

    Google Scholar 

  • Crutzen PJ (1979) The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Ann Rev Earth Planet Sci 74:443–472

    Google Scholar 

  • Daims H, Nielsen PH, Nielsen JL, Juretschko S, Wagner M (2000) Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants: diversity and in situ physiology. Wat Sci Tech 41:85–90

    CAS  Google Scholar 

  • Daims H, Nielsen JL, Nielsen PH, Schleifer K-H, Wagner M (2001) In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67(11):5273–5284

    PubMed  CAS  Google Scholar 

  • De Boer W, Klein Gunnewiek PJA, Veenhuis M, Bock E, Laanbroek HJ (1991) Nitrification at low pH by aggregated chemolithotrophic bacteria. Appl Environ Microbiol 57:3600–3604

    PubMed  Google Scholar 

  • De Bruijn P, van de Graaf AA, Jetten MSM, Robertson LA, Kuenen JG (1995) Growth of Nitrosomonas europaea on hydroxylamine. FEMS Microbiol Lett 125:179–184

    Google Scholar 

  • Degrange V, Bardin R (1995) Detection and counting of Nitrobacter populations in soil by PCR. Appl Environ Microbiol 61:2093–2098

    PubMed  CAS  Google Scholar 

  • DiSpirito AA, Taaffe LR, Hooper AB (1985) Localization and concentration of hydroxylamine oxidoreductase and cytochromes c552, c554, cm553, cm552, and a in Nitrosomonas europaea. Biochim Biophys Acta 806:320–330

    CAS  Google Scholar 

  • DiSpirito AA, Lipscomp JD, Hooper AB (1986) Cytochrome aa3 from Nitrosomonas europaea. J Bacteriol 261:17048–17056

    CAS  Google Scholar 

  • Drozd JW (1976) Energy coupling and respiration in Nitrosomonas europaea. Arch Microbiol 101:257–262

    Google Scholar 

  • Drozd JW (1980) Respiration in ammonia-oxidizing chemoautotrophic bacteria. In: Knowles R (ed) Diversity of bacterial respiratory systems, vol 2. CRC Press, Boca Raton, pp 87–111

    Google Scholar 

  • Dua RD, Bhandari B, Nicholas DJD (1979) Stable isotope studies on the oxidation of ammonia to hydroxylamine by Nitrosomonas europaea. FEBS Lett 106:401–404

    PubMed  CAS  Google Scholar 

  • Ehrich S, Behrens D, Lebedeva E, Ludwig W, Bock E (1995) A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium. Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch Microbiol 164:16–23

    PubMed  CAS  Google Scholar 

  • Eigener U, Bock E (1975) Study on the regulation of oxidation and CO2 assimilation in intact Nitrobacter winogradskyi cells. Arch Microbiol 102:241–246

    PubMed  CAS  Google Scholar 

  • Eighmy TT, Bishop PL (1989) Distribution and role of bacterial nitrifying populations in nitrogen removal in aquatic treatment systems. Water Res 23:947–955

    CAS  Google Scholar 

  • El-Demerdash ME, Ottow JCG (1983) Einfluss einer hohen Nitratdüngung auf Kinetik und Gaszusammensetzung der Denitrifikation in unterschiedlichen Böden. Z Pflanzenernährung und Bodenkunde 146:138–150

    CAS  Google Scholar 

  • Engel MS, Alexander M (1958) Growth and autotrophic metabolism of Nitrosomonas europaea. J Bacteriol 76:217–222

    PubMed  CAS  Google Scholar 

  • Ensign SA, Hyman MR, Arp DJ (1993) In vitro activation of ammonia monooxygenase from Nitrosomonas by copper. J Bacteriol 175:1971–1998

    PubMed  CAS  Google Scholar 

  • Erickson RH, Hooper AB, Terry KR (1972) Solubilization and purification of cytochrome a, from Nitrosomonas. Biochim Biophys Acta 283:155–166

    PubMed  CAS  Google Scholar 

  • Ferguson S (1982) Is a proton-pumping cytochrome oxidase essential for energy conservation in Nitrobacter? FEBS Lett 146:239–243

    CAS  Google Scholar 

  • Fliermanns CB, Bohlool BB, Schmidt EL (1974) Autecological study of the chemoautotroph Nitrobacter by immunofluorescence. Appl Environ Microbiol 27:124–129

    Google Scholar 

  • Focht DD, Verstraete W (1977) Biochemical ecology of nitrification and denitrification. Adv Microbial Ecol 1:135–214

    CAS  Google Scholar 

  • Ford PC, Wink DA, Stanbury DM (1993) Autoxidation kinetics of aqueous nitric oxide. FEBS Lett 326:1–3

    PubMed  CAS  Google Scholar 

  • Freitag A, Rudert M, Bock E (1987) Growth of Nitrobacter by dissimilatoric nitrate reduction. FEMS Microbiol Lett 48:105–109

    CAS  Google Scholar 

  • Freitag A, Bock E (1990) Energy conservation in Nitrobacter. FEMS Microbiol Lett 66:157–162

    CAS  Google Scholar 

  • Fukuoka M, Fukumori Y, Yamanaka T (1987) Nitrobacter winogradskyi cytochrome a1c1 is an iron-sulfur molybdo-enzyme having hemes a and c. J Biochem 102:525–530

    PubMed  CAS  Google Scholar 

  • Galbally IE, Roy CR (1983) The fate of nitrogen compounds in the atmosphere. Devel Plant Soil Sci 9:263–284

    Google Scholar 

  • Giannakis C, Miller DJ, Nicholas DJD (1985) Comparative studies on redox proteins from ammonia oxidizing bacteria. FEMS Microbiol Lett 30:81–85

    CAS  Google Scholar 

  • Goreau TJ, Kaplan WA, Wofsy SC, McElroy MB, Valois FW, Watson SW (1980) Production of NO2 and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl Environ Microbiol 40:526–532

    PubMed  CAS  Google Scholar 

  • Groffmann PM (1987) Nitrification and denitrification in soil: a comparison of enzyme assay, incubation and enumeration methods. Plant Soil 97:445–450

    Google Scholar 

  • Grundmann GL, Neyra M, Normand P (2000) High-resolution phylogenetic genetic analysis of NO2-oxidizing Nitrobacter species using the rrs-rrl IGS sequence and rrl genes. Int J Syst Microbiol 50:1893–1898

    CAS  Google Scholar 

  • Hall GH (1986) Nitrification in lakes. In: Prosser JI (ed) Nitrification. IRL Press, Oxford, UK, pp 127–156

    Google Scholar 

  • Harms H, Koops H-P, Martiny H, Wullenweber W (1981) D-Ribulose 1,5-biphosphate carboxylase and polhedral inclusions in Nitrosomonas spec. Arch Microbiol 128:280–281

    CAS  Google Scholar 

  • Hass R, Veit S, Meyer TF (1992) Silent pilin genes of Neisseria gonorrhoeae MS11 and the occurrence of related hypervariant sequences among other gonococcal isolates. Molec Microbiol 6:197–208

    Google Scholar 

  • Hausladen A, Privalle CT, Keng T, DeAngelo J, Stamler JS (1996) Nitrosative stress: activation of the transcription factor OxyR. Cell 86:719–729

    PubMed  CAS  Google Scholar 

  • Head IM, Hiorns WD, Embley TM, McCarthy AJ, Saunders JR (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J Gen Microbiol 139:1147–1153

    PubMed  CAS  Google Scholar 

  • Henry Y, Ducrocq C, Drapier J-C, Servent D, Pellat C, Guissani A (1991) Nitric oxide, a biological effector—electron paramagnetic resonance detection of nitrosyl-iron-protein complexes in whole cells. Eur Biophys J 20:1–15

