Skip to main content

Free Radicals and Embryo Development

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants
  • 395 Accesses

Abstract

The development of the embryo depends on a sequence of tightly regulated events. A multitude of regulatory networks facilitate spatial and temporal control of embryo development and ascertain that the embryo proceeds safely through the developmental stages. During this process, the embryo encounters changing environmental conditions that may affect the developmental outcome. Oxygen is essential for embryogenesis but also poses a potential hazard via the formation of reactive oxygen and reactive nitrogen species (ROS/RNS). ROS are capable of modifying and deactivating macromolecules (proteins, nucleic acids, lipids) and thereby are able to disturb normal development. On the other hand, ROS/RNS are vital signaling molecules within cells. Thus, precise control of ROS/RNS generation and their clearance are necessary and dysregulations disturb embryo development, which may lead to developmental abnormalities or even embryonic death. In order to cope with ROS/RNA, the embryo features intriguing mechanisms to sense oxygen derivatives and translate this information into adaptive events. This chapter summarizes our current knowledge in the field of free radicals during mammalian embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez JG, Storey BT (1995) Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol Reprod Dev 42(3):334–346

    CAS  PubMed  Google Scholar 

  • Anderson J, Sandhir R, Hamilton ES, Berman NE (2009) Impaired expression of neuroprotective molecules in the HIF-1alpha pathway following traumatic brain injury in aged mice. J Neurotrauma 26(9):1557–1566

    PubMed Central  PubMed  Google Scholar 

  • Aratani Y, Koyama H, Nyui S, Suzuki K, Kura F, Maeda N (1999) Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect Immun 67(4):1828–1836

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495

    CAS  PubMed  Google Scholar 

  • Barela TD, Johnson JD, Hayek A (1983) Metabolic acidosis in the newborn period. Clin Endocrinol Metab 12(2):429–446

    CAS  PubMed  Google Scholar 

  • Bavister BD (1995) Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update 1(2):91–148

    CAS  PubMed  Google Scholar 

  • Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D (1995) Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376(6536):167–170

    CAS  PubMed  Google Scholar 

  • Benita Y, Kikuchi H, Smith AD, Zhang MQ, Chung DC, Xavier RJ (2009) An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res 37(14):4587–4602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biondi C, Pavan B, Lunghi L, Fiorini S, Vesce F (2005) The role and modulation of the oxidative balance in pregnancy. Curr Pharm Des 11(16):2075–2089

    CAS  PubMed  Google Scholar 

  • Blackinton J, Kumaran R, van der Brug MP, Ahmad R, Olson L, Galter D, Lees A, Bandopadhyay R, Cookson MR (2009) Post-transcriptional regulation of mRNA associated with DJ-1 in sporadic Parkinson disease. Neurosci Lett 452(1):8–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bondareva AA, Capecchi MR, Iverson SV, Li Y, Lopez NI, Lucas O, Merrill GF, Prigge JR, Siders AM, Wakamiya M, Wallin SL, Schmidt EE (2007) Effects of thioredoxin reductase-1 deletion on embryogenesis and transcriptome. Free Radic Biol Med 43(6):911–923

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borchert A, Wang CC, Ufer C, Schiebel H, Savaskan NE, Kuhn H (2006) The role of phospholipid hydroperoxide glutathione peroxidase isoforms in murine embryogenesis. J Biol Chem 281(28):19655–19664

    CAS  PubMed  Google Scholar 

  • Bosl MR, Takaku K, Oshima M, Nishimura S, Taketo MM (1997) Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). Proc Natl Acad Sci USA 94(11):5531–5534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown JR, Ye H, Bronson RT, Dikkes P, Greenberg ME (1996) A defect in nurturing in mice lacking the immediate early gene fosB. Cell 86(2):297–309

    CAS  PubMed  Google Scholar 

  • Carlsson LM, Jonsson J, Edlund T, Marklund SL (1995) Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci USA 92(14):6264–6268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chan K, Lu R, Chang JC, Kan YW (1996) NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc Natl Acad Sci USA 93(24):13943–13948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chan JY, Kwong M, Lu R, Chang J, Wang B, Yen TS, Kan YW (1998) Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice. EMBO J 17(6):1779–1787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen EY, Fujinaga M, Giaccia AJ (1999) Hypoxic microenvironment within an embryo induces apoptosis and is essential for proper morphological development. Teratology 60(4):215–225

