Skip to main content

The Genus Geobacillus

  • Reference work entry
  • First Online:
The Prokaryotes
  • 5129 Accesses

Abstract

Bacillus stearothermophilus was established in 1920, and many isolates of thermophilic, aerobic endosporeformers were subsequently allocated to it, so that the species became heterogeneous. Between the 1960s and the 1980s various phenotypic techniques demonstrated this heterogeneity, and new thermophilic species were proposed, but as late as the first edition of Bergey’s Manual of Systematic Bacteriology, the authors were unable to take the taxonomy of the B. stearothermophilus group any further, in the absence of sufficient data. With the increasing availability of molecular analyses, several novel species were described, and in 2001 the genus Geobacillus was proposed to accommodate B. stearothermophilus and its relatives. Some other thermophilic Bacillus species were subsequently transferred to the new genus. However, this expansion of Geobacillus, to 17 species, left the type species, G. stearothermophilus, without a modern description based upon a polyphasic taxonomic study. Also, the taxonomic positions of several other species were unclear and other taxa awaited validation. Polyphasic taxonomic studies published in 2011 and 2012 countered the continuing expansion of the genus by showing that a substantial number of species were synonymous and by transferring some other species to Anoxybacillus and the new genus Caldibacillus. The genus Geobacillus now comprises 11 species: G. stearothermophilus, G. caldoxylosilyticus, G. jurassicus, G. subterraneus, G. thermantarcticus, G. thermocatenulatus, G. thermodenitrificans, G. thermoglucosidans, G. thermoleovorans, G. toebii, and G. uzenensis. This article summarizes the taxonomic history of the genus and outlines the habitats, isolation, and properties of its species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adkins JP, Cornell LA, Tanner RA (1992) Microbial composition of carbonate petroleum reservoir fluids. Geomicrobiol J 10:87–97

    Google Scholar 

  • Ahmad S, Scopes RK, Rees GN, Patel BKC (2000) Saccharococcus caldoxylosilyticus sp. nov., an obligately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 50:517–523

    PubMed  CAS  Google Scholar 

  • Allen MB (1953) The thermophilic aerobic sporeforming bacteria. Bacteriol Rev 17:125–173

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alvarez M, Wouters J, Maes D, Mainfroid V, Rentier-Delrue F, Wyns L, Depiereux E, Martial JA (1999) Lys13 plays a crucial role in the functional adaptation of the thermophilic triose-phosphate isomerase from Bacillus stearothermophilus to high temperatures. J Biol Chem 274:19181–19187

    PubMed  CAS  Google Scholar 

  • Ambroz A (1913) Denitrobacterium thermophilum spec nova, ein Beitrag zur Biologie der thermophilen Bakterien. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 37:3–16

    CAS  Google Scholar 

  • Andersson M, Laukkanen M, Nurmiaho-Lassila E-L, Rainey FA, Niemelä SI, Salkinoja-Salonen M (1995) Bacillus thermosphaericus sp. nov., a new thermophilic ureolytic Bacillus isolated from air. Syst Appl Microbiol 18:203–220

    Google Scholar 

  • Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analyses of small subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206

    CAS  Google Scholar 

  • Baillie A, Walker PD (1968) Enzymes of thermophilic aerobic spore-forming bacteria. J Appl Bacteriol 31:114–119

    PubMed  CAS  Google Scholar 

  • Banat I, Marchant R (2011) Geobacillus activities in soil and oil contamination remediation. In: Logan NA, De Vos P (eds) Aerobic, endospore-forming soil bacteria. Springer, Berlin, pp 259–270

    Google Scholar 

  • Banat IM, Marchant R, Rahman TJ (2004) Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. Int J Syst Evol Microbiol 54:2197–2201

    PubMed  CAS  Google Scholar 

  • Blanc M, Marilley L, Beffa T, Aragno M (1997) Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular (16S rDNA) methods. FEMS Microbiol Ecol 28:141–149

    Google Scholar 

  • Bonjour F, Aragno M (1984) Bacillus tusciae, a new species of thermoacidophilic, facultatively chemolithotrophic, hydrogen oxidizing sporeformer from a geothermal area. Arch Microbiol 139:397–401