    PubMed  CAS  Google Scholar 

  • Hiorns WD, Hastings RC, Head IM, Hall GR, McCarthy AJ, Saunders JR, Pickup RW (1995) Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of Nitrosospiras in the environment. Microbiol 141:2793–2800

    Google Scholar 

  • Hochstein LI, Tomlinson GA (1988) The enzymes associated with denitrification. Ann Rev Microbiol 42:231–261

    CAS  Google Scholar 

  • Hoffman T, Lees H (1953) The biochemistry of the nitrifying bacteria. Biochem J 54:579–583

    Google Scholar 

  • Hollocher TC, Tate ME, Nicholas DJD (1981) Oxidation of ammonia by Nitrosomonas europaea. Definitive 18O-tracer evidence that hydroxylamine formation involves a monooxygenase. J Biol Chem 256:10834–10836

    PubMed  CAS  Google Scholar 

  • Hollocher TC, Kumar S, Nicholas DJD (1982) Respiration dependent proton translocation in Nitrosomonas europaea and its apparent absence in Nitrobacter agilis during inorganic oxidation. J Bacteriol 149:1013–1020

    PubMed  CAS  Google Scholar 

  • Hollocher TC (1984) Source of the oxygen atoms of nitrate in the oxidation of nitrite by Nitrobacter agilis and evidence against a P-O-N anhydride mechanism in oxidative phosphorylation. Arch Biochem Biophys 233:721–727

    PubMed  CAS  Google Scholar 

  • Hommes NG, Sayavedra-Soto LA, Arp DJ (1994) Sequence of hcy, a gene encoding cytochrome c-554 from Nitrosomonas europaea. Gene 146:87–89

    PubMed  CAS  Google Scholar 

  • Hommes NG, Sayavedra-Soto LA, Arp DJ (1996) Mutagenesis of hydroxylamine oxidoreductase in Nitrosomonas europaea by transformation and recombination. J Bacteriol 178:3710–3714

    PubMed  CAS  Google Scholar 

  • Hommes NG, Sayavedra-Soto LA, Arp DJ (1998) Mutagenesis and expression of amo, which codes for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol 180:3353–3359

    PubMed  CAS  Google Scholar 

  • Hommes NG, Sayavedra-Soto LA, Arp DJ (2001) Transcript analysis of multiple copies of amo (encoding ammonia monooxygenase) and hao (encoding hydroxylamine oxidoreductase) in Nitrosomonas europaea. J Bacteriol 183:1096–1100

    PubMed  CAS  Google Scholar 

  • Hooper AB (1968) A nitrite-reducing enzyme from Nitrosomonas europaea. Preliminary characterization with hydroxylamine as electron donor. Biochim Biophys Acta 162:49–65

    PubMed  CAS  Google Scholar 

  • Hooper AB (1969) Lag phase of ammonia oxidation of resting cells of Nitrosomonas europaea. J Bacteriol 97:968–969

    PubMed  CAS  Google Scholar 

  • Hooper AB, Erickson RH, Terry RH (1972) Electron transport systems in Nitrosomonas: isolation of a membrane-envelope fraction. J Bacteriol 110:430–438

    PubMed  CAS  Google Scholar 

  • Hooper AB, Terry KR (1973) Specific inhibitors of ammonia oxidation in Nitrosomonas. J Bacteriol 115:480–485

    PubMed  CAS  Google Scholar 

  • Hooper AB, Terry KR (1974) Photoinactivation of ammonia oxidation in Nitrosomonas. J Bacteriol 119:899–906

    PubMed  CAS  Google Scholar 

  • Hooper AB, Terry KR (1977) Hydroxylamine oxidoreductase from Nitrosomonas: inactivation by hydrogen-peroxide. Biochemistry 16:455–459

    PubMed  CAS  Google Scholar 

  • Hooper AB, Maxwell PC, Terry KR (1978) Hydroxylamine oxidoreductase from Nitrosomonas europaea: absorption spectra and content of heme and metal. Biochemistry 17:2984–2989

    PubMed  CAS  Google Scholar 

  • Hooper AB, Terry KR (1979) Hydroxylamine oxidoreductase of Nitrosomonas: production of nitric oxide from hydroxylamine. Biochim Biophys Acta 571:12–20

    PubMed  CAS  Google Scholar 

  • Hooper AB, Balny C (1982) Reaction of oxygen with hydroxylamine oxidoreductase of Nitrosomonas. FEBS Lett 144:299–303

    PubMed  CAS  Google Scholar 

  • Hooper AB (1984) Ammonia oxidation and energy transduction in the nitrifying bacteria. In: Strohl WR, Tuovinen OH (eds) Microbial chemoautotrophy. Ohio State University Press, Columbus, pp 133–167

    Google Scholar 

  • Hooper AB, DiSpirito AA, Olson TC, Andersson KA, Cunningham W, Taaffe LR (1984) Generation of the proton gradient by a periplasmic dehydrogenase. In: Crawford RL, Hanson RS (eds) Microbial growth on C1 compounds. American Society for Microbiology, Washington, DC, pp 53–58

    Google Scholar 

  • Hooper AB, DiSpirito AA (1985) In bacteria which grow on simple reductants generation of a proton gradient involves extracytoplasmic oxidation of substrate. Microbiol Rev 49:140–157

    PubMed  CAS  Google Scholar 

  • Hooper AB (1989) Biochemistry of the nitrifying lithoautotrophic bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison, pp 239–265

    Google Scholar 

  • Hooper AB, Vannelli T, Bergmann DJ, Arciero DM (1997) Enzymology of the oxidation of ammonia to nitrite by bacteria. Ant v Leeuwenhoek 71:59–67

    CAS  Google Scholar 

  • Hoppert M, Mahony TJ, Mayer F, Miller DJ (1995) Quaternary structure of the hydroxylamine oxidoreductase from Nitrosomonas europaea. Arch Microbiol 163:300–306

    CAS  Google Scholar 

  • Horz HP, Rotthauwe JH, Lukow T, Liesack W (2000) Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. J Microbiol Meth 39:197–204

    CAS  Google Scholar 

  • Hovanec TA, Taylor LT, Blakis A, Delong EF (1998) Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria. Appl Environ Microbiol 64:258–264

    PubMed  CAS  Google Scholar 

  • Huber DM, Warren HL, Nelson DW, Tsai CY (1977) Nitrification inhibitors – new tools for food production. BioScience 27:523–529

    Google Scholar 

  • Huie RE (1994) The reaction kinetics of NO2. Toxicology 89:193–216

    PubMed  CAS  Google Scholar 

  • Hyman MR, Wood PM (1983) Methane oxidation by Nitrosomonas europaea. Biochem J 212:31–37

    PubMed  CAS  Google Scholar 

  • Hyman MR, Wood PM (1984a) Bromocarbon oxidation by Nitrosomonas europaea. In: Crawford RL, Hanson RS (eds) Microbial growth on C1 compounds. American Society for Microbiology, Washington, DC, pp 49–52

    Google Scholar 

  • Hyman MR, Wood PM (1984b) Ethylene oxidation by Nitrosomonas europaea. Arch Microbiol 137:155–158

    CAS  Google Scholar 

  • Hyman MR, Wood PM (1985) Suicidal inactivation and labeling of ammonia mono-oxygenase by acetylene. Biochem J 227:719–725

    PubMed  CAS  Google Scholar 

  • Hyman MR, Sansome-Smith AW, Shears JH, Wood RM (1985) A kinetic study of benzene oxidation to phenol by whole cells of Nitrosomonas europaea and evidence for further oxidation to hydroquinone. Arch Microbiol 43:302–306

    Google Scholar 

  • Hyman MR, Murton IB, Arp DJ (1988) Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes. Appl Environ Microbiol 54:3187–3190

