Skip to main content

Therapeutic Insight Into Reactive Oxygen Species Regulation of Neovascularization

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Angiogenesis, characterized by the development of new blood vessels from preexisting vasculature, is an important aspect of both healthy and disease states. Recently, reactive oxygen species (ROS) have garnered increased attention as mediators of cell signaling, extending its role beyond simple oxidative stress and damage. Studies have gradually begun to determine links between ROS and cell survival, cell signaling, and the pathophysiology of diseases, both in vitro and in vivo. There are multiple players involved in ROS regulation, with NADPH oxidase, the mitochondria, and superoxide dismutase being some of the most studied regulators. These regulators of ROS have been linked to downstream signaling of a variety of signaling factors, such as vascular endothelial growth factor (VEGF). In addition, ROS have been identified to play a critical role in cells essential for the development of new vasculature, including endothelial, immune, and progenitor cells. Furthermore, a number of studies are pointing at ROS as being an important regulator of pathological angiogenesis in various diseases such as diabetes and tumorigenesis. Herein, we review the literature with regard to ROS regulation of angiogenesis, which has gained more interest in recent years, as we begin to comprehend ROS not as a group of cytotoxic waste products but as critical regulators of angiogenic homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Shabrawey M, Rojas M, Sanders T, Behzadian A, El-Remessy A, Bartoli M, Parpia AK, Liou G, Caldwell RB (2008) Role of NADPH oxidase in retinal vascular inflammation. Invest Ophthalmol Vis Sci 49:3239–3244

    PubMed Central  PubMed  Google Scholar 

  • Arbiser JL, Petros J, Klafter R, Govindajaran B, Mclaughlin ER, Brown LF, Cohen C, Moses M, Kilroy S, Arnold RS, Lambeth JD (2002) Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci 99(2):715–720

    CAS  PubMed Central  PubMed  Google Scholar 

  • Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    CAS  PubMed  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Shatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    CAS  PubMed  Google Scholar 

  • Bae J, Park D, Lee Y-S, Jeoung D (2008) Interleukin-2 promotes angiogenesis by activation of Akt and increase of ROS. J Microbiol Biotechnol 18:377–382

    CAS  PubMed  Google Scholar 

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    CAS  PubMed  Google Scholar 

  • Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    CAS  PubMed  Google Scholar 

  • Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bokoch GM, Diebold BA (2002) Current molecular models for NADPH oxidase regulation by RAC GTPase. Blood 100:2692–2695

    CAS  PubMed  Google Scholar 

  • Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Serial review: the powerhouse takes control of the cell: the role of mitochondria in signal transduction. Free Radic Biol Med 37:755–767

    CAS  PubMed  Google Scholar 

  • Brandes RP, Schröder K (2008) Differential vascular functions of Nox family NADPH oxidases. Curr Opin Lipidol 19:513–518

    CAS  PubMed  Google Scholar 

  • Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47:1239–1253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown MR, Miller FJ, Li W-G, Ellingson AN, Mozena JD, Chatterjee P, Engelhardt JF, Zwacka RM, Oberley LW, Fang X, Spector AA, NWeintrauc NL (1999) Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells. Circ Res 85:524–533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cahilly C, Ballantyne CM, Lim D-S, Gotto A, Marian AJ (2000) A variant of p22phox, involved in generation of reactive oxygen species in the vessel wall, is associated with progression of coronary atherosclerosis. Circ Res 86:391–395

    CAS  PubMed  Google Scholar 

  • Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844

    CAS  PubMed  Google Scholar 

  • Carmeliet P (2004) Manipulating angiogenesis in medicine. J Intern Med 255(5):538–561

    PubMed  Google Scholar 

  • Cerandini DJ, Yao D, Grogan RH, Callaghan MJ, Edelstein D, Brownlee M, Gurtner GC (2008) Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 283:10930–10938