    CAS  Google Scholar 

  • Breed RS, Murray EGD, Smith NR (1957) Bergey’s manual of determinative bacteriology, 7th ed. Williams and Wilkins, Baltimore

    Google Scholar 

  • Caccamo D, Gugliandolo C, Stackebrandt E, Maugeri TL (2000) Bacillus vulcani sp. nov., a novel thermophilic species isolated from a shallow marine hydrothermal vent. Int J Syst Evol Microbiol 50:2009–2012

    PubMed  Google Scholar 

  • Caccamo D, Maugeri TL, Gugliandolo C (2001) Identification of thermophilic and marine bacilli from shallow thermal vents by restriction analysis of their amplified 16S rDNA. J Appl Microbiol 91:520–524

    PubMed  CAS  Google Scholar 

  • Castenholst RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33:476–504

    Google Scholar 

  • Chen XG, Stabnikova O, Tay JH, Wang JY, Tay ST (2004) Thermoactive extracellular proteases of Geobacillus caldoproteolyticus, sp. nov., from sewage sludge. Extremophiles 8:489–498

    PubMed  CAS  Google Scholar 

  • Chopra AK, Mathur DK (1984) Isolation, screening and characterisation of thermophilic Bacillus species isolated from dairy products. J Appl Bacteriol 57:263–271

    PubMed  CAS  Google Scholar 

  • Cihan AC, Ozcan B, Tekin N, Cokmus C (2011) Geobacillus themodenitrificans subsp. calidus, subsp. nov., a thermophilic and a-glucosidase producing bacterium isolated from Kizilcahamam, Turkey. J Gen Appl Microbiol 57:83–92

    PubMed  CAS  Google Scholar 

  • Claus D, Berkeley RCW (1986) Genus Bacillus Cohn 1872. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. The Williams and Wilkins, Baltimore, pp 1105–1139

    Google Scholar 

  • Combet-Blanc Y, Ollivier B, Streicher C, Patel BKC, Dwivedi PP, Pot B, Prensier G, Garcia J-L (1995) Bacillus thermoamylovorans sp. nov., a moderately thermophilic and amylolytic bacterium. Int J Syst Bacteriol 45:9–16

    PubMed  CAS  Google Scholar 

  • Coorevits A, Dinsdale AE, Halket G, Lebbe L, De Vos P, Van Landschoot A, Logan NA (2012) Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly “thermoglucosidasius”); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J Syst Evol Microbiol 62:1470–1485

    PubMed  CAS  Google Scholar 

  • Darland G, Brock TD (1971) Bacillus acidocaldarius sp. nov., an acidophilic, thermophilic spore-forming bacterium. J Gen Microbiol 67:9–15

    Google Scholar 

  • De Bartolemeo A, Trotta F, La Rosa F, Saltalamacchia G, Mastrandrea V (1991) Numerical analysis and DNA base compositions of some thermophilic Bacillus species. Int J Syst Bacteriol 41:502–509

    Google Scholar 

  • de Vrij W, Speelmans G, Heyne RIR, Konings WN (1990) Energy transduction and amino acid transport in thermophilic aerobic and fermentative bacteria. FEMS Microbiol Rev 75:183–200

    Google Scholar 

  • Deák T, Temár É (1988) Simplified identification of aerobic spore-formers in the investigation of foods. Int J Food Microbiol 6:115–125

    PubMed  Google Scholar 

  • Degryse E, Glansdorff N, Piérard A (1978) A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch Microbiol 117:189–196

    PubMed  CAS  Google Scholar 

  • Deinhard G, Blanz P, Poralla K, Altan E (1987a) Bacillus acidoterrestris sp. nov., a new thermotolerant acidophile isolated from different soils. Syst Appl Microbiol 10:47–53

    Google Scholar 

  • Deinhard G, Saar J, Krischke W, Poralla K (1987b) Bacillus cycloheptanicus sp. nov., a new thermoacidophile containing omega-cycloheptane fatty acids. Syst Appl Microbiol 10:68–73

    CAS  Google Scholar 

  • Demharter W, Hensel R (1989) Bacillus thermocloacae sp. nov., a new thermophilic species from sewage sludge. Syst Appl Microbiol 11:272–276