    PubMed  CAS  Google Scholar 

  • Hyman MR, Arp DJ (1992) 14C2H2-and 14CO2-labelling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase. J Biol Chem 267:1534–1545

    PubMed  CAS  Google Scholar 

  • Hyman MR, Page CL, Arp DJ (1994) Oxidation of methyl fluoride and dimethyl ether by ammonia monooxygenase in Nitrosomonas eutropha. Appl Environ Microbiol 60:3033–3035

    PubMed  CAS  Google Scholar 

  • Hyman MR, Arp DJ (1995) Effects of ammonia on the de novo synthesis of polypeptides in cells of Nitrosomonas europaea denied ammonia as an energy source. J Bacteriol 177:4974–4979

    PubMed  CAS  Google Scholar 

  • Hynes RK, Knowles R (1978) Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea. FEMS Microbiol Lett 4:319–321

    CAS  Google Scholar 

  • Igarashi N, Moriyama H, Fujiwara T, Fukumori Y, Tanaka N (1997) The 2.8 A structure of hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea. Nat Struct Biol 4:276–284

    PubMed  CAS  Google Scholar 

  • Ingledew WJ, Halling PJ (1976) Paramagnetic centers of the nitrite oxidizing bacterium Nitrobacter. FEBS Lett 67:90–93

    PubMed  CAS  Google Scholar 

  • Jetten MSM, Logemann S, Muyzer G, Robertson LA, de Vries S, van Loosdrecht MCM, Kuenen JG (1997) Novel principles in the microbial conversion of nitrogen compounds. Ant v Leeuwenhoek 71:75–93

    CAS  Google Scholar 

  • Jetten M, Wagner M, Fuerst J, van Loosdrecht M, Kuenen G, Strous M (2001) Microbiology and application of the anaerobic ammonium oxidation (“anammox”) process. Curr Opin Biotechnol 12:283–288

    PubMed  CAS  Google Scholar 

  • Jlang QQ, Bakken LR (1999) Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria. Appl Environ Microbiol 65:2679–2684

    Google Scholar 

  • Johnston H (1972) Newly recognized vital nitrogen cycle. Proc Natl Acad Sci USA 69:2369–2372

    PubMed  CAS  Google Scholar 

  • Johnstone BH, Jones RD (1988) Physiological effects of long energy-source deprivation on the survival of a marine chemolithotrophic ammonium-oxidizing bacterium. Marine Ecol Prog Ser 49:295–303

    CAS  Google Scholar 

  • Jones RD, Morita RY (1983) Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea. Appl Environ Microbiol 45:401–410

    PubMed  CAS  Google Scholar 

  • Jones RD, Morita RY (1985) Survival of an marine ammonium oxidizer under energy source deprivation. Marine Ecol Prog Ser 26:175–179

    Google Scholar 

  • Jones RD, Morita RY, Koops H-P, Watson SW (1988) A new marine ammonium-oxidizing bacterium, Nitrosomonas cryotolerans sp. nov. Can J Microbiol 34:1122–1128

    CAS  Google Scholar 

  • Juretschko S, Timmermann G, Schmid M, Schleifer K-H, Pommerening-Röser A, Koops H-P, Wagner M (1998) Combined molecular and conventional analysis of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64:3042–3051

    PubMed  CAS  Google Scholar 

  • Keener WK, Arp DJ (1993) Kinetic studies of ammonia monooxygenase inhibition in Nitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized whole-cell assay. Appl Environ Microbiol 59:2501–2510

    PubMed  CAS  Google Scholar 

  • Keener WK, Arp DJ (1994) Transformation of aromatic compounds by Nitrosomonas europaea. Appl Environ Microbiol 60:1914–1920

    PubMed  CAS  Google Scholar 

  • Keeny DR (1986) Inhibition of nitrification in soil. In: Prosser JJ (ed) Nitrification. IRL Press, Oxford, UK, pp 99–115

    Google Scholar 

  • Kester RA, de Boer W, Laanbroek HJ (1996) Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples. FEMS Microbiol Ecol 20:111–120

    CAS  Google Scholar 

  • Kester RA, Meijer ME, Libochant JA (1997a) Contribution of nitrification and denitrification to the NO and N2O emissions of an acid forest soil, a river sediment and a fertilized grassland soil. Soil Biol Biochem 29:1655–1664

    CAS  Google Scholar 

  • Kester RA, de Boer W, Laanbroek HJ (1997b) Production of NO and N2O by pure cultures of nitrifying and denitrifying bacteria during changes in aeration. Appl Environ Microbiol 63:3872–3877

    PubMed  CAS  Google Scholar 

  • Kiesow L (1964) On the assimilation of energy from inorganic sources in autotrophic forms of life. Proc Natl Acad Sci USA 52:980–988

    PubMed  CAS  Google Scholar 

  • Killham K (1986) Heterotrophic nitrification. In: Prosser JI (ed) Nitrification. IRL Press, Oxford, UK, pp 117–126

    Google Scholar 

  • Killham K (1987) A new perfusion system for measurement and characterization of potential rates of soil nitrification. Plant Soil 97:267–272

    CAS  Google Scholar 

  • Kirstein KO, Bock E, Miller DJ, Nicholas DJD (1986) Membrane-bound b-type cytochromes in Nitrobacter. FEMS Microbiol Lett 36:63–67

    CAS  Google Scholar 

  • Kirstein K, Bock E (1993) Close genetic relationship between Nitrobacter hamburgensis nitrite oxidoreductase and Escherichia coli nitrate reductases. Arch Microbiol 160:447–453

    PubMed  CAS  Google Scholar 

  • Kleiner D (1985) Bacterial ammonium transport. FEMS Microbiol Rev 32:87–100

    CAS  Google Scholar 

  • Klotz MG, Alzerreca J, Norton ML (1997) A gene encoding a membrane protein exists upstream of the amo A/amo B genes in ammonia oxidizing bacteria: a third member of the amo operon? FEMS Microbiol Lett 150:65–73

    PubMed  CAS  Google Scholar 

  • Klotz MG, Norton JM (1998) Multiple copies of ammonia monooxygenase (amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria. FEMS Microbiol Lett 168:303–311

    PubMed  CAS  Google Scholar 

  • Kluyver AJ, Donker HJK (1926) Die Einheit der Biochemie. Chem Zelle und Gewebe 13:134–190

    Google Scholar 

  • Koops H-P, Harms H, Wehrmann H (1976) Isolation of a moderate halophilic ammonia-oxidizing bacterium Nitrosococcus mobilis nov. sp. Arch Microbiol 10:277–282

    Google Scholar 

  • Koops HP, Harms H (1985) Deoxyribonucleic acid homologies among 96 strains of ammonia-oxidizing bacteria. Arch Microbiol 141(3):214–218

    PubMed  CAS  Google Scholar 

  • Koops H-P, Böttcher B, Möller UC, Pommerening-Röser A, Stehr G (1990) Description of a new species of Nitrosococcus. Arch Microbiol 154:244–248

    CAS  Google Scholar 

  • Koops H-P, Böttcher B, Möller UC, Pommerening-Röser A, Stehr G (1991) Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov., and Nitrosomonas halophila sp. nov. J Gen Microbiol 137:1689–1699

    CAS  Google Scholar 

  • Koops H-P, Möller UC (1992) The lithotrophic ammonia-oxidizing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 2626–2637

    Google Scholar 

  • Koschorreck M, Moore E, Conrad R (1996) Oxidation of nitric oxide by a new heterotrophic Pseudomonas sp. Arch Microbiol 166:23–31

    PubMed  CAS  Google Scholar 

  • Kowalchuk GA, Stephen JR, de Boer W, Prosser JI, Embley TM, Woldendorp JW (1997) Analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol 63:1489–1497