    CAS  PubMed  Google Scholar 

  • Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, Xu G, Li E, Chen T (2009) KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461(7262):415–418

    CAS  PubMed  Google Scholar 

  • Coffman JA, Denegre JM (2007) Mitochondria, redox signaling and axis specification in metazoan embryos. Dev Biol 308(2):266–280

    CAS  PubMed  Google Scholar 

  • Conrad M, Jakupoglu C, Moreno SG, Lippl S, Banjac A, Schneider M, Beck H, Hatzopoulos AK, Just U, Sinowatz F, Schmahl W, Chien KR, Wurst W, Bornkamm GW, Brielmeier M (2004) Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol 24(21):9414–9423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Conrad M, Moreno SG, Sinowatz F, Ursini F, Kolle S, Roveri A, Brielmeier M, Wurst W, Maiorino M, Bornkamm GW (2005) The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability. Mol Cell Biol 25(17):7637–7644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dasuri K, Zhang L, Keller JN (2012) Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med. doi: 10.1016/j.freeradbiomed.2012.09.016. [Epub ahead of print]

    Google Scholar 

  • Dinchuk JE, Car BD, Focht RJ, Johnston JJ, Jaffee BD, Covington MB, Contel NR, Eng VM, Collins RJ, Czerniak PM et al (1995) Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature 378(6555):406–409

    CAS  PubMed  Google Scholar 

  • Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA 99(18):11908–11913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dumollard R, Carroll J, Duchen MR, Campbell K, Swann K (2009) Mitochondrial function and redox state in mammalian embryos. Semin Cell Dev Biol 20(3):346–353

    CAS  PubMed  Google Scholar 

  • Epp N, Furstenberger G, Muller K, de Juanes S, Leitges M, Hausser I, Thieme F, Liebisch G, Schmitz G, Krieg P (2007) 12R-lipoxygenase deficiency disrupts epidermal barrier function. J Cell Biol 177(1):173–182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Escobar J, Pereda J, Lopez-Rodas G, Sastre J (2012) Redox signaling and histone acetylation in acute pancreatitis. Free Radic Biol Med 52(5):819–837

    CAS  PubMed  Google Scholar 

  • Fantel AG (1996) Reactive oxygen species in developmental toxicity: review and hypothesis. Teratology 53(3):196–217

    CAS  PubMed  Google Scholar 

  • Fischer B, Bavister BD (1993) Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil 99(2):673–679

    CAS  PubMed  Google Scholar 

  • Forneris F, Battaglioli E, Mattevi A, Binda C (2009) New roles of flavoproteins in molecular cell biology: histone demethylase LSD1 and chromatin. FEBS J 276(16):4304–4312

    CAS  PubMed  Google Scholar 

  • Fu Y, Cheng WH, Ross DA, Lei X (1999) Cellular glutathione peroxidase protects mice against lethal oxidative stress induced by various doses of diquat. Proc Soc Exp Biol Med 222(2):164–169

    CAS  PubMed  Google Scholar 

  • Funk CD, Chen XS, Johnson EN, Zhao L (2002) Lipoxygenase genes and their targeted disruption. Prostaglandins Other Lipid Mediat 68–69:303–312

    PubMed  Google Scholar 

  • Godecke A, Decking UK, Ding Z, Hirchenhain J, Bidmon HJ, Godecke S, Schrader J (1998) Coronary hemodynamics in endothelial NO synthase knockout mice. Circ Res 82(2):186–194

    CAS  PubMed  Google Scholar 

  • Goodwin TM, Belai I, Hernandez P, Durand M, Paul RH (1992) Asphyxial complications in the term newborn with severe umbilical acidemia. Am J Obstet Gynecol 167(6):1506–1512

    CAS  PubMed  Google Scholar 

  • Gouble A, Morello D (2000) Synchronous and regulated expression of two AU-binding proteins, AUF1 and HuR, throughout murine development. Oncogene 19(47):5377–5384