    Google Scholar 

  • Cho M, Hunt TK, Hussain MZ (2001) Hydrogen peroxide stimulates macrophage vascular endothelial growth factor release. Am J Physiol Heart Circ Physiol 280:H2357–H2363

    CAS  PubMed  Google Scholar 

  • Chua CC, Hamdy RC, Chua BHL (1998) Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic Biol Med 25(8):891–897

    CAS  PubMed  Google Scholar 

  • Conner KM, Subbaram S, Regan KJ, Nelson KK, Mazurkiewicz JE, Bartholomew PJ, Alpin AE, Tai Y-T, Aguirre-Ghiso J, Flores SC, Melendez JA (2005) Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J Biol Chem 280:16916–16924

    Google Scholar 

  • Corada M, Zanetta L, Orsenigo F, Breviario F, Lampugnani MG, Bernasconi S, Liao F, Hicklin DJ, Bohlen P, Dejana E (2002) A monoclonal antibody to vascular endothelial – cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 100:905–911

    CAS  PubMed  Google Scholar 

  • Craige SM, Chen K, Pei Y, Li C, Huang X, Chen C, Shibata R, Sato K, Walsh K, Keaney JF Jr (2011) NADPH oxidase 4 promotes endothelial angiogenesis though endothelial nitric oxide synthase activation. Circulation 124:731–740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daghini E, Zhu X-Y, Versari D, Bentley MD, Napoli C, Lerman A, Lerman LO (2007) Antioxidant vitamins induce angiogenesis in the normal pig kidney. Am J Physiol Renal Physiol 293:F371–F381

    CAS  PubMed  Google Scholar 

  • Dai S, He Y, Zhang H, Yu L, Wan T, Xu Z, Jones D, Chen H, Min W (2009) Endothelial-specific expression of mitochondrial thioredoxin promotes ischemia-mediated arteriogenesis and angiogenesis. Arterioscler Thromb Vasc Biol 29(4):495–502

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies KJA (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48:41–47

    CAS  PubMed  Google Scholar 

  • Desouki MM, Kulawiec M, Bansal S, Das G, Singh KK (2005) Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol Ther 4(12):1367–1373

    CAS  PubMed  Google Scholar 

  • Diebold I, Djordjevic T, Petry A, Hatzelmann A, Tenor H, Hess J, Görlach A (2009) Phosphodiesterase 2 mediates redox-sensitive endothelial cell proliferation and angiogenesis by thrombin via Rac1 an NADPH oxidase 2. Circ Res 104:1169–1177

    CAS  PubMed  Google Scholar 

  • Dunmore BJ, McCarthy MJ, Naylor R, Brindle NP (2007) Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaque. J Vasc Surg 45:155–159

    PubMed  Google Scholar 

  • Ebrahimian TG, Heymes C, You D, Blanc-Brude O, Mees B, Waeckel L, Duriez M, Vilar J, Brandes RP, Levy BI, Shah AM, Silvestre J-S (2006) NADPH oxidase-derived overproduction of reactive oxygen species impairs postischemic neovascularization in mice with type 1 diabetes. Am J Pathol 169(2):719–728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev 8:579–591

    CAS  Google Scholar 

  • Faraci FM, Didion SP (2004) Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol 24:1367–1373

    CAS  PubMed  Google Scholar 

  • Ferrara N, Gerber H-P, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    CAS  PubMed  Google Scholar 

  • Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6

    CAS  PubMed  Google Scholar 

  • Fortuño A, San José G, Moreno MU, Díez J, Zalba G (2005) Oxidative stress and vascular remodelling. Exp Physiol 90:457–462

    PubMed  Google Scholar 

  • Frey RS, Ushio-Fukai M, Malik AB (2009) NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Andioxid Redox Sign 11(4):791–810

    CAS  Google Scholar 

  • Garrido-Urbani S, Jemelin S, Deffert C, Carnesecchi S, Basset O, Szyndralewiez C, Heitz F, Page P, Montet X, Michalik L, Arbiser J, Rüegg C, Krause K-H, Imhof B (2011) Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARα mediated mechanism. PLoS One 6:e14665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, Pouysségur J, Yaniv M, Mechta-Grigoriou F (2004) JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118:781–794