    PubMed  CAS  Google Scholar 

  • Krüger B, Meyer O, Nagel M, Andreesen JR, Meincke M, Bock E, Blümle S, Zumft WG (1987) Evidence for the presence of bactopterin in the eubacterial molybdoenzymes nicotinic acid dehydrogenase, nitrite oxidoreductase, and respiratory nitrate reductase. FEMS Microbiol Lett 48:225–227

    Google Scholar 

  • Krümmel A, Harms H (1982) Effect of organic matter on growth and cell yield of ammonia-oxidizing bacteria. Arch Microbiol 133:50–54

    Google Scholar 

  • Kuenen JG, Robertson LA (1987) Ecology of nitrification and denitrification. In: Cole JA, Ferguson S (eds) The Nitrogen and sulfur cycles. Cambridge University Press, Cambridge, UK, pp 162–218

    Google Scholar 

  • Kumar S, Nicholas DJD (1982) A proton motive force-dependent adenosine-5′ triphosphate synthesis in spheroplasts of Nitrosomonas europaea. FEMS Microbiol Lett 14:21–25

    CAS  Google Scholar 

  • Kumar S, Nicholas DJD, Williams EH (1983) Definitive 15N NMR evidence that water serves as a source of “O” during nitrite oxidation by Nitrobacter agilis. FEMS Microbiol Lett 152:71–74

    CAS  Google Scholar 

  • Kurokawa T, Fukumori Y, Yamanaka T (1987) Purification of a flavoprotein having NADPH-cytochrome c reductase and transhydrogenase activities from Nitrobacter winogradskyi and its molecular and enzymatic properties. Arch Microbiol 148:95–99

    CAS  Google Scholar 

  • Kusian B, Bednarski R, Husemann M, Bowien B (1995) Characterization of the duplicate ribulose-1,5-bisphosphate carboxylase genes and cbb promoters of Alcaligenes eutrophus. J Bacteriol 177:4442–4450

    PubMed  CAS  Google Scholar 

  • Lees H (1952) The biochemistry of the nitrifying organisms. The ammonia-oxidizing systems of Nitrosomonas. Biochem J 52:134–139

    PubMed  CAS  Google Scholar 

  • Lewis RS, Deen WM (1994) Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions. Chem Res Toxicol 7:568–574

    PubMed  CAS  Google Scholar 

  • Lipschultz R, Zafiriou OC, Wofsy SC, McElroy MB, Valois W, Watson SW (1981) Production of NO and N2O by soil nitrifying bacteria. Nature 294:641–643

    CAS  Google Scholar 

  • Lipscomb JD, Hooper AB (1982) Resolution of multiple heme centers of hydroxylamine oxidoreductase from Nitrosomonas. 1: Electron paramagnetic resonance spectroscopy. Biochemistry 21:3965–3972

    PubMed  CAS  Google Scholar 

  • Lipscomb JD, Andersson KK, Münck E, Kent TA, Hooper AB (1982) Resolution of multiple heme centers of hydroxylamine oxidoreductase from Nitrosomonas. 2: Mössbauer spectroscopy. Biochemistry 21:3973–3976

    PubMed  CAS  Google Scholar 

  • Loveless JE, Painter HA (1968) The influence of metal ion concentrations and pH value on the growth of a Nitrosomonas strain isolated from activated sludge. J Gen Microbiol 52:1–14

    CAS  Google Scholar 

  • Lu WP, Kelly DP (1988) Chemolithotrophic ATP synthesis and NAD(P) reduction in Thiobacillus tepidarius and Thiobacillus versutus. Arch Microbiol 130:250–254

    Google Scholar 

  • Mahony TJ, Miller DJ (1998) Linkage of genes encoding enolase (eno) and CTP synthase (pyr G) in the beta-subdivision proteobacterium Nitrosomonas europaea. FEMS Micrbiol Lett 165:153–157

    CAS  Google Scholar 

  • Mancinelli RL, McKay CP (1983) Effects of nitric oxide and nitrogen dioxide on bacterial growth. Appl Environ Microbiol 46:198–202

    PubMed  CAS  Google Scholar 

  • Mansch R, Bock E (1998) Biodeterioration of natural stone with special reference to nitrifying bacteria. Biodegradation 9:47–64

    PubMed  CAS  Google Scholar 

  • Matin A (1978) Organic nutrition of chemoorganotrophic bacteria. Ann Rev Microbiol 32:433–468

    CAS  Google Scholar 

  • Matulewich VA, Strom PF, Finstein MS (1975) Length of incubation for enumerating nitrifying bacteria present in various environments. Appl Environ Microbiol 29:265–268

    CAS  Google Scholar 

  • McCaig AE, Embley TM, Prosser JI (1994) Molecular analysis of enrichment cultures of marine ammonia oxidizers. FEMS Microbiol Lett 120:363–368

    PubMed  CAS  Google Scholar 

  • McTavish H, Fuchs J, Hooper AB (1993) Sequence of the gene for ammonia monooxygenase of Nitrosomonas europaea. J Bacteriol 175:2436–2444

    PubMed  CAS  Google Scholar 

  • Meincke M, Krieg E, Bock E (1989) Nitrosovibrio s the dominant ammonia oxidizing bacteria in building stones. Appl Environ Microbiol 56:2108–2110

    Google Scholar 

  • Meincke M, Bock E, Kastrau D, Kroneck PMH (1992) Nitrite oxidoreductase from Nitrobacter hamburgensis: redox centers and their catalytic role. Arch Microbiol 158:127–131

    Google Scholar 

  • Miller DJ, Wood PM (1982) Characterization of the c-type cytochromes of Nitrosomonas europaea with the aid of fluorescent gels. Biochem J 207:511–517

    PubMed  CAS  Google Scholar 

  • Miller DJ, Wood PM (1983) Two membrane-bound b-type cytochromes in Nitrosomonas europaea. FEMS Microbiol Lett 20:323–326

    CAS  Google Scholar 

  • Miller DJ, Nicholas DJD (1985) Further characterization of the soluble cytochrome oxidase/nitrite reductase from Nitrosomonas europaea. J Gen Microbiol 131:2851–2854

    CAS  Google Scholar 

  • Miller LG, Coutlakis MD, Oremland RS, Ward BB (1993) Selective inhibition of ammonium oxidation and nitrification-linked N2O. Appl Environ Microbiol 59:2457–2464

    PubMed  CAS  Google Scholar 

  • Mitchell PD (1975) Protonmotive redox mechanism of the cytochrome bc1 complex in the respiratory chain: Protonmotive ubiquinone cycle. FEBS Lett 56:1–6

    PubMed  CAS  Google Scholar 

  • Mobarry BK, Wagner M, Urbain V, Rittmann BE, Stahl DA (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62:2156–2162, Published erratum appears in Appl Environ Microbiol Feb 1997;63(2), 815

    PubMed  CAS  Google Scholar 

  • Moir JWB, Crossmann LC, Spiro S, Richardson DJ (1996a) The purification of ammonia monooxygenase from Paracoccus denitrificans. FEBS Lett 387:71–74

    PubMed  CAS  Google Scholar 

  • Moir JWB, Wehrfritz J-M, Spiro S, Richardson DJ (1996b) The biochemical characterisation of a novel non-haem-iron hydroxylamine oxidase from Paracoccus denitrificans GB17. Biochem J 319:823–827

    PubMed  CAS  Google Scholar 

  • Morgenroth E, Obermayer A, Arnold E, Brühl A, Wagner M, Wilderer PA (2000) Effect of long-term idle periods on the performance of sequencing batch reactors. Wat Sci Tech 41:105–113