    CAS  PubMed  Google Scholar 

  • Grimsby J, Toth M, Chen K, Kumazawa T, Klaidman L, Adams JD, Karoum F, Gal J, Shih JC (1997) Increased stress response and beta-phenylethylamine in MAOB-deficient mice. Nat Genet 17(2):206–210

    CAS  PubMed  Google Scholar 

  • Grivennikova VG, Vinogradov AD (2006) Generation of superoxide by the mitochondrial Complex I. Biochim Biophys Acta 1757(5–6):553–561

    CAS  PubMed  Google Scholar 

  • Gyurko R, Leupen S, Huang PL (2002) Deletion of exon 6 of the neuronal nitric oxide synthase gene in mice results in hypogonadism and infertility. Endocrinology 143(7):2767–2774

    CAS  PubMed  Google Scholar 

  • Hake LE, Mendez R, Richter JD (1998) Specificity of RNA binding by CPEB: requirement for RNA recognition motifs and a novel zinc finger. Mol Cell Biol 18(2):685–693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halliwell B (1996) Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans. Free Radic Res 25(1):57–74

    CAS  PubMed  Google Scholar 

  • Halliwell B (2012) Free radicals and antioxidants: updating a personal view. Nutr Rev 70(5):257–265

    PubMed  Google Scholar 

  • Hansen JM (2006) Oxidative stress as a mechanism of teratogenesis. Birth Defects Res C Embryo Today 78(4):293–307

    CAS  PubMed  Google Scholar 

  • Harvey AJ, Kind KL, Thompson JG (2002) REDOX regulation of early embryo development. Reproduction 123(4):479–486

    CAS  PubMed  Google Scholar 

  • Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132(3):344–362

    CAS  PubMed  Google Scholar 

  • Hentze MW, Rouault TA, Harford JB, Klausner RD (1989) Oxidation-reduction and the molecular mechanism of a regulatory RNA-protein interaction. Science 244(4902):357–359

    CAS  PubMed  Google Scholar 

  • Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117(Pt 25):5965–5973

    CAS  PubMed  Google Scholar 

  • Hilberg F, Aguzzi A, Howells N, Wagner EF (1993) c-jun is essential for normal mouse development and hepatogenesis. Nature 365(6442):179–181

    CAS  PubMed  Google Scholar 

  • Ho YS, Gargano M, Cao J, Bronson RT, Heimler I, Hutz RJ (1998) Reduced fertility in female mice lacking copper-zinc superoxide dismutase. J Biol Chem 273(13):7765–7769

    CAS  PubMed  Google Scholar 

  • Ho YS, Xiong Y, Ma W, Spector A, Ho DS (2004) Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem 279(31):32804–32812

    CAS  PubMed  Google Scholar 

  • Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377(6546):239–242

    CAS  PubMed  Google Scholar 

  • Huang TT, Carlson EJ, Kozy HM, Mantha S, Goodman SI, Ursell PC, Epstein CJ (2001) Genetic modification of prenatal lethality and dilated cardiomyopathy in Mn superoxide dismutase mutant mice. Free Radic Biol Med 31(9):1101–1110

    CAS  PubMed  Google Scholar 

  • Imai H, Suzuki K, Ishizaka K, Ichinose S, Oshima H, Okayasu I, Emoto K, Umeda M, Nakagawa Y (2001) Failure of the expression of phospholipid hydroperoxide glutathione peroxidase in the spermatozoa of human infertile males. Biol Reprod 64(2):674–683

    CAS  PubMed  Google Scholar 

  • Imai H, Hirao F, Sakamoto T, Sekine K, Mizukura Y, Saito M, Kitamoto T, Hayasaka M, Hanaoka K, Nakagawa Y (2003) Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. Biochem Biophys Res Commun 305(2):278–286

    CAS  PubMed  Google Scholar 

  • Iuchi Y, Okada F, Tsunoda S, Kibe N, Shirasawa N, Ikawa M, Okabe M, Ikeda Y, Fujii J (2009) Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. Biochem J 419(1):149–158

    CAS  PubMed  Google Scholar 

  • Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12(2):149–162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jain S, Maltepe E, Lu MM, Simon C, Bradfield CA (1998) Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mech Dev 73(1):117–123