    CAS  PubMed  Google Scholar 

  • Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Groleau J, Dussault S, Haddad P, Turgeon J, Ménard C, Chan JS, Rivard A (2010) Essential role of copper-zinc superoxide dismutase for ischemia-induced neovascularization via modulation of bone marrow-derived endothelial progenitor cells. Arterioscler Thromb Vasc Biol 30:2173–2181

    CAS  PubMed  Google Scholar 

  • Grzenkowicz-Wydra J, Cisowski J, Nakonieczna J, Zarębski A, Udilova N, Nohl H, Józkowicz A, Podhajska A, Dulak J (2004) Gene transfer of CuZn superoxide dismutase enhances the synthesis of vascular endothelial growth factor. Mol Cell Biochem 264:169–181

    CAS  PubMed  Google Scholar 

  • Haddad P, Dussault S, Groleau J, Turgeon J, Michaud S-E, Ménard C, Perez G, Maingrette F, Rivard A (2009) Nox2-containing NADPH oxidase deficiency confers protection from hindlimb ischemia in conditions of increased oxidative stress. Arterioscler Thromb Vasc Biol 29:1522–1528

    CAS  PubMed  Google Scholar 

  • Haddad P, Dussault S, Groleau J, Turgeon J, Maingrette F, Rivard A (2011) Nox2-derived reactive oxygen species contribute to hypercholesterolemia-induced inhibition of neovascularization: effects on endothelial progenitor cells and mature endothelial cells. Atherosclerosis 217(2):340–349

    CAS  PubMed  Google Scholar 

  • Hamilton CA, Miller WH, Al-Benna S, Brosnan MJ, Drummond RD, McBride MW, Dominiczak AF (2004) Strategies to reduce oxidative stress in cardiovascular disease. Clin Sci 106:219–234

    CAS  PubMed  Google Scholar 

  • Harfouche R, Abdel-Malak NA, Brandes RP, Karson A, Irani K, Hussain SNA (2005) Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB J 19(12):1728–1730

    CAS  PubMed  Google Scholar 

  • Hellström M, Kalén M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    PubMed  Google Scholar 

  • Hirschi KK, Rohovsky SA, Beck LH, Smith SR, D’Amore PA (1999) Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ Res 84:298–305

    CAS  PubMed  Google Scholar 

  • Hirst J, King MS, Pryde KR (2008) The production of reactive oxygen species by complex I. Biochem Soc Trans 36:976–980

    CAS  PubMed  Google Scholar 

  • Ikeda S, Yamaoka-Tojo M, Hilenski L, Patrushev N, Anwar GM, Quinn MT, Ushio-Fukai M (2005) IQGAP1 regulates reactive oxygen species-dependent endothelial cell migration through interacting with Nox2. Arterioscler Thromb Vasc Biol 25:2295–2300

    CAS  PubMed  Google Scholar 

  • Inoue N, Takeshita S, Gao D, Ishida T, Kawashima S, Akita H, Tawa R, Sakurai H, Yokoyama M (2001) Lysophosphatidylcholine increases the secretion of matrix metalloproteinase 2 through the activation of NADP/NADPH oxidase in cultured aortic endothelial cells. Atherosclerosis 155:45–52

    CAS  PubMed  Google Scholar 

  • Izuta H, Chikaraishi Y, Adachi T, Shimazawa M, Sugiyama T, Ikeda T, Hara H (2009) Extracellular SOD and VEGF are increased in vitreous bodies from proliferative diabetic retinopathy patients. Mol Vis 15:2663–2672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jay D, Hitomi H, Griendling KK (2006) Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 40:183–192