    CAS  Google Scholar 

  • Mulder J, van Breemen N, Rasmussen W, Driscoll CT (1989) Aluminium chemistry of acidic sandy soils affected by atmospheric depositions in the Netherlands and Denmark. In: Lewis TE (ed) Environmental chemistry and toxicology of aluminium. Lewis, Chelsea, pp 171–194

    Google Scholar 

  • Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonia oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Lett 16:177–184

    CAS  Google Scholar 

  • Nicholas DJD, Jones OTG (1960) Oxidation of hydroxylamine in cell-free extracts of Nitrosomonas europaea. Nature 185:512–514

    CAS  Google Scholar 

  • Nielsen LP (1992) Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiol Ecol 86:357–362

    CAS  Google Scholar 

  • Norton JM, Low JM, Klotz MG (1996) The gene encoding ammonia monooxygenase subunit A exists in three nearly identical copies in Nitrosospira sp. NpAv. FEMS Microbiol Lett 139:181–188

    PubMed  CAS  Google Scholar 

  • O’Kelley JC, Becker GE, Nason A (1970) Characterization of the particulate nitrite oxidase and its component activities from the chemoautotroph Nitrobacter agilis. Biochim Biophys Acta 205:409–425

    PubMed  Google Scholar 

  • Olson TC, Hooper AB (1983) Energy coupling in the bacterial oxidation of small molecules: an extracytoplasmic dehydrogenase in Nitrosomonas. FEMS Microbiol Lett 19:47–50

    CAS  Google Scholar 

  • O’Neil JG, Wilkinson JF (1977) Oxidation of ammonia by methane-oxidizing bacteria and the effect of ammonia on methane oxidation. J Gen Microbiol 100:407–412

    Google Scholar 

  • Orso S, Gouy M, Navarro E, Normand P (1994) Molecular phylogenetic analysis of Nitrobacter spp. Int J Syst Bacteriol 44:83–86

    PubMed  CAS  Google Scholar 

  • Painter HA (1988) Nitrification in the treatment of sewage and waste-waters. In: Prosser JI (ed) Nitrification. IRL Press, Oxford, UK, pp 185–211

    Google Scholar 

  • Papen H, von Berg R, Hinkel I, Thoene B, Rennenberg H (1989) Heterotrophic nitrification by Alcaligenes faecalis: NO2-, NO3-, N2O, and NO production in exponentially growing cultures. Appl Environ Microbiol 55:2068–2072

    PubMed  CAS  Google Scholar 

  • Pinck C, Coeur C, Potier P, Bock E (2001) Polyclonal antibodies recognizing the AmoB protein of ammonia oxidizers of the beta-subclass of the class Proteobacteria. Appl Environ Microbiol 67:118–124

    PubMed  CAS  Google Scholar 

  • Pires M, Rossi MJ, Ross DS (1994) Kinetic and mechanistic aspects of the NO oxidation by O2 in aqueous phase. Int J Chem Kin 26:1207–1227

    CAS  Google Scholar 

  • Pommerening-Röser A, Rath G, Koops H-P (1996) Phylogenetic diversity within the genus Nitrosomonas. Syst Appl Microbiol 19:344–351

    Google Scholar 

  • Poth M, Focht DD (1985) 14 N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification. Appl Environ Microbiol 49:1134–1141

    PubMed  CAS  Google Scholar 

  • Poth M (1986) Dinitrogen production from nitrite by a Nitrosomonas isolate. Appl Environ Microbiol 52:957–959

    PubMed  CAS  Google Scholar 

  • Prince RC, Larroque C, Hooper AB (1983) Resolution of the hemes of hydroxylamine oxidoreductase by redox potentiometry and optical spectroscopy. FEBS Lett 163:25–27

    PubMed  CAS  Google Scholar 

  • Prosser JI (1989) Autotrophic nitrification in bacteria. In: Rose AH, Tempest DW (eds) Advances in microbial physiology, vol 30. Academic, London, pp 125–181

    Google Scholar 

  • Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops H-P, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382

    PubMed  CAS  Google Scholar 

  • Ralt D, Gomez RF, Tannerbaum SR (1981) Conversion of acetohydroxamate and hydroxylamine to nitrite by intestinal microorganisms. Eur J Appl Microbiol Biotechnol 12:226–230

    CAS  Google Scholar 

  • Rees M, Nason A (1966) Incorporation of atmospheric oxygen into nitrite formed during ammonia oxidation by Nitrosomonas europaea. Biochim Biophys Acta 1(13):398–401

    Google Scholar 

  • Remde A, Conrad R (1990) Production of nitric oxide by Nitrosomonas europaea by reduction of nitrite. Arch Microbiol 154:187–191

    CAS  Google Scholar 

  • Robertson LA, Kuenen JG (1983) Thiosphaera pantotropha gen. nov. sp. nov., a new facultative anaerobic, facultative autotrophic sulfur bacterium. J Gen Microbiol 129:2847–2855

    CAS  Google Scholar 

  • Robertson LA, Kuenen JG (1984) Aerobic denitrification L. A controversy revived. Arch Microbiol 139:351–354

    CAS  Google Scholar 

  • Robertson LA, Kuenen JG (1988) Heterotrophic nitrification in Thiosphaera pantotropha—oxygen uptake and enzyme studies. J Gen Microbiol 134:857–863

    CAS  Google Scholar 

  • Robertson LA, Cornelisse R, de Vos P, Hadioetomo R, Kuenen JG (1989) Aerobic denitrification in various heterotrophic nitrifiers. Ant v Leeuwenhoek 56:289–300

    CAS  Google Scholar 

  • Robertson LA, Kuenen JG (1990) Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria. Ant v Leeuwenhoek 57:139–152

    CAS  Google Scholar 

  • Rotthauwe JH, de Boer W, Liesack W (1995) Comparative analysis of gene sequences encoding ammonia monooxygenase of Nitrosospira sp. AHB1 and Nitrosolobus multiformis C-71. FEMS Microbiol Lett 133:131–135

    PubMed  CAS  Google Scholar 

  • Rotthauwe J-H, Witzel K-P, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    PubMed  CAS  Google Scholar 

  • Sayavedra-Soto LA, Hommes NG, Arp DJ (1994) Characterization of the gene encoding hydroxylamine oxidoreductase in Nitrosomonas europaea. J Bacteriol 176:504–510

    PubMed  CAS  Google Scholar 

  • Sayavedra-Soto LA, Hommes NG, Russell SA, Arp DJ (1996) Induction of ammonia monooxygenase and hydroxylamine oxidoreductase mRNAs by ammonium in Nitrosomonas europaea. Molec Microbiol 20:541–548

    CAS  Google Scholar 

  • Schimel JPM, Firestone K, Killham KS (1984) Identification of heterotrophic nitrification in a Sierran forest soil. Appl Environ Microbiol 48:802–806

    PubMed  CAS  Google Scholar 

  • Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, Metzger JW, Schleifer K-H, Wagner M (2000) Molecular evidence for a genus-level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation system. Appl Microbiol 23:93–106

    CAS  Google Scholar 

  • Schmid M, Schmitz-Esser S, Jetten M, Wagner M (2001) 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium oxidizers: Implications for phylogeny and in situ detection. Environ Microbiol 3:450–459

    PubMed  CAS  Google Scholar 

  • Schmidt EL (1982) Nitrification in soil. In: Stevenson FJ (ed) Nitrogen in agricultural soils. ASA-CSSA-SSSA, Madison, pp 253–288

    Google Scholar 

  • Schmidt I, Bock E (1997) Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol 167:106–111

    CAS  Google Scholar 

  • Schmidt I, Bock E (1998) Anaerobic ammonia oxidation by cell-free extracts of Nitrosomonas eutropha. Ant v Leeuwenhoek 73:271–278

    CAS  Google Scholar 

  • Schmidt I, Bock E, Jetten MSM (2001a) Ammonia oxidation by Nitrosomonas eutropha with NO2 as oxidant is not inhibited by acetylene. Microbiology 147:2247–2253