    Google Scholar 

  • Dinsdale AE, Halket G, Coorevits A, Van Landschoot A, Busse H-J, De Vos P, Logan NA (2011) Emended descriptions of Geobacillus thermoleovorans and Geobacillus thermocatenulatus. Int J Syst Evol Microbiol 61:1802–1810

    PubMed  CAS  Google Scholar 

  • Donk PJ (1920) A highly resistant thermophilic organism. J Bacteriol 5:373–374

    PubMed  CAS  PubMed Central  Google Scholar 

  • Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104:5602–5607

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fortina MG, Pukall R, Schumann P, Mora D, Parini C, Manachini PL, Stackebrandt E (2001a) Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Andersson et al. 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov. Int J Syst Evol Microbiol 51:447–455

    PubMed  CAS  Google Scholar 

  • Fortina MG, Mora D, Schumann P, Parini C, Manachini PL, Stackebrandt E (2001b) Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad et al. 2000) comb. nov. Int J Syst Evol Microbiol 51:2063–2071

    PubMed  CAS  Google Scholar 

  • Galesloot TE, Labots H (1959) Thermofiele sporevormers in melk, vooral met betrekking tot de bereiding van gesteriliseerde melk en chocolademelk. Ned Melk Zuiveltijd 13:155–179

    Google Scholar 

  • Garcia JL, Roussos S, Bensoussan M, Bianchi A, Mandel M (1982) Numerical taxonomy of a thermophilic “Bacillus” species isolated from West African rice soils. Ann Microbiol (Paris) 133:471–488

    CAS  Google Scholar 

  • Gibson T, Gordon RE (1974) Bacillus Cohn 1872. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. The Williams and Wilkins, Baltimore, pp 529–550

    Google Scholar 

  • Golovacheva RS, Egorova LA, Loginova LG (1965) Ecology and systematics of aerobic obligate-thermophilic bacteria isolated from thermal localities on Mount Yangan-Tau and Kunashir Isle of the Kuril chain. Microbiology (English translation of Mikrobiologiya) 34:693–698

    Google Scholar 

  • Golovacheva RS, Loginova LG, Salikhov TA, Kolesnikov AA, Zaitseva GN (1975) A new thermophilic species B. thermocatenulatus sp. nov. Microbiology (English translation of Mikrobiologiya) 44:230–233

    Google Scholar 

  • Gordon RE, Smith NR (1949) Aerobic sporeforming bacteria capable of growth at high temperatures. J Bacteriol 58:327–341

    PubMed  CAS  PubMed Central  Google Scholar 

  • Grinstead E, Clegg LFL (1955) Spore-forming organisms in commercial sterilized milk. J Dairy Res 22:178–190

    Google Scholar 

  • Guicciardi A, Biffi MR, Manachini PL, Craveri A, Scolastico C, Rindone B, Craveri C (1968) Ricerche preliminary su un nuovo schizomicete termofilo del genere Bacillus e caratterizzazione del pigmento rosso prodotto. Ann Microbiol (Milan) 18:191–205

    CAS  Google Scholar 

  • Heinen UJ, Heinen W (1972) Characteristics and properties of a caldoactive bacterium producing extracellular enzymes and two related strains. Arch Mikrobiol 82:1–23

    PubMed  CAS  Google Scholar 

  • Heinen W, Lauwers AM, Mulders JWM (1982) Bacillus flavothermus, a newly isolated facultative thermophile. Antonie Van Leeuwenhoek J Microbiol Serol 48:265–272

    CAS  Google Scholar 

  • Heyndrickx M, Lebbe L, Vancanneyt M, Kersters K, De Vos P, Logan NA, Forsyth G, Nazli S, Ali N, Berkeley RCW (1997) A polyphasic reassessment of the genus Aneurinibacillus, reclassification of Bacillus thermoaerophilus (Meier-Stauffer et al. 1996) as Aneurinibacillus thermoaerophilus comb. nov. and emended descriptions of A. aneurinilyticus, of A. migulanus and of A. thermoaerophilus. Int J Syst Bacteriol 47:808–817

    Google Scholar 

  • Kalogridou-Vassilliadu D (1992) Biochemical activities of Bacillus species isolated from flat sour evaporated milk. J Dairy Sci 75:2681–2686