    CAS  PubMed  Google Scholar 

  • Jenkinson L, Bardhan KD, Atherton J, Kalia N (2002) Helicobacter pylori prevents proliferative stage of angiogenesis in vitro: role of cytokines. Dig Dis Sci 47(8):1857–1862

    CAS  PubMed  Google Scholar 

  • Kang D-H, Anderson S, Kim Y-G, Mazzalli M, Suga S-I, Jefferson A, Gordon KL, Oyama TT, Hughes J, Hugo C, Kerjaschki D, Schreiner GF, Johnson RJ (2001) Impaired angiogenesis in the aging kidney: vascular endothelial growth factor and thrombospondin-1 in renal disease. Am J Kidney Dis 37(3):601–611

    CAS  PubMed  Google Scholar 

  • Kangas-Kontio T, Vavuli S, Kakko SJ, Penna J, Savolainen E-R, Savolainen MJ, Liinamaa MJ (2009) Polymorphism of the manganese superoxide dismutase gene but not of vascular endothelial growth factor gene is a risk factor for diabetic retinopathy. Br J Ophthalmol 93:1401–1406

    CAS  PubMed  Google Scholar 

  • Khatri JJ, Johnson C, Magid R, Lessner SM, Laude K, Dikalov SI, Harrison DG, Sung H-J, Rong Y, Galis ZS (2004) Vascular oxidant stress enhances progression and angiogenesis of experimental atheroma. Circulation 109:520–525

    CAS  PubMed  Google Scholar 

  • Khromova NV, Kopnin PB, Stepanova EV, Agapova LS, Kopnin BP (2009) p53 hot-spot mutants increase tumor vascularization via ROS-mediated activation of the HIF1/VEGF-A pathway. Cancer Lett 276:143–151

    CAS  PubMed  Google Scholar 

  • Kim HW, Lin A, Guldberg RE, Ushio-Fukai M, Fukai T (2007) Essential role of extracellular SOD in reparative neovascularization induced by hindlimb ischemia. Circ Res 101:409–419

    CAS  PubMed  Google Scholar 

  • Komatsu D, Kato M, Nakayama J, Miyagawa S, Kamata T (2008) NADPH oxidase 1 plays a critical mediating role in oncogenic Ras-induced vascular endothelial growth factor expression. Oncogene 27:4724–4732

    CAS  PubMed  Google Scholar 

  • Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM (1994) Role of angiogenesis in patients with cerebral ischemia stroke. Stroke 25:1794–1798

    CAS  PubMed  Google Scholar 

  • Kubo M, Li T-S, Suzuki R, Ohshima M, Qin S-L, Hamano K (2007) Short-term pretreatment with low-dose hydrogen peroxide enhances the efficacy of bone marrow cells for therapeutic angiogenesis. Am J Physiol Heart Circ Physiol 292:H2582–H2588

    CAS  PubMed  Google Scholar 

  • Lee S, Jilani SM, KNikolova GV, Carpizo D, Iruela-Arispe ML (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169(4):681–691

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee WL, Harrison RE, Grinstein S (2003) Phagocytosis by neutrophil. Microbes Infect 5:1299–1306

    CAS  PubMed  Google Scholar 

  • Li L, Renier G (2006) Activation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase by advanced glycation end products links oxidative stress to altered retinal vascular endothelial growth factor expression. Metabolism 55:1516–1523

    CAS  PubMed  Google Scholar 

  • Li J, Wang JJ, Yu Q, Chen K, Mahadev K, Zhang SX (2010a) Inhibition of reactive oxygen species by lovastatin downregulates vascular endothelial growth factor expression and ameliorates blood-retinal barrier breakdown in db/db mice. Diabetes 59:1528–1538

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li S-M, Zeng L-W, Feng L, Chen D-B (2010b) Rac-1 dependent intracellular superoxide formation mediates vascular endothelial growth factor-induced placental angiogenesis in vitro. Endocrinology 151:5315–5325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin M-T, Yen M-L, Lin C-Y, Kuo M-L (2003) Inhibition of vascular endothelial growth factor-induced angiogenesis by resveratrol through interruption of Src-dependent vascular endothelial cadherin tyrosine phosphorylation. Mol Pharmacol 64:1029–1036

