Skip to main content

The Thiol Antioxidant Lipoic Acid and Alzheimer’s Disease

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that destroys patient memory, cognition, and the ability to communicate effectively and carry out daily activities. Despite extensive research into the pathogenesis of AD, a preventative and neuroprotective treatment is not available in clinical practice. In this chapter, evidence is provided to support the proposal that the thiol antioxidant lipoic acid (LA) may fulfill this therapeutic need. Multiple mechanisms are proposed by which LA interferes with AD pathogenesis, including increasing acetylcholine (ACh) production by activation of choline acetyltransferase (ChAT) and increasing glucose uptake, thus supplying more acetyl-CoA for ACh synthesis, and chelation of redox-active transition metals, hence inhibiting the formation of hydroxyl radicals. The most important activities of LA (or specifically its reduced form dihydrolipoic acid) are related to its antioxidant properties. LA is involved in scavenging of reactive oxygen species (ROS), thereby increasing the levels of available reduced glutathione; scavenging of lipid peroxidation products, such as 4-hydroxynonenal (HNE) and acrolein (prop-2-enal); downregulation of redox-sensitive proinflammatory mediators such as tumor necrosis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) via NF-κB and upregulation of phase II enzymes via NRF-2. Despite these many and varied proposed positive effects, evidence of the clinical benefits of LA in the treatment of dementia is as yet limited. Here only two published studies are highlighted, which show that a daily dosage of 600 mg LA slowed disease progression in patients with mild dementia, but not in patients with moderatae dementia. In addition, a double-blind, placebo-controlled trial with LA in combination with fish oil identified a substantial long-term benefit for AD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amen DG, Wu JC, Taylor D, Willeumier K (2011) Reversing brain damage in former NFL players: implications for traumatic brain injury and substance abuse rehabilitation. J Psychoactive Drugs 43:1–5

    Article  PubMed  Google Scholar 

  • Arivazhagan P, Ramanathan K, Panneerselvam C (2001) Effect of DL-alpha-lipoic acid on mitochondrial enzymes in aged rats. Chem Biol Interact 138:189–198

    Article  CAS  PubMed  Google Scholar 

  • Bierhaus A, Chevion S, Chevion M, Hofmann M, Quehenberger P, Illmer T, Luther T, Berentshtein E, Tritschler H, Muller M, Wahl P, Ziegler R, Nawroth PP (1997) Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes 46:1481–1490

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Pocernich CB, Drake J (2002) Elevated glutathione as a therapeutic strategy in Alzheimer’s disease. Drug Dev Res 56:428–437

    Article  CAS  Google Scholar 

  • Craft S, Asthana S, Cook DG, Baker LD, Cherrier M, Purganan K, Wait C, Petrova A, Latendresse S, Watson GS, Newcomer JW, Schellenberg GD, Krohn AJ (2003) Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: interactions with apolipoprotein E genotype. Psychoneuroendocrinology 28:809–822

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351:56–67

    Article  CAS  PubMed  Google Scholar 

  • Farr SA, Poon HF, Dogrukol-Ak D, Drake J, Banks WA, Eyerman E, Butterfield DA, Morley JE (2003) The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem 84:1173–1183

    Article  CAS  PubMed  Google Scholar 

  • Flier J, Van Muiswinkel FL, Jongenelen CA, Drukarch B (2002) The neuroprotective antioxidant alpha-lipoic acid induces detoxication enzymes in cultured astroglial cells. Free Radic Res 36:695–699

    Article  CAS  PubMed  Google Scholar 

  • Fonte J, Miklossy J, Atwood C, Martins R (2001) The severity of cortical Alzheimer’s type changes is positively correlated with increased amyloid-beta levels: resolubilization of amyloid-beta with transition metal ion chelators. J Alzheimers Dis 3:209–219

    CAS  PubMed  Google Scholar 

  • Galasko DR, Peskind E, Clark CM, Quinn JF, Ringman JM, Jicha GA, Cotman C, Cottrell B, Montine TJ, Thomas RG, Aisen P (2012) Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol 69:836–841