    Google Scholar 

  • Kämpfer P (1994) Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–96

    Google Scholar 

  • Kato T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2001) Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. J Biosci Bioeng 91:64–70

    PubMed  CAS  Google Scholar 

  • Kawamura S, Abe Y, Ueda T, Masumoto K, Imoto T, Yamasaki N, Kimura M (1998) Investigation of the structural basis for thermostability of DNA-binding protein HU from Bacillus stearothermophilus. J Biol Chem 273:19982–19987

    PubMed  CAS  Google Scholar 

  • Klaushofer H, Hollaus F (1970) Zur Taxonomie der hoch-thermophilen, in Zukerfabriksäften vorkommenden aeroben sporenbildner. Z Zuckerrind 20:465–470

    Google Scholar 

  • Klenk H-P, Lapidus A, Chertkov O, Copeland A, Del Rio TG, Nolan M, Lucas S, Chen F, Tice H, Cheng J-F, Han C, Bruce D, Goodwin L, Pitluck S, Pati A, Ivanova N, Mavromatis K, Daum C, Chen A, Palaniappan K, Chang Y-J, Land M, Hauser L, Jeffries CD, Detter JC, Rohde M, Abt B, Pukall R, Göker M, Bristow J, Markowitz V, Hugenholtz P, Eisen JA (2012) Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2T) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov. and emendation of the family Alicyclobacillaceae da Costa and Rainey, 2010. Stand Genomic Sci 5:121–134

    Google Scholar 

  • Kuisiene N, Raugalas J, Chitavichius D (2004) Geobacillus lituanicus sp. nov. Int J Syst Evol Microbiol 54:1991–1995

    PubMed  CAS  Google Scholar 

  • Leadbetter ER, Foster JW (1958) Studies on some methane-utilizing bacteria. Arch Microbiol 30:91–118

    CAS  Google Scholar 

  • Lee D-W, Koh Y-S, Kim K-J, Kim B-C, Choi H-J, Kim D-S, Suhatono MT, Pyun Y-R (1999) Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett 179:393–400

    PubMed  CAS  Google Scholar 

  • Llarch À, Logan NA, Castellví J, Prieto MJ, Guinea J (1997) Isolation and characterization of thermophilic Bacillus species from Deception Island, South Shetland archipelago. Microb Ecol 34:58–65

    PubMed  Google Scholar 

  • Llaudes MK, Zhao L, Duffy S, Schaffner DW (2001) Simulation and modelling of the effect of small inoculum size on time to spoilage by Bacillus stearothermophilus. Food Microbiol 18:395–405

    CAS  Google Scholar 

  • Logan NA, Berkeley RCW (1981) Classification and identification of members of the genus Bacillus. In: Berkeley RCW, Goodfellow M (eds) The aerobic endospore-forming bacteria. Academic, London, pp 105–140

    Google Scholar 

  • Logan NA, De Vos P, Dinsdale A (2009) Genus Geobacillus Nazina et al. 2001. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 144–160

    Google Scholar 

  • Manachini PL, Fortina MG, Parini C, Craveri R (1985) Bacillus thermoruber sp. nov., nom. rev., a red-pigmented thermophilic bacterium. Int J Syst Bacteriol 35:493–496

    CAS  Google Scholar 

  • Manachini PL, Mora D, Nicastro G, Parini C, Stackebrandt E, Pukall R, Fortina MG (2000) Bacillus thermodenitrificans sp. nov., nom. rev. Int J Syst Evol Microbiol 50:1331–1337

    PubMed  CAS  Google Scholar 

  • Marchant R, Banat IM, Rahman TJS, Berzano M (2002) What are high-temperature bacteria doing in cold environments? Trends Microbiol 10:120–121

    PubMed  CAS  Google Scholar 

  • Markossian S, Becker P, Markl H, Antranikian G (2000) Isolation and characterization of lipid-degrading Bacillus thermoleovorans IHI-91 from an Icelandic hot spring. Extremophiles 4:365–371

    PubMed  CAS  Google Scholar 

  • Marteinsson VG, Birrien J-L, Jeanthon C, Prieur D (1996) Numerical taxonomic study of thermophilic Bacillus isolated from three geographically separated deep-sea hydrothermal vents. FEMS Microbiol Ecol 21:255–266