    CAS  PubMed  Google Scholar 

  • Jakupoglu C, Przemeck GK, Schneider M, Moreno SG, Mayr N, Hatzopoulos AK, de Angelis MH, Wurst W, Bornkamm GW, Brielmeier M, Conrad M (2005) Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol 25(5):1980–1988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson RS, Spiegelman BM, Papaioannou V (1992) Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell 71(4):577–586

    CAS  PubMed  Google Scholar 

  • Johnson RS, van Lingen B, Papaioannou VE, Spiegelman BM (1993) A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dev 7(7B):1309–1317

    CAS  PubMed  Google Scholar 

  • Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270(28):16483–16486

    CAS  PubMed  Google Scholar 

  • Karreth F, Hoebertz A, Scheuch H, Eferl R, Wagner EF (2004) The AP1 transcription factor Fra2 is required for efficient cartilage development. Development 131(22):5717–5725

    CAS  PubMed  Google Scholar 

  • Katsanou V, Milatos S, Yiakouvaki A, Sgantzis N, Kotsoni A, Alexiou M, Harokopos V, Aidinis V, Hemberger M, Kontoyiannis DL (2009) The RNA-binding protein Elavl1/HuR is essential for placental branching morphogenesis and embryonic development. Mol Cell Biol 29(10):2762–2776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kedersha N, Anderson P (2007) Mammalian stress granules and processing bodies. Methods Enzymol 431:61–81

    CAS  PubMed  Google Scholar 

  • Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    CAS  PubMed  Google Scholar 

  • Krieg P, Rosenberger S, de Juanes S, Latzko S, Hou J, Dick A, Kloz U, van der Hoeven F, Hausser I, Esposito I, Rauh M, Schneider H (2013) Aloxe3 knockout mice reveal a function of epidermal lipoxygenase-3 as hepoxilin synthase and its pivotal role in barrier formation. J Invest Dermatol 133(1):172–180

    CAS  PubMed  Google Scholar 

  • Langenbach R, Morham SG, Tiano HF, Loftin CD, Ghanayem BI, Chulada PC, Mahler JF, Lee CA, Goulding EH, Kluckman KD, Kim HS, Smithies O (1995) Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell 83(3):483–492

    CAS  PubMed  Google Scholar 

  • Laubach VE, Shesely EG, Smithies O, Sherman PA (1995) Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc Natl Acad Sci USA 92(23):10688–10692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee TH, Kim SU, Yu SL, Kim SH, Park DS, Moon HB, Dho SH, Kwon KS, Kwon HJ, Han YH, Jeong S, Kang SW, Shin HS, Lee KK, Rhee SG, Yu DY (2003) Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood 101(12):5033–5038

    CAS  PubMed  Google Scholar 

  • Leese HJ (1995) Metabolic control during preimplantation mammalian development. Hum Reprod Update 1(1):63–72

    CAS  PubMed  Google Scholar 

  • Leung L, Kwong M, Hou S, Lee C, Chan JY (2003) Deficiency of the Nrf1 and Nrf2 transcription factors results in early embryonic lethality and severe oxidative stress. J Biol Chem 278(48):48021–48029

    CAS  PubMed  Google Scholar 

  • Leyens G, Verhaeghe B, Landtmeters M, Marchandise J, Knoops B, Donnay I (2004) Peroxiredoxin 6 is upregulated in bovine oocytes and cumulus cells during in vitro maturation: role of intercellular communication. Biol Reprod 71(5):1646–1651

    CAS  PubMed  Google Scholar 

  • Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11(4):376–381

    CAS  PubMed  Google Scholar 

  • Li L, Shoji W, Takano H, Nishimura N, Aoki Y, Takahashi R, Goto S, Kaifu T, Takai T, Obinata M (2007) Increased susceptibility of MER5 (peroxiredoxin III) knockout mice to LPS-induced oxidative stress. Biochem Biophys Res Commun 355(3):715–721

    CAS  PubMed  Google Scholar 

  • Liang H, Yoo SE, Na R, Walter CA, Richardson A, Ran Q (2009) Short form glutathione peroxidase 4 is the essential isoform required for survival and somatic mitochondrial functions. J Biol Chem 284(45):30836–30844