    CAS  PubMed  Google Scholar 

  • Lim SD, Sun C, Lambeth JD, Marshall F, Amin M, Chung L, Petros JA, Arnold RS (2005) Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate 62:200–207

    CAS  PubMed  Google Scholar 

  • Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I, Bucala R, Adamis AP (1998) Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest 101:1219–1224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38

    CAS  PubMed  Google Scholar 

  • Maehata Y, Ozawa S, Kobayashi K, Kato Y, Yoshino F, Miyamoto C, Izukuri K, Kubota E, Hata R-I, Lee M-C-I (2010) Reactive oxygen species (ROS) reduce the expression of BRAK/CXCL14 in human head and neck squamous cell carcinoma cells. Free Radic Res 44(8):913–924

    CAS  PubMed  Google Scholar 

  • Marikovsky M, Nevo N, Vadai E, Harris-Cerruti C (2002) Cu/Zn superoxide dismutase plays a role in angiogenesis. Int J Cancer 97:34–41

    CAS  PubMed  Google Scholar 

  • Marrotte EJ, Chen D-D, Hakim JS, Chen AF (2010) Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. J Clin Invest 120:4207–4219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez P, Esbrit P, Rodrigo A, Alvarez-Arroyo MV, Martinez ME (2002) Age-related changes in parathyroid hormone-related protein and vascular endothelial growth factor in human osteoblastic cells. Osteoporos Int 13:874–881

    CAS  PubMed  Google Scholar 

  • Monte M, Davel LE, Sacerdote de Lustig E (1997) Hydrogen peroxide is involved in lymphocyte activation mechanisms to induce angiogenesis. Eur J Cancer 33:676–682

    CAS  PubMed  Google Scholar 

  • Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16:558–564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nwariaku FE, Lui Z, Zhu X, Nahari D, Ingle C, Wu RF, Gu Y, Sarosi G, Terada LS (2004) NADPH oxidase mediates vascular endothelial cadherin phosphorylation and endothelial dysfunction. Blood 104:3214–3220

    CAS  PubMed  Google Scholar 

  • Ohshima M, Li T-S, Kubo M, Qin S-L, Hamano K (2009) Antioxidant therapy attenuates diabetes-related impairment of bone marrow stem cells. Circ J 73:162–166

    PubMed  Google Scholar 

  • Orlidge A, D’Amore PA (1987) Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J Cell Biol 105:1455–1462

    CAS  PubMed  Google Scholar 

  • Oshikawa J, Urao N, Kim HW, Kaplan N, Razvi M, McKinney R, Poole LB, Fukai T, Ushio-Fukai M (2010) Extracellular SOD-derived H2O2 promotes VEGF signaling in caveolae/lipid rafts and post-ischemic angiogenesis in mice. PLoS One 5(4):e10189

    PubMed Central  PubMed  Google Scholar 

  • Papaharalambus CA, Griendling KK (2007) Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med 17:48–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park JE, Barbul A (2004) Understanding the role of immune regulation in would healing. Am J Surg 187(Suppl):11S–16S

    CAS  PubMed  Google Scholar 

  • Pathi SS, Jutooru I, Chadalapaka G, Sreevalsan S, Anand S, Thatcher GRJ, Safe S (2011) GT-094, a NO-NSAID, inhibits colon cancer cell growth by activation of a reactive oxygen species-microRNA-27A: ZBTB10-specificity protein pathway. Mol Cancer Res 9:195–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pearson JD (2009) Endothelial progenitor cells – hype or hope? J Thromb Haemost 7:255–262

    CAS  PubMed  Google Scholar 

  • Richter C, Gogvadze V, Laffranchi R, Schlapbach R, Schweizer M, Suter M, Walter P, Yaffe M (1995) Oxidants in mitochondria: from physiology to diseases. Biochim Biophys Acta 1271:67–74