    Article  PubMed Central  PubMed  Google Scholar 

  • Griffin WS, Sheng JG, Roberts GW, Mrak RE (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J Neuropathol Exp Neurol 54:276–281

    Article  CAS  PubMed  Google Scholar 

  • Hagen TM, Ingersoll RT, Lykkesfeldt J, Liu J, Wehr CM, Vinarsky V, Bartholomew JC, Ames AB (1999) (R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB J 13:411–418

    CAS  PubMed  Google Scholar 

  • Hager K, Kenklies M, McAfoose J, Engel J, Münch G (2007) Alpha-lipoic acid as a new treatment option for Alzheimer’s disease–a 48 months follow-up analysis. J Neural Transm Suppl 72:189–193

    Article  CAS  PubMed  Google Scholar 

  • Han D, Handelman G, Marcocci L, Sen CK, Roy S, Kobuchi H, Tritschler HJ, Flohe L, Packer L (1997) Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors 6:321–338

    Article  CAS  PubMed  Google Scholar 

  • Haugaard N, Levin RM (2000) Regulation of the activity of choline acetyl transferase by lipoic acid. Mol Cell Biochem 213:61–63

    Article  CAS  PubMed  Google Scholar 

  • Haugaard N, Levin RM (2002) Activation of choline acetyl transferase by dihydrolipoic acid. Mol Cell Biochem 229:103–106

    Article  CAS  PubMed  Google Scholar 

  • Holmquist L, Stuchbury G, Berbaum K, Muscat S, Young S, Hager K, Engel J, Münch G (2007) Lipoic acid as a novel treatment for Alzheimer’s disease and related dementias. Pharmacol Ther 113:154–164

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S (2003) Memory function and brain glucose metabolism. Pharmacopsychiatry 36(Suppl 1):S62–S67

    CAS  PubMed  Google Scholar 

  • Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, Cuajungco MP, Gray DN, Lim J, Moir RD, Tanzi RE, Bush AI (1999) The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38:7609–7616

    Article  CAS  PubMed  Google Scholar 

  • Ishii K, Minoshima S (2005) PET is better than perfusion SPECT for early diagnosis of Alzheimer’s disease – for. Eur J Nucl Med Mol Imaging 32:1463–1465

    Article  PubMed  Google Scholar 

  • Karelson E, Bogdanovic N, Garlind A, Winblad B, Zilmer K, Kullisaar T, Vihalemm T, Kairane C, Zilmer M (2001) The cerebrocortical areas in normal brain aging and in Alzheimer’s disease: noticeable differences in the lipid peroxidation level and in antioxidant defense. Neurochem Res 26:353–361

    Article  CAS  PubMed  Google Scholar 

  • Lander HM, Tauras JM, Ogiste JS, Hori O, Moss RA, Schmidt AM (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272:17810–17814

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Killilea DW, Ames BN (2002) Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L- carnitine and/or R-alpha -lipoic acid. Proc Natl Acad Sci USA 99:1876–1881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lovell MA, Xie C, Xiong S, Markesbery WR (2003) Protection against amyloid beta peptide and iron/hydrogen peroxide toxicity by alpha lipoic acid. J Alzheimers Dis 5:229–239

    CAS  PubMed  Google Scholar 

  • Muller U, Krieglstein J (1995) Prolonged pretreatment with alpha-lipoic acid protects cultured neurons against hypoxic, glutamate-, or iron-induced injury. J Cereb Blood Flow Metab 15:624–630

    Article  CAS  PubMed  Google Scholar 

  • Münch G, Gerlach M, Sian J, Wong A, Riederer P (1998) Advanced glycation end products in neurodegeneration: more than early markers of oxidative stress? Ann Neurol 44:S85–S88

    Article  PubMed  Google Scholar 

  • Münch G, Shinto L, Maczurek A (2010) Lipoic acid as a treatment for Alzheimer’s disease. Med Today 11:62–64

    Google Scholar 

  • Nordberg A, Winblad B (1986) Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 72:115–119