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liochev SI (2013) Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60C:1–4

    Google Scholar 

  • Loftin CD, Trivedi DB, Tiano HF, Clark JA, Lee CA, Epstein JA, Morham SG, Breyer MD, Nguyen M, Hawkins BM, Goulet JL, Smithies O, Koller BH, Langenbach R (2001) Failure of ductus arteriosus closure and remodeling in neonatal mice deficient in cyclooxygenase-1 and cyclooxygenase-2. Proc Natl Acad Sci USA 98(3):1059–1064

    CAS  PubMed Central  PubMed  Google Scholar 

  • Longo L, Vanegas OC, Patel M, Rosti V, Li H, Waka J, Merghoub T, Pandolfi PP, Notaro R, Manova K, Luzzatto L (2002) Maternally transmitted severe glucose 6-phosphate dehydrogenase deficiency is an embryonic lethal. EMBO J 21(16):4229–4239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Low SC, Grundner-Culemann E, Harney JW, Berry MJ (2000) SECIS-SBP2 interactions dictate selenocysteine incorporation efficiency and selenoprotein hierarchy. EMBO J 19(24):6882–6890

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luberda Z (2005) The role of glutathione in mammalian gametes. Reprod Biol 5(1):5–17

    PubMed  Google Scholar 

  • Ludwig DL, MacInnes MA, Takiguchi Y, Purtymun PE, Henrie M, Flannery M, Meneses J, Pedersen RA, Chen DJ (1998) A murine AP-endonuclease gene-targeted deficiency with post-implantation embryonic progression and ionizing radiation sensitivity. Mutat Res 409(1):17–29

    CAS  PubMed  Google Scholar 

  • Ma Q, Battelli L, Hubbs AF (2006) Multiorgan autoimmune inflammation, enhanced lymphoproliferation, and impaired homeostasis of reactive oxygen species in mice lacking the antioxidant-activated transcription factor Nrf2. Am J Pathol 168(6):1960–1974

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malek A, Sager R, Schneider H (2001) Effect of hypoxia, oxidative stress and lipopolysaccharides on the release of prostaglandins and cytokines from human term placental explants. Placenta 22(Suppl A):S45–S50

    PubMed  Google Scholar 

  • Many A, Hubel CA, Fisher SJ, Roberts JM, Zhou Y (2000) Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia. Am J Pathol 156(1):321–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marnett LJ, Riggins JN, West JD (2003) Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J Clin Invest 111(5):583–593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsui M, Oshima M, Oshima H, Takaku K, Maruyama T, Yodoi J, Taketo MM (1996) Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol 178(1):179–185

    CAS  PubMed  Google Scholar 

  • Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT (1992) Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 20(15):3821–3830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Medghalchi SM, Frischmeyer PA, Mendell JT, Kelly AG, Lawler AM, Dietz HC (2001) Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum Mol Genet 10(2):99–105

    CAS  PubMed  Google Scholar 

  • Melvin A, Rocha S (2012) Chromatin as an oxygen sensor and active player in the hypoxia response. Cell Signal 24(1):35–43

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mercurio F, Manning AM (1999) NF-kappaB as a primary regulator of the stress response. Oncogene 18(45):6163–6171

    CAS  PubMed  Google Scholar 

  • Meyron-Holtz EG, Ghosh MC, Iwai K, LaVaute T, Brazzolotto X, Berger UV, Land W, Ollivierre-Wilson H, Grinberg A, Love P, Rouault TA (2004) Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J 23(2):386–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitomo K, Nakayama K, Fujimoto K, Sun X, Seki S, Yamamoto K (1994) Two different cellular redox systems regulate the DNA-binding activity of the p50 subunit of NF-kappa B in vitro. Gene 145(2):197–203

    CAS  PubMed  Google Scholar 

  • Miyata T, Takizawa S, van Ypersele de Strihou C (2011) Hypoxia. 1. Intracellular sensors for oxygen and oxidative stress: novel therapeutic targets. Am J Physiol Cell Physiol 300(2):C226–C231

    CAS  PubMed  Google Scholar 

  • Morham SG, Langenbach R, Loftin CD, Tiano HF, Vouloumanos N, Jennette JC, Mahler JF, Kluckman KD, Ledford A, Lee CA, Smithies O (1995) Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 83(3):473–482