    PubMed  CAS  Google Scholar 

  • Schmidt I, Zart D, Bock E (2001b) Effects of gaseous NO2 on cells of Nitrosomonas eutropha previously incapable of using ammonia as an energy source. Ant v Leeuwenhoek 79:39–7

    CAS  Google Scholar 

  • Seewaldt E, Schleifer K-H, Bock E, Stackebrandt E (1982) The close phylogenetic relationship of Nitrobacter and Rhodopseudomonas palustris. Arch Microbiol 131:287–290

    CAS  Google Scholar 

  • Sela S, Yogev D, Razin S, Bercovier H (1989) Duplication of the tuf gene: a new insight into the phylogeny of eubacteria. J Bacteriol 177:581–584

    Google Scholar 

  • Sewell DL, Aleem MIH, Wilson DF (1972) The oxidation-reduction potentials and rates of oxidation of the cytochromes of Nitrobacter agilis. Arch Biochem Biophys 153:312–319

    PubMed  CAS  Google Scholar 

  • Sewell DL, Aleem MIH (1979) NADH-linked oxidative phosphorylation in Nitrobacter agilis. Curr Microbiol 2:35–37

    CAS  Google Scholar 

  • Shank JL, Silliker JH, Harper JH (1962) The effect of nitric oxide on bacteria. Appl Microbiol 10:185–189

    PubMed  CAS  Google Scholar 

  • Shears JH, Wood PM (1985) Spectroscopic evidence for a photosensitive oxygenated state of ammonia monooxygenase. Biochem J 226:499–507

    PubMed  CAS  Google Scholar 

  • Slangen JHG, Kerkhoff P (1984) Nitrification inhibitors in agriculture and horticulture: a literature review. Fertilizer Res 5:1–76

    CAS  Google Scholar 

  • Smith AJ, Hoare DS (1968) Acetate assimilation by Nitrobacter agilis in relation to its “obligate autotrophy”. J Bacteriol 95:844–855

    PubMed  CAS  Google Scholar 

  • Sone N, Yanagita Y, Hon-nami K, Fukumori Y, Yamanaka T (1983) Proton-pump activity of Nitrobacter agilis and Thermus thermophilus cytochrome c oxidase. FEBS Lett 155:150–155

    CAS  Google Scholar 

  • Sone N (1986) Measurement of proton pump activity of the thermophilic bacterium PS 3 and Nitrobacter agilis at the cytochrome oxidase level using total membranes and heptyl-thioglycoside. J Biochem 100:1465–1476

    PubMed  CAS  Google Scholar 

  • Sorokin DY, Myzer G, Brinkhoff T, Kuenen JG, Jetten MSM (1998) Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species N. alkalicus sp. nov. Arch Microbiol 170:345–352

    PubMed  CAS  Google Scholar 

  • Sorokin DY, Tourova T, Schmid M, Wagner M, Koops HP, Kuenen JG, Jetten M (2001) Isolation and properties of obligately chemolithoautotrophic and extremely alkalitolerant ammonia oxidizing bacteria from Mongolian soda lakes. Arch Microbiol 176:170–177

    PubMed  CAS  Google Scholar 

  • Spieck E, Meincke M, Bock E (1992) Taxonomic diversity of Nitrosovibrio strains isolated from building sandstone. FEMS Microbiol Ecol 102:21–26

    Google Scholar 

  • Spieck E, Aamand J, Bartosch S, Bock E (1996) Immunocytochemical detection and location of the membrane-bound nitrite oxidoreductase in cells of Nitrobacter and Nitrospira. FEMS Microbiol Lett 139:71–76

    CAS  Google Scholar 

  • Spiller H, Dietsch E, Kessler E (1976) Intracellular appearance of nitrite and nitrate in nitrogen-starved cells of Ankistrodesmus braunii. Planta 129:175–181

    CAS  Google Scholar 

  • Stammler JS, Simon DJ, Osborne V, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 82:7738–7742

    Google Scholar 

  • Stams AJM, Flameling EM, Marnette ECL (1990) The importance of autotrophic versus heterotrophic oxidation of atmospheric ammonium in forest ecosystems with acid soil. FEMS Microbiol Ecol 74:337–344

    CAS  Google Scholar 

  • Stams AJM, Booltink HWG, Lutke-Schipholt IJ, Beemsterboer B, Woittiez JRW, Van Breemen N (1991) A field study on the fate of 15N-ammonium to demonstrate nitrification of atmospheric ammonium in an acid forest soil. Biogeochemistry 13:241–255

    CAS  Google Scholar 

  • Stehr G, Böttcher B, Dittberner P, Rath G, Koops H-P (1995) The ammonia-oxidizing nitrifying population of the river Elbe estuary. FEMS Microbiol Ecol 17:177–186

    CAS  Google Scholar 

  • Stein LY, Arp DJ, Hyman MR (1997) Regulation of the synthesis and activity of ammonia monooxygenase in Nitrosomonas europaea by altering pH to affect NH3 availability. Appl Environ Microbiol 63:4588–4592

    PubMed  CAS  Google Scholar 

  • Stein LY, Arp DJ (1998a) Ammonium limitation results in the loss of ammonia oxidizing activity in Nitrosomonas europaea. Appl Environ Microbiol 64:1514–1521

    PubMed  CAS  Google Scholar 

  • Stein LY, Arp DJ (1998b) Loss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite. Appl Environ Microbiol 64:4098–4102

    PubMed  CAS  Google Scholar 

  • Stein LY, Sayavedra-Soto LA, Hommes NG, Arp DJ (2000) Differential regulation of amoA and amoB gene copies in Nitrosomonas europaea. FEMS Microbiol Lett 192:163–168

    PubMed  CAS  Google Scholar 

  • Steinmüller W, Bock E (1976) Growth of Nitrobacter in the presence of organic matter. I. Mixotrophic growth. Arch Microbiol 108:299–304

    PubMed  Google Scholar 

  • Stephen JR, McCaig AE, Smith Z, Prosser JI, Embley TM (1996) Molecular diversity of soil and marine 16S rRNA gene sequences related to β-subgroup ammonia-oxidizing bacteria. Appl Environ Microbiol 62:4147–4154

    PubMed  CAS  Google Scholar 

  • Stephen JR, Kowalchuk GA, Bruns MAV, McCaig AE, Phillips CJ, Embley TM, Prosser JI (1998) Analysis of beta-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl Environ Microbiol 64:2958–2965

    PubMed  CAS  Google Scholar 

  • Steudler PA, Jones RD, Castro MS, Mellilo JM, Lewis DL (1996) Microbial controls of methane oxidation in temperate forest and agriculture soils. NATO ASI Ser. Ser. I 39:69–84

    Google Scholar 

  • Strecker M, Sickinger E, English RS, Shively JM, Bock E (1994) Calvin cycle genes in Nitrobacter vulgaris T3. FEMS Microbiol Lett 120:45–50

    CAS  Google Scholar 

  • Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer V, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449

    PubMed  CAS  Google Scholar 

  • Stüven R, Vollmer M, Bock E (1992) The impact of organic matter on NO formation by Nitrosomonas europaea. Arch Microbiol 158:439–443

    Google Scholar 

  • Stüven R, Bock E (2001) Nitrification and denitrification as a source for NO and NO2 production in high-strength wastewater. Water Res 35(8):1905–1914

    PubMed  Google Scholar 

  • Sundermeyer H, Bock E (1981) Energy metabolism of autotrophically and heterotrophically grown cells of Nitrobacter winogradskyi. Arch Microbiol 130:250–254