    PubMed  Google Scholar 

  • Rivard A, Silver M, Chen D, Kearney M, Magner M, Annex B, Peters K, Isner JM (1999) Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am J Pathol 154(2):355–363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rivera J, Sobey CG, Walduck AK, Drummond GR (2010) Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models. Redox Rep 15(2):50–63

    CAS  PubMed  Google Scholar 

  • Ross R (1999) Atherosclerosis – an inflammatory disease. New Eng J Med 340:115–126

    CAS  PubMed  Google Scholar 

  • Ruiz-Ginés JA, López-Ongil S, González-Rubio M, González-Santiago L, Rodríguez-Puyol M, Rodríguez-Puyol D (2000) Reactive oxygen species induce proliferation of bovine aortic endothelial cells. J Cardiovasc Pharmacol 35(1):109–113

    PubMed  Google Scholar 

  • Sato Y, Rifkin DB (1989) Inhibition of endothelial cell movement by pericytes and smooth muscle ceils: activation of a latent transforming growth factor-B l-like molecule by plasmin during co-culture. J Cell Biol 109:309–315

    CAS  PubMed  Google Scholar 

  • Scarpino S, Marchitti S, Stanzione R, Evangelista A, Di Castro S, Savoia C, Quarta G, Sciarretta S, Ruco L, Volpe M, Rubattu S (2009) Reactive oxygen species-mediated effects on vascular remodeling induced by human atrial natriuretic peptide T2238C molecular variant in endothelial cells in vitro. J Hypertens 27:1804–1813

    CAS  PubMed  Google Scholar 

  • Schleicher M, Shepard BR, Suarez Y, Fernandez-Hernando C, Yu J, Pan Y, Acevedo LM, Shadel GS, Sessa WC (2008) Prohibitin-1 maintains the angiogenic capacity of endothelial cells by regulating mitochondrial function and senescence. J Cell Biol 180(1):101–112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simon AM, McWhorter AR (2002) Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40. Dev Biol 251:206–220

    CAS  PubMed  Google Scholar 

  • Simons M (2005) Angiogenesis, arteriogenesis, and diabetes: paradigm reassessed. J Am Coll Cardiol 46:835–837

    PubMed  Google Scholar 

  • Singh U, Jialal I (2006) Oxidative stress and atherosclerosis. Pathophysiology 13:129–142

    CAS  PubMed  Google Scholar 

  • Stefano RD, Felice F, Balbarini A (2009) Angiogenesis as risk factor for plaque vulnerability. Curr Pharm Des 15:1095–1106

    PubMed  Google Scholar 

  • Strålin P, Karlsson K, Johansson BO, Marklund SL (1995) The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol 15:2032–2036

    PubMed  Google Scholar 

  • Sun D, McCrae KR (2006) Endothelial-cell apoptosis induced by cleaved high-molecular-weight kininogen (HKa) is matrix dependent and requires the generation of reactive oxygen species. Blood 107:4714–4720

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tchaikovski V, Olieslagers S, Böhmer F-D, Waltenberger J (2009) Diabetes mellitus activates signal transduction pathways resulting in vascular endothelial growth factor resistance of human monocytes. Circulation 120:150–159

    CAS  PubMed  Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028

    CAS  PubMed  Google Scholar 

  • Tojo T, Ushio-Fukai M, Yamaoka-Tojo M, Ikeda S, Patrushev N, Alexander RW (2005) Role of gp91phox (Nox2)-containing NAD(P)H oxidase in angiogenesis in response to hindlimb ischemia. Circulation 111:2347–2355