    CAS  PubMed  Google Scholar 

  • Morishita T, Tsutsui M, Shimokawa H, Sabanai K, Tasaki H, Suda O, Nakata S, Tanimoto A, Wang KY, Ueta Y, Sasaguri Y, Nakashima Y, Yanagihara N (2005) Nephrogenic diabetes insipidus in mice lacking all nitric oxide synthase isoforms. Proc Natl Acad Sci USA 102(30):10616–10621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morriss G (1979) Growing embryos in vitro. Nature 278(5703):402

    CAS  PubMed  Google Scholar 

  • Muckenthaler MU, Galy B, Hentze MW (2008) Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 28:197–213

    CAS  PubMed  Google Scholar 

  • Murphy P, Kolsto A (2000) Expression of the bZIP transcription factor TCF11 and its potential dimerization partners during development. Mech Dev 97(1–2):141–148

    CAS  PubMed  Google Scholar 

  • Na HK, Surh YJ (2006) Transcriptional regulation via cysteine thiol modification: a novel molecular strategy for chemoprevention and cytoprotection. Mol Carcinog 45(6):368–380

    CAS  PubMed  Google Scholar 

  • Nanka O, Valasek P, Dvorakova M, Grim M (2006) Experimental hypoxia and embryonic angiogenesis. Dev Dyn 235(3):723–733

    CAS  PubMed  Google Scholar 

  • Natsuyama S, Noda Y, Yamashita M, Nagahama Y, Mori T (1993) Superoxide dismutase and thioredoxin restore defective p34cdc2 kinase activation in mouse two-cell block. Biochim Biophys Acta 1176(1–2):90–94

    CAS  PubMed  Google Scholar 

  • Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, Gunsalus IC, Nebert DW (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6(1):1–42

    CAS  PubMed  Google Scholar 

  • Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL, Bronson RT, Fujiwara Y, Orkin SH, Van Etten RA (2003) Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424(6948):561–565

    CAS  PubMed  Google Scholar 

  • New DA, Coppola PT (1970) Effects of different oxygen concentrations on the development of rat embryos in culture. J Reprod Fertil 21(1):109–118

    CAS  PubMed  Google Scholar 

  • Nicol CJ, Zielenski J, Tsui LC, Wells PG (2000) An embryoprotective role for glucose-6-phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis. FASEB J 14(1):111–127

    CAS  PubMed  Google Scholar 

  • Nonn L, Williams RR, Erickson RP, Powis G (2003) The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol Cell Biol 23(3):916–922

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohtsubo T, Rovira II, Starost MF, Liu C, Finkel T (2004) Xanthine oxidoreductase is an endogenous regulator of cyclooxygenase-2. Circ Res 95(11):1118–1124

    CAS  PubMed  Google Scholar 

  • Otto DM, Henderson CJ, Carrie D, Davey M, Gundersen TE, Blomhoff R, Adams RH, Tickle C, Wolf CR (2003) Identification of novel roles of the cytochrome p450 system in early embryogenesis: effects on vasculogenesis and retinoic Acid homeostasis. Mol Cell Biol 23(17):6103–6116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Page EW (1939) The relation between hydatid moles, relative ischemia of the gravid uterus, and the placental origin of eclampsia. Am J Obstet Gynecol 37:291–293

    Google Scholar 

  • Pandolfi PP, Sonati F, Rivi R, Mason P, Grosveld F, Luzzatto L (1995) Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J 14(21):5209–5215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pantano C, Reynaert NL, van der Vliet A, Janssen-Heininger YM (2006) Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway. Antioxid Redox Signal 8(9–10):1791–1806

    CAS  PubMed  Google Scholar 

  • Papp LV, Lu J, Striebel F, Kennedy D, Holmgren A, Khanna KK (2006) The redox state of SECIS binding protein 2 controls its localization and selenocysteine incorporation function. Mol Cell Biol 26(13):4895–4910

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pedersen MT, Helin K (2010) Histone demethylases in development and disease. Trends Cell Biol 20(11):662–671