    CAS  Google Scholar 

  • Sundermeyer-Klinger H, Meyer V, Warninghoff B, Bock E (1984) Membrane-bound nitrite oxidoreductase of Nitrobacter: evidence for a nitrate reductase system. Arch Microbiol 140:153–158

    CAS  Google Scholar 

  • Suwa Y, Sumino T, Noto K (1997) Phylogenetic relationships of activated sludge isolates of ammonia oxidizers with different sensitivities to ammonium sulfate. J Gen Appl Microbiol 43:373–379

    PubMed  CAS  Google Scholar 

  • Suzuki I, Dular U, Kwok S-C (1970) Cell-free ammonia oxidation by Nitrosomonas europaea extracts: effects of polyamines, Mg2+ and albumin. Biochem Biophys Res Commun 39:950–955

    PubMed  CAS  Google Scholar 

  • Suzuki I, Dular U, Kwok S-C (1974) Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas cells and extracts. J Bacteriol 120:556–558

    PubMed  CAS  Google Scholar 

  • Suzuki I, Kwok S-C, Dular U (1976) Competitive inhibition of ammonia oxidation in Nitrosomonas europaea by methane, carbon monoxide or methanol. FEBS Lett 72:117–120

    PubMed  CAS  Google Scholar 

  • Suzuki I, Kwok SC (1981) A partial resolution and reconstitution of the ammonia-oxidizing system of Nitrosomonas europaea: role of cytochrome c554. Can J Biochem 59:484–488

    PubMed  CAS  Google Scholar 

  • Suzuki I, Kwok S-C, Dular U, Tsang DCY (1981) Cell-free ammonia oxidizing system of Nitrosomonas europaea: general conditions and properties. Can J Biochem 59:477–483

    PubMed  CAS  Google Scholar 

  • Takahashi R, Ohmori T, Watanabe K, Tokuyama T (1993) Phosphoenolpyruvate carboxylase of ammonia oxidizing chemoautotrophic bacterium Nitrosomonas europaea ATCC 25978. J Ferm Bioeng 76:232–234

    CAS  Google Scholar 

  • Tanaka Y, Fukumori Y, Yamanaka Y (1982) The complete amino acid sequence of Nitrobacter agilis cytochrome c550. Biochim Biophys Acta 707:14–20

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Fukumori Y, Yamanaka T (1983) Purification of cytochrome a1c1 from Nitrobacter agilis and characterization of nitrite oxidation system of the bacterium. Arch Microbiol 135:265–271

    CAS  Google Scholar 

  • Tappe W, Tomaschewski C, Rittershaus S, Groeneweg J (1996) Cultivation of nitrifying bacteria in the retentostat, a simple fermenter with internal biomass retention. FEMS Microbiol Ecol 19:47–52

    CAS  Google Scholar 

  • Teske A, Alm E, Regan JM, Toze S, Rittmann BE, Stahl DA (1994) Evolutionary relationship among ammonia-and nitrite oxidizing bacteria. J Bacteriol 176:6623–6630

    PubMed  CAS  Google Scholar 

  • Teske A, Wawer C, Muyzer G, Ramsing NB (1996) Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol 62:1405–1415

    PubMed  CAS  Google Scholar 

  • Tomlinson TG, Boon AG, Trotman CNA (1966) Inhibition of nitrification in the activated sludge process of sewage disposal. J Appl Bacteriol 29:266–291

    PubMed  CAS  Google Scholar 

  • Tronson DA, Ritchie GAF, Nicholas DJD (1973) Purification of c-type cytochromes from Nitrosomonas europaea. Biochim Biophys Acta 310:331–343

    PubMed  CAS  Google Scholar 

  • Tsang DCY, Suzuki I (1982) Cytochrome c554 as a possible electron donor in the hydroxylation of ammonia and carbon monoxide in Nitrosomonas europaea. Can J Biochem 60:1018–1024

    PubMed  CAS  Google Scholar 

  • Tsong TY, Astumian RD (1987) Electroconformational coupling. Progr Biophys Molec Biol 50:1–45

    CAS  Google Scholar 

  • Tubulekas I, Hughes D (1993) Growth and translation elongation rate are sensitive to the concentration of EF-Tu. Molec Microbiol 8:761–770

    CAS  Google Scholar 

  • Utåker JB, Bakken L, Jiang QQ, Nes IF (1995) Phylogenetic analysis of seven new isolates of ammonia-oxidizing bacteria based on 16S rRNA gene sequences. Syst Appl Microbiol 18:549–559

    Google Scholar 

  • Utåker JB, Nes IF (1998) A qualitative evaluation of the published oligonucleotides specific for the 16S rRNA gene sequences of the ammonia-oxidizing bacteria. Syst Appl Microbiol 21:72–88

    PubMed  Google Scholar 

  • Van de Dijk SJ, Troelstra SR (1980) Heterotrophic nitrification in a heath soil demonstrated by an in-situ method. Plant Soil 57:11–21

    Google Scholar 

  • Van de Graaf AA, Mulder A, De Bruijn P, Jetten MSM, Robertson LA, Kuenen JG (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol 61:1246–1251

    PubMed  Google Scholar 

  • Van de Graaf AA, De Bruijn P, Robertson LA, Kuenen JG (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142:2187–2196

    Google Scholar 

  • Van de Graaf AA, De Bruijn P, Robertson LA, Jetten MSM, Kuenen JG (1997) Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiology 143:2415–2421

    Google Scholar 

  • Vanelli T, Logan M, Arciero M, Hooper AB (1990) Degradation of halogenated aliphatic compounds by ammonia-oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol 56:1169–1171

    Google Scholar 

  • Vanelli T, Bergmann DJ, Arciero DM, Hooper AB (1996) Mechanism of N-oxidation and electron transfer in the ammonia-oxidizing autotrophs. In: Lidstrom ME, Tabita FR (eds) Proceedings of the 8th international symposium on microbial growth on C1 compounds. Kluwer Academic, Dordrecht, pp 80–87

    Google Scholar 

  • Van Niel EWJ, Robertson LA, Kuenen JG (1987) Heterotrophic nitrification in denitrifying bacteria. In: Proceeding 4th European Congress on Biotechnology, vol 3, p 363

    Google Scholar 

  • Van Niel EWJ, Arts PAM, Wesselink BJ, Robertson LA, Kuenen JG (1993) Competition between heterotrophic and autotrophic nitrifiers for ammonia in chemostat cultures. FEMS Microbiol Ecol 102:109–118

    Google Scholar 

  • Voysey PA, Wood PM (1987) Methanol and formaldehyde oxidation by an autotrophic nitrifying bacterium. J Gen Microbiol 133:283–290

    CAS  Google Scholar 

  • Voytek MA, Ward BB (1995) Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Appl Environ Microbiol 61:1444–1450

    PubMed  CAS  Google Scholar 

  • Wagner M, Rath G, Amann R, Koops H-P, Schleifer K-H (1995) In situ identification of ammonia-oxidizing bacteria. Syst Appl Microbiol 18:251–264

    CAS  Google Scholar 

  • Wagner M, Rath G, Koops H-P, Flood J, Amann R (1996) In situ analysis of nitrifying bacteria in sewage treatment plants. Water Sci Tech 34(1–2):237–244

    CAS  Google Scholar 

  • Wang WC, Yung YL, Lacis AL, Mo TM, Hanson JE (1976) Greenhouse effects due to man-made perturbations of trace gases. Science 194:685–689

    PubMed  CAS  Google Scholar 

  • Ward BB (1987) Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus. Arch Microbiol 147:126–133

    CAS  Google Scholar 

  • Watson SW (1965) Characteristics of a marine nitrifying bacterium, Nitrosocystis oceanus sp. n. Limnol Oceanogr 10(Suppl):R274–R289