    CAS  Google Scholar 

  • Martins LO, Jurado AS, Madiera VMC (1990) Composition of polar lipid acyl chains of Bacillus stearothermophilus as affected by temperature and calcium. Biochim Biophys Acta 1045:17–20

    PubMed  CAS  Google Scholar 

  • Maugeri TL, Gugliandolo C, Caccamo D, Stackebrandt E (2001) A polyphasic taxonomic study of thermophilic bacilli from shallow, marine vents. Syst Appl Microbiol 24:572–587

    PubMed  CAS  Google Scholar 

  • Meier-Stauffer K, Busse H-J, Rainey FA, Burghardt J, Scheberl A, Hollaus F, Kuen B, Makristathis A, Sleytr UB, Messner P (1996) Description of Bacillus thermoaerophilus sp. nov., to include sugar beet isolates and Bacillus brevis ATCC 12990. Int J Syst Bacteriol 46:532–541

    CAS  Google Scholar 

  • Merkel GJ, Underwood WH, Perry JJ (1978) Isolation of thermophilic bacteria capable of growth solely in long-chain hydrocarbons. FEMS Microbiol Lett 3:81–83

    CAS  Google Scholar 

  • Miñana-Galbis D, Pinzón DL, Lorén JG, Manresa Á, Oliart-Ros RM (2010) Reclassification of Geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov. Int J Syst Evol Microbiol 60:433–446

    Google Scholar 

  • Minnikin DE, Abdolrahimzadeh H, Wolf J (1977) Taxonomic significance of polar lipids in some thermophilic members of Bacillus. In Barker AN, Wolf J, Ellar DJ, Dring GJ, Gould GW (eds). Academic, London, pp 879–893

    Google Scholar 

  • Mishustin EN (1950) Termofilnie mikroorganiszmi w prirode I praktike. Akademi Nauk SSSR, Moskwa

    Google Scholar 

  • Mora D, Fortina MG, Nicastro G, Parini C, Manachini PL (1998) Genotypic characterization of thermophilic bacilli: a study on new soil isolates and several reference strains. Res Microbiol 149:711–722

    PubMed  CAS  Google Scholar 

  • Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans Bacillus kaustophilus, Bacillus thermoglucosidasius, Bacillus thermodenitrificans to Geobacillus as Geobacillus stearothermophilus, Geobacillus thermocatenulatus, Geobacillus thermoleovorans Geobacillus kaustophilus, Geobacillus thermoglucosidasius, Geobacillus thermodenitrifi. Int J Syst Evol Microbiol 51:433–446

    PubMed  CAS  Google Scholar 

  • Nazina TN, Lebedeva EV, Poltaraus AB, Tourova TP, Grigoryan AA, Sokolova DS, Lysenko AM, Osipov GA (2004) Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani (Caccamo et al. 2000) comb. nov. Int J Syst Evol Microbiol 54:2019–2024

    PubMed  CAS  Google Scholar 

  • Nazina TN, Sokolova DS, Grigoryan AA, Shestakova NM, Mikhailova EM, Poltaraus AB, Tourova TP, Lysenko AM, Osipov GA, Belyaev SS (2005) Geobacillus jurassicus sp. nov., a new thermophilic bacterium isolated from a high-temperature petroleum reservoir, and the validation of the Geobacillus species. Syst Appl Microbiol 28:43–53

    PubMed  CAS  Google Scholar 

  • Nicolaus B, Marsiglia F, Esposito E, Trincone A, Lama L, Sharp R, di Prisco G, Gambacorta A (1991) Isolation of five strains of thermophilic eubacteria in Antarctica. Polar Biol 11:425–429

    Google Scholar 

  • Nicolaus B, Lama L, Esposito E, Manca MC, di Prisco G, Gambacorta A (1996) Bacillus thermoantarcticus sp. nov. from Mount Melbourne, Antarctica: a novel thermophilic species. Polar Biol 16:101–104

    Google Scholar 

  • Nicolaus B, Lama L, Esposito E, Manca MC, di Prisco G, Gambacorta A (2002) Validation list no. 84. Int J Syst Evol Microbiol 52:3–4