    CAS  PubMed  Google Scholar 

  • Pollock JD, Williams DA, Gifford MA, Li LL, Du X, Fisherman J, Orkin SH, Doerschuk CM, Dinauer MC (1995) Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet 9(2):202–209

    CAS  PubMed  Google Scholar 

  • Poss KD, Tonegawa S (1997) Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci USA 94(20):10919–10924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poss KD, Thomas MJ, Ebralidze AK, O’Dell TJ, Tonegawa S (1995) Hippocampal long-term potentiation is normal in heme oxygenase-2 mutant mice. Neuron 15(4):867–873

    CAS  PubMed  Google Scholar 

  • Pryor WA, Godber SS (1991) Noninvasive measures of oxidative stress status in humans. Free Radic Biol Med 10(3–4):177–184

    CAS  PubMed  Google Scholar 

  • Raijmakers MT, Dechend R, Poston L (2004) Oxidative stress and preeclampsia: rationale for antioxidant clinical trials. Hypertension 44(4):374–380

    CAS  PubMed  Google Scholar 

  • Rando OJ (2012) Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr Opin Genet Dev 22(2):148–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RH Jr, Scott RW, Snider WD (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13(1):43–47

    CAS  PubMed  Google Scholar 

  • Redman CW (1991) Current topic: pre-eclampsia and the placenta. Placenta 12(4):301–308

    CAS  PubMed  Google Scholar 

  • Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308(5728):1592–1594

    CAS  PubMed  Google Scholar 

  • Richter JD (2007) CPEB: a life in translation. Trends Biochem Sci 32(6):279–285

    CAS  PubMed  Google Scholar 

  • Rogers MS, Wang W, Mongelli M, Pang CP, Duley JA, Chang AM (1997) Lipid peroxidation in cord blood at birth: a marker of fetal hypoxia during labour. Gynecol Obstet Invest 44(4):229–233

    CAS  PubMed  Google Scholar 

  • Rogers MS, Wang CC, Lau TK, Xiao X, Zhou XG, Fok TF, Chu KO, Pang CP (2005) Relationship between isoprostane concentrations, metabolic acidosis, and morbid neonatal outcome. Clin Chem 51(7):1271–1274

    CAS  PubMed  Google Scholar 

  • Ryan HE, Lo J, Johnson RS (1998) HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 17(11):3005–3015

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sadler TW, Hunter ES 3rd (1987) Hypoglycemia: how little is too much for the embryo? Am J Obstet Gynecol 157(1):190–193

    CAS  PubMed  Google Scholar 

  • Sanchez-Fernandez EM, Tarhonskaya H, Al-Qahtani K, Hopkinson RJ, McCullagh JS, Schofield CJ, Flashman E (2013) Investigations on the oxygen dependence of a 2-oxoglutarate histone demethylase. Biochem J 449(2):491–496

    CAS  PubMed  Google Scholar 

  • Schneider M, Forster H, Boersma A, Seiler A, Wehnes H, Sinowatz F, Neumuller C, Deutsch MJ, Walch A, Hrabe de Angelis M, Wurst W, Ursini F, Roveri A, Maleszewski M, Maiorino M, Conrad M (2009) Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J 23(9):3233–3242

    CAS  PubMed  Google Scholar 

  • Schorpp-Kistner M, Wang ZQ, Angel P, Wagner EF (1999) JunB is essential for mammalian placentation. EMBO J 18(4):934–948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schreiber M, Wang ZQ, Jochum W, Fetka I, Elliott C, Wagner EF (2000) Placental vascularisation requires the AP-1 component fra1. Development 127(22):4937–4948

    CAS  PubMed  Google Scholar 

  • Shen AL, O’Leary KA, Kasper CB (2002) Association of multiple developmental defects and embryonic lethality with loss of microsomal NADPH-cytochrome P450 oxidoreductase. J Biol Chem 277(8):6536–6541

    CAS  PubMed  Google Scholar 

  • Shi ZZ, Osei-Frimpong J, Kala G, Kala SV, Barrios RJ, Habib GM, Lukin DJ, Danney CM, Matzuk MM, Lieberman MW (2000) Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc Natl Acad Sci USA 97(10):5101–5106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith SR, Ghosh MC, Ollivierre-Wilson H, Hang Tong W, Rouault TA (2006) Complete loss of iron regulatory proteins 1 and 2 prevents viability of murine zygotes beyond the blastocyst stage of embryonic development. Blood Cells Mol Dis 36(2):283–287