    Google Scholar 

  • Watson SW (1971) Taxonomic considerations of the family Nitrobacteraceae Buchanan: requests for opinions. Int J Syst Bacteriol 21:254–270

    Google Scholar 

  • Watson SW, Waterbury JB (1971) Characteristics of two marine nitrite oxidizing bacteria. Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp. Arch Mikrobiol 77:203–230

    Google Scholar 

  • Watson SW, Graham LB, Remsen CC, Valois FW (1971) A lobular, ammonia-oxidizing bacterium. Nitrosolobus multiformis nov. gen. nov. sp. Arch Mikrobiol 76:183–303

    PubMed  CAS  Google Scholar 

  • Watson SW, Bock E, Valois EW, Waterbury JB, Schlosser U (1986) Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol 144:1–7

    Google Scholar 

  • Watson SW, Bock E, Harms H, Koops H-P, Hooper AB (1989) Nitrifying bacteria. In: Murray RGE, Brenner DJ, Bryant MP, Holt JG, Krieg NR, Moulder JW, Pfennig N, Sneath PHA, Staley JT, Williams S (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1808–1834

    Google Scholar 

  • Wehrfritz J-M, Reilly A, Spiro S, Richardson DJ (1993) Purification of hydroxylamine oxidoreductase from Thiosphera pantotropha. Identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification. FEBS Lett 335:246–250

    PubMed  CAS  Google Scholar 

  • Wetzstein HG, Ferguson RJ (1985) Respiration-dependent proton translocation and the mechanism of proton motive force generation in Nitrobacter winogradskyi. FEMS Microbiol Lett 30:87–92

    CAS  Google Scholar 

  • Wheelis M (1984) Energy conservation and pyridine nucleotide reduction in chemoautotrophic bacteria: a thermodynamic analysis. Arch Microbiol 138:166–169

    CAS  Google Scholar 

  • Williams EJ, Hutchinson GL, Fehsenfeld FC (1992) NOx and N2O emissions from soil. Global Biogeochem Cycles 6:351–388

    CAS  Google Scholar 

  • Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS, Keefer LK (1991) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254:1001–1003

    PubMed  CAS  Google Scholar 

  • Wink DA, Darbyshire JF, Nims RW, Saavedra JE, Ford PC (1993) Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: determination of kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem Res Toxicol 6:23–27

    PubMed  CAS  Google Scholar 

  • Winogradsky S (1892) Archives des sciences biologique. Contributions à la morphologie des organismes de la nitrification. St Petersbourg 1:88–137

    Google Scholar 

  • Woese CR, Weisburg WG, Paster BJ, Hahn CM, Tanner RS, Krieg NR, Koops H-P, Harms H, Stackebrandt E (1984) The phylogeny of purple bacteria: the beta subdivision. Syst Appl Microbiol 5:327–336

    CAS  Google Scholar 

  • Woese CR, Weisburg WG, Hahn CM, Paster BJ, Zablen LB, Lewis BJ, Macke TJ, Ludwig W, Stackebrandt E (1985) The phylogeny of purple bacteria: the gamma subdivision. Syst Appl Microbiol 6:25–33

    CAS  Google Scholar 

  • Wood PM (1978) Periplasmic location of the terminal reductase in nitrite respiration. FEBS Lett 92:214–218

    PubMed  CAS  Google Scholar 

  • Wood PM (1986) Nitrification as a bacterial energy source. In: Prosser JI (ed) Nitrification. IRL Press, Oxford, UK, pp 63–78

    Google Scholar 

  • Wood PM (1988a) Chemolithotrophy. In: Anthony C (ed) Bacterial energy transduction. Academic, London, pp 183–230

    Google Scholar 

  • Wood PM (1988b) Monooxygenase and free radical mechanism for biological ammonia oxidation. In: Cole JA, Ferguson S (eds) The nitrogen and sulfur cycles: 42nd symposium of the society of general microbiology. Cambridge University Press, Cambridge UK, pp 219–243

    Google Scholar 

  • Wullenweber M, Koops H-P, Martiny H (1978) Der Einfluß von Nitrit auf den Verlauf des Wachstums von Nitrosomonas Stamm Nm1. Mitt Inst Allg Bot Hamburg 16:159–164

    CAS  Google Scholar 

  • Xu B, Fortkamp U, Enfors S-O (1995) Continuous measurement of NOaq during denitrification by immobilized Pseudomonas stutzeri. Biotechnol Biotech 9:659–664

    CAS  Google Scholar 

  • Yamagata A, Kato J, Hirota R, Kuroda A, Ikeda T, Takiguchi N, Ohtake H (1999) Isolation and characterization of two cryptic plasmids in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11. J Bacteriol 181:3375–3381

    PubMed  CAS  Google Scholar 

  • Yamanaka T, Shinra M (1974) Cytochrome c552 and cytochrome c554 derived from Nitrosomonas europaea: purification, properties, and their function in hydroxylamine oxidation. J Biochem 75:1265–1273

    PubMed  CAS  Google Scholar 

  • Yamanaka T, Fugii K, Kamita Y (1979) Subunits of cytochrome a-type terminal oxidase derived from Thiobacillus novellus and Nitrobacter agilis. J Biochem 86:821–824

    PubMed  CAS  Google Scholar 

  • Yamanaka T, Kamita Y, Fukumori Y (1981) Molecular and enzymatic properties of “cytochrome aa3 type” terminal oxidase derived from Nitrobacter agilis. J Biochem 89:265–273

    PubMed  CAS  Google Scholar 

  • Yamanaka T, Tanaka Y, Fukumori Y (1982) Nitrobacter agilis cytochrome c550: isolation, physicochemical and enzymatic properties and primary structure. Plant Cell Physiol 23:441–449

    CAS  Google Scholar 

  • Yamanaka T, Fukumori Y (1988) The nitrite oxidizing system of Nitrobacter winogradskyi. FEMS Microbiol Rev 54:259–270

    CAS  Google Scholar 

  • Yoshida T, Alexander M (1964) Hydroxylamine formation by Nitrosomonas europaea. Can J Microbiol 10:923–926

    PubMed  CAS  Google Scholar 

  • Yoshinari T (1985) Nitrite and nitrous oxide production by Methylosinus trichosporium. Can J Microbiol 31:139–144

    PubMed  CAS  Google Scholar 

  • Zahn JA, Duncan C, DiSpirito AA (1994) Oxidation of hydroxylamine by cytochrome P-460 of the obligate methylotroph Methylococcus capsulatus. Bath J Bacteriol 176:5879–5887

    CAS  Google Scholar 

  • Zart D, Schmidt I, Bock E (1996) Neue Wege vom Ammonium zum Stickstoff. In: Lemmer H, Griebe T, Flemming H-K (eds) Ökologie der Abwasserorganismen. Springer, Berlin, pp 183–192

    Google Scholar 

  • Zart D, Bock E (1998) High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 or NO. Arch Microbiol 169:282–286

    PubMed  CAS  Google Scholar 

  • Zart D, Stüven R, Bock E (1999) Nitrification and denitrification—microbial fundamentals and consequences for application. In: Rehm HJ, Reed G, Pühler A, Stadler PJW (eds) Biotechnology: a multi-volume comprehensive treatise, 2nd revised edn. 11a Wiley-VCH Weinheim Germany, New York, pp 55–64

    Google Scholar 

  • Zart D, Schmidt I, Bock E (2000) Significance of gaseous NO for ammonia oxidation by Nitrosomonas eutropha. Ant v Leeuwenhoek 77:49–55

    CAS  Google Scholar 

  • Zumft WG (1993) The biological role of nitric oxide in bacteria. Arch Microbiol 160:253–264

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bock, E., Wagner, M. (2013). Oxidation of Inorganic Nitrogen Compounds as an Energy Source. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30141-4_64

Download citation

Publish with us

Policies and ethics