    Google Scholar 

  • Norris JR, Berkeley RCW, Logan NA, O’Donnell AG (1981) The genera Bacillus and Sporolactobacillus. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation and identification of bacteria, vol 2. Springer, Berlin/Heidelberg, pp 1711–1742

    Google Scholar 

  • Obojska A, Ternan NG, Lejczak B, Kafarski P, McMullan G (2002) Organophosphate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol 68:2081–2084

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perl D, Mueller U, Heinemann U, Schmid FX (2000) Two exposed amino acid residues confer thermostability on a cold shock protein. Nat Struct Biol 7:380–383

    PubMed  CAS  Google Scholar 

  • Pikuta E, Lysenko A, Chuvilskaya N, Mendrock U, Hippe H, Suzina N, Nikitin D, Osipov G, Laurinavichius K (2000) Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov. Int J Syst Evol Microbiol 50:2109–2117

    PubMed  CAS  Google Scholar 

  • Poli A, Romano I, Caliendo G, Nicolaus G, Orlando P, Falco A, Lama L, Gambacorta A, Nicolaus B (2006) Geobacillus toebii subsp. decanicus subsp. nov., a hydrocarbon-degrading, heavy metal resistant bacterium from hot compost. J Gen Appl Microbiol 52:223–234

    PubMed  CAS  Google Scholar 

  • Prickett PS (1928) Thermophilic and thermoduric microorganisms with special reference to species isolated from milk. New York Agric Exp Stat Tech Bull 147:58

    Google Scholar 

  • Priest FG, Goodfellow M, Todd C (1988) A numerical classification of the genus Bacillus. J Gen Microbiol 134:1847–1882

    PubMed  CAS  Google Scholar 

  • Rahman RNZRA, Leow TC, Salleh AB, Basri M (2007) Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia. BMC Microbiol 7:77

    PubMed Central  Google Scholar 

  • Rainey FA, Fritze D, Stackebrandt E (1994) The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. FEMS Microbiol Lett 115:205–212

    PubMed  CAS  Google Scholar 

  • Romano I, Poli A, Lama L, Gambacorta A, Nicolaus B (2005) Geobacillus thermoleovorans subsp. stromboliensis subsp. nov., isolated from the geothermal volcanic environment. J Gen Appl Microbiol 51:183–189

    PubMed  CAS  Google Scholar 

  • Sakaff MKLM, Rahman AYA, Saito JA, Hou S, Alama M (2012) Complete genome sequence of the thermophilic bacterium Geobacillus thermoleovorans CCB_US3_UF5. J Bacteriol 194:1239

    CAS  Google Scholar 

  • Schäffer C, Franck WL, Scheberl A, Kosma P, McDermott TR, Messner P (2004) Classification of isolates from locations in Austria and Yellowstone National Park as Geobacillus tepidamans sp. nov. Int J Syst Evol Microbiol 54:2361–2368

    PubMed  Google Scholar 

  • Schenk A, Aragano M (1979) Bacillus schlegelii a new species of thermophilic, facultatively chemoli-thoautotrophic bacterium oxidizing molecular hydrogen. J Gen Microbiol 115:333–341

    Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed  CAS  PubMed Central  Google Scholar 

  • Scholz T, Demharter W, Hensel R, Kandler O (1987) Bacillus pallidus sp. nov., a new thermophilic species from sewage. Syst Appl Microbiol 9:91–96

    CAS  Google Scholar 

  • Shapton DA, Hindes WR (1963) The standardization of a spore count technique. Chem Indust 41:230–234

    Google Scholar 

  • Sharp RJ, Bown KJ, Atkinson A (1980) Phenotypic and genotypic characterization of some thermophilic species of Bacillus. J Gen Microbiol 117:201–210

    PubMed  CAS  Google Scholar 

  • Shida O, Takagi H, Kadowaki K, Komagata K (1996) Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46:939–946

    PubMed  CAS  Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    PubMed  CAS  Google Scholar 

  • Studholme DJ, Jackson RA, Leak DJ (1999) Phylogenetic analysis of transformable strains of thermophilic Bacillus species. FEMS Microbiol Lett 172:85–90