    CAS  PubMed  Google Scholar 

  • Urao N, Inomata H, Razvi M, Kim HW, Wary K, McKinney R, Fukai T, Ushio-Fukai M (2008) Role of Nox2-based NADPH oxidase in bone marrow and progenitor cell function involved in neovascularization induced by hindlimb ischemia. Circ Res 103:212–220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ushio-Fukai M, Tang Y, Fukai T, Dikalov SI, Ma Y, Fujimoto M, Quinn MT, Pagano PJ, Johnson C, Alexander RW (2002) Novel role of gp91phox-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res 91:1160–1167

    CAS  PubMed  Google Scholar 

  • van Hinsbergh VWM, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78:203–212

    PubMed  Google Scholar 

  • Waeckel L, Mallat Z, Potteaux S, Combadière C, Clergue M, Duriez M, Bau L, Gerard C, Rollins BJ, Tedgui A, Levy BI, Silvestre J-S (2005) Impairment in postischemic neovascularization in mice lacking the CXC chemokine receptor 3. Circ Res 96:576–582

    CAS  PubMed  Google Scholar 

  • Waltenberger J (2009) VEGF resistance as a molecular basis to explain the angiogenesis paradox in diabetes mellitus. Biochem Soc Trans 37:1167–1170

    CAS  PubMed  Google Scholar 

  • Walter A, Etienne-Selloum N, Brasse D, Schleiffer R, Bekaert V, Vanhoutte PM, Beretz A, Schini-Kerth VB (2009) Red wine polyphenols prevent acceleration of neovascularization by angiotensin II in the ischemic rat hindlimb. J Pharmacol Exp Ther 329(2):699–707

    CAS  PubMed  Google Scholar 

  • Wetering SV, van Buul JD, Quik S, Mul FPJ, Anthony EC, ten Klooster J-P, Collard JG, Hordijk PL (2002) Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J Cell Sci 115:1837–1846

    PubMed  Google Scholar 

  • Wu RF, Xu YC, Ma Z, Nwariaku FE, Sarosi GA Jr, Terada LS (2005) Subcellular targeting of oxidants during endothelial cell migration. J Cell Biol 171:893–904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xia C, Meng Q, Liu L-Z, Rojanasakul Y, Wang X-R, Jiang B-H (2007) Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res 67:10823–10830

    CAS  PubMed  Google Scholar 

  • Yasuda M, Shimizu S, Ohhinata K, Naito S, Tokuyama S, Mori Y, Kiuchi Y, Yamamoto T (2002) Differential roles of ICAM-1 and E-selectin in polymorphonuclear leukocyte-induced angiogenesis. Am J Physiol Cell Physiol 282:C917–C925

    CAS  PubMed  Google Scholar 

  • Yasuda M, Shimizu S, Tokuyama S, Watanabe T, Kiuchi Y, Yamamoto T (2000) A novel effect of polymorphonuclear leukocytes in the facilitation of angiogenesis. Life Sci 66(21):2113–2121

    CAS  PubMed  Google Scholar 

  • Yoder MC, Ingram DA (2009) Endothelial progenitor cell: ongoing controversy for defining these cells and their role in neoangiogenesis in the murine system. Curr Opin Hematol 16:269–273

    CAS  PubMed  Google Scholar 

  • Zhu X-Y, Rodriguez-Porcel M, Bentley MD, Chade AR, Sica V, Napoli C, Caplice N, Ritman EL, Lerman A, Lerman LO (2004) Antioxidant intervention attenuates myocardial neovascularization in hypercholesterolemia. Circulation 109:2109–2115

    CAS  PubMed  Google Scholar 

  • Zhuang J, Jiang T, Lu D, Luo Y, Zheng C, Feng J, Yang D, Chen C, Yan X (2010) NADPH oxidase 4 mediates reactive oxygen species induction of CD146 dimerization in VEGF signal transduction. Free Radic Biol Med 49:227–236

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal N. Bernatchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Trane, A.E., Bernatchez, P.N. (2014). Therapeutic Insight Into Reactive Oxygen Species Regulation of Neovascularization. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_60

Download citation

Publish with us

Policies and ethics