    Article  CAS  PubMed  Google Scholar 

  • Nordberg A, Nyberg P, Adolfsson R, Winblad B (1987) Cholinergic topography in Alzheimer brains: a comparison with changes in the monoaminergic profile. J Neural Transm 69:19–32

    Article  CAS  PubMed  Google Scholar 

  • Packer L, Witt EH, Tritschler HJ (1995) alpha-Lipoic acid as a biological antioxidant. Free Radic Biol Med 19:227–250

    Article  CAS  PubMed  Google Scholar 

  • Pocernich CB, Butterfield DA (2003) Acrolein inhibits NADH-linked mitochondrial enzyme activity: implications for Alzheimer’s disease. Neurotox Res 5:515–520

    Article  PubMed  Google Scholar 

  • Pocernich C, La Fontaine M, Butterfield D (2000) In-vivo glutathione elevation protects against hydroxyl free radical-induced protein oxidation in rat brain. Neurochem Int 36:185–191

    Article  CAS  PubMed  Google Scholar 

  • Quinn JF, Bussiere JR, Hammond RS, Montine TJ, Henson E, Jones RE, Stackman RW Jr (2007) Chronic dietary alpha-lipoic acid reduces deficits in hippocampal memory of aged Tg2576 mice. Neurobiol Aging 28:213–225

    Article  CAS  PubMed  Google Scholar 

  • Retz W, Gsell W, Münch G, Rosler M, Riederer P (1998) Free radicals in Alzheimer’s disease. J Neural Transm Suppl 54:221–236

    Article  CAS  PubMed  Google Scholar 

  • Seaton TA, Jenner P, Marsden CD (1996) The isomers of thioctic acid alter C-deoxyglucose incorporation in rat basal ganglia. Biochem Pharmacol 51:983–986

    Article  CAS  PubMed  Google Scholar 

  • Stuchbury G, Münch G (2005) Alzheimer’s associated inflammation, potential drug targets and future therapies. J Neural Transm 112:429–453

    Article  CAS  PubMed  Google Scholar 

  • Suh JH, Shenvi SV, Dixon BM, Liu H, Jaiswal AK, Liu RM, Hagen TM (2004a) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci USA 101:3381–3386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suh JH, Zhu BZ, deSzoeke E, Frei B, Hagen TM (2004b) Dihydrolipoic acid lowers the redox activity of transition metal ions but does not remove them from the active site of enzymes. Redox Rep 9:57–61

    Article  CAS  PubMed  Google Scholar 

  • Suh JH, Moreau R, Heath SH, Hagen TM (2005) Dietary supplementation with (R)-alpha-lipoic acid reverses the age-related accumulation of iron and depletion of antioxidants in the rat cerebral cortex. Redox Rep 10:52–60

    Article  CAS  PubMed  Google Scholar 

  • Watson GS, Craft S (2003) The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs 17:27–45

    Article  CAS  PubMed  Google Scholar 

  • Wong A, Dukic-Stefanovic S, Gasic-Milenkovic J, Schinzel R, Wiesinger H, Riederer P, Münch G (2001a) Anti-inflammatory antioxidants attenuate the expression of inducible nitric oxide synthase mediated by advanced glycation endproducts in murine microglia. Eur J Neurosci 14:1961–1967

    Article  CAS  PubMed  Google Scholar 

  • Wong A, Lüth HJ, Deuther-Conrad W, Dukic-Stefanovic S, Gasic-Milenkovic J, Arendt T, Münch G (2001b) Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res 920:32–40

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xing GQ, Barker JL, Chang Y, Maric D, Ma W, Li BS, Rubinow DR (2001) Alpha-lipoic acid protects rat cortical neurons against cell death induced by amyloid and hydrogen peroxide through the Akt signalling pathway. Neurosci Lett 312:125–128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the J. O. and J. R. Wicking Foundation, Alzheimer’s Australia, and the NHMRC (Project Grant 491109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Münch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ooi, L., Patel, M., Münch, G. (2014). The Thiol Antioxidant Lipoic Acid and Alzheimer’s Disease. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_84

Download citation

Publish with us

Policies and ethics