    PubMed  CAS  Google Scholar 

  • Sung M-H, Kim H, Bae J-W, Rhee S-K, Jeon CO, Kim K, Kim J-J, Hong S-P, Lee S-G, Yoon J-H, Park Y-H, Baek D-H (2002) Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int J Syst Evol Microbiol 52:2251–2255

    PubMed  CAS  Google Scholar 

  • Sunna A, Prowe SG, Stroffregen T, Antranikian G (1997a) Characterization of the xylanases from the new isolated thermophilic xylan-degrading Bacillus thermoleovorans strain K-3d and Bacillus flavothermus strain LB3A. FEMS Microbiol Lett 148:209–216

    PubMed  CAS  Google Scholar 

  • Sunna A, Tokajian S, Burghardt J, Rainey F, Antranikian G, Hashwa F (1997b) Identification of Bacillus kaustophilus, Bacillus thermocatenulatus and Bacillus strain HSR as members of Bacillus thermoleovorans. Syst Appl Microbiol 20:232–237

    CAS  Google Scholar 

  • Suzuki Y, Kishigami T, Abe S (1976) Production of extracellular α-glucosidase by a thermophilic Bacillus species. Appl Environ Microbiol 31:807–812

    PubMed  CAS  PubMed Central  Google Scholar 

  • Suzuki Y, Kishigami T, Inoue K, Mizoguchi Y, Eto N, Takagi M, Abe S (1983) Bacillus thermoglucosidasius sp. nov., a new species of obligately thermophilic bacilli. Syst Appl Microbiol 4:487–495

    PubMed  CAS  Google Scholar 

  • Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285

    PubMed  CAS  Google Scholar 

  • Takami H, Takaki Y, Chee G-J, Nishi S, Shimamura S, Suzuki H, Matsui S, Uchiyama I (2004) Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res 32:6292–6303

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tanner RS (1989) Monitoring sulfate-reducing bacteria: comparison of enumeration media. J Microbiol Methods 10:83–90

    Google Scholar 

  • Tolner B, Poolman B, Konings WN (1997) Adaptation of microorganisms and their transport systems to high temperatures. Comp Biochem Physiol 118A:423–428

    CAS  Google Scholar 

  • Walker PD, Wolf J (1961) Some properties of aerobic thermophiles growing at 65°. J Appl Bacteriol 24:iv–v

    Google Scholar 

  • Walker PD, Wolf J (1971) The taxonomy of Bacillus stearothermophilus. In: Barker AN, Gould GW, Wolf J (eds) Spore research 1971. Academic, London, pp 247–262

    Google Scholar 

  • Weigel J (1986) Methods for isolation and study of thermophiles. In: Brock TD (ed) Thermophiles: general, molecular and applied microbiology. Wiley, New York, pp 17–37

    Google Scholar 

  • White D, Sharp RJ, Priest FG (1993) A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area. Antonie Van Leeuwenhoek J Microbiol Serol 64:357–386

    Google Scholar 

  • Wisotzkey JD, Jr Jurtshuk P, Fox GE, Deinhard G, Poralla K (1992) Comparative sequences analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269

    PubMed  CAS  Google Scholar 

  • Wolf J, Chowhury MSU (1971) Taxonomy of B. circulans and B. stearothermophilus. In: Barker AN, Gould GW, Wolf J (eds) Spore research 1971. Academic, London, pp 349–350

    Google Scholar 

  • Wolf J, Sharp RJ (1981) Taxonomic and related aspects of thermophiles within the genus Bacillus. In: Berkeley RCW, Goodfellow M (eds) The aerobic endospore-forming bacteria. Academic, London, pp 251–296

    Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    PubMed  CAS  Google Scholar 

  • Zarilla KA, Perry JJ (1987) Bacillus thermoleovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endospore-forming bacteria. Syst Appl Microbiol 9:258–264

    CAS  Google Scholar 

  • Zeigler DR (2005) Application of a recN sequence similarity analysis to the identification of species within the bacterial genus Geobacillus. Int J Syst Evol Microbiol 55:1171–1179

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niall A. Logan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Logan, N.A. (2014). The Genus Geobacillus . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30120-9_212

Download citation

Publish with us

Policies and ethics