    CAS  PubMed  Google Scholar 

  • Soszynski M, Bartosz G (1997) Penetration of erythrocyte membrane by peroxynitrite: participation of the anion exchange protein. Biochem Mol Biol Int 43(2):319–325

    CAS  PubMed  Google Scholar 

  • Spiteller G (2005) The relation of lipid peroxidation processes with atherogenesis: a new theory on atherogenesis. Mol Nutr Food Res 49(11):999–1013

    CAS  PubMed  Google Scholar 

  • Srikantan S, Gorospe M (2012) HuR function in disease. Front Biosci 17:189–205

    CAS  Google Scholar 

  • Su D, Novoselov SV, Sun QA, Moustafa ME, Zhou Y, Oko R, Hatfield DL, Gladyshev VN (2005) Mammalian selenoprotein thioredoxin-glutathione reductase. Roles in disulfide bond formation and sperm maturation. J Biol Chem 280(28):26491–26498

    CAS  PubMed  Google Scholar 

  • Tay J, Richter JD (2001) Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev Cell 1(2):201–213

    CAS  PubMed  Google Scholar 

  • Tell G, Damante G, Caldwell D, Kelley MR (2005) The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid Redox Signal 7(3–4):367–384

    CAS  PubMed  Google Scholar 

  • Tell G, Quadrifoglio F, Tiribelli C, Kelley MR (2009) The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal 11(3):601–620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas M, Jain S, Kumar GP, Laloraya M (1997) A programmed oxyradical burst causes hatching of mouse blastocysts. J Cell Sci 110(Pt 14):1597–1602

    CAS  PubMed  Google Scholar 

  • Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ (1996) Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil 106(2):299–306

    CAS  PubMed  Google Scholar 

  • Ufer C, Wang CC (2011) The roles of glutathione peroxidases during embryo development. Front Mol Neurosci 4:12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ufer C, Wang CC, Fahling M, Schiebel H, Thiele BJ, Billett EE, Kuhn H, Borchert A (2008) Translational regulation of glutathione peroxidase 4 expression through guanine-rich sequence-binding factor 1 is essential for embryonic brain development. Genes Dev 22(13):1838–1850

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ufer C, Wang CC, Borchert A, Heydeck D, Kuhn H (2010) Redox control in mammalian embryo development. Antioxid Redox Signal 13(6):833–875

    CAS  PubMed  Google Scholar 

  • Van Blerkom J (2011) Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 11(5):797–813

    PubMed  Google Scholar 

  • van der Brug MP, Blackinton J, Chandran J, Hao LY, Lal A, Mazan-Mamczarz K, Martindale J, Xie C, Ahmad R, Thomas KJ, Beilina A, Gibbs JR, Ding J, Myers AJ, Zhan M, Cai H, Bonini NM, Gorospe M, Cookson MR (2008) RNA binding activity of the recessive parkinsonism protein DJ-1 supports involvement in multiple cellular pathways. Proc Natl Acad Sci USA 105(29):10244–10249

    PubMed Central  PubMed  Google Scholar 

  • Volpe IJ (ed) (1995) Neurology of the newborn. WB Saunders, Philadelphia

    Google Scholar 

  • Vurusaner B, Poli G, Basaga H (2012) Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med 52(1):7–18

    CAS  PubMed  Google Scholar 

  • Walczak R, Hubert N, Carbon P, Krol A (1997) Solution structure of SECIS, the mRNA element required for eukaryotic selenocysteine insertion–interaction studies with the SECIS-binding protein SBP. Biomed Environ Sci 10(2–3):177–181

    CAS  PubMed  Google Scholar 

  • Wang W, Chan JY (2006) Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function. J Biol Chem 281(28):19676–19687

    CAS  PubMed  Google Scholar 

  • Wang ZQ, Ovitt C, Grigoriadis AE, Mohle-Steinlein U, Ruther U, Wagner EF (1992) Bone and haematopoietic defects in mice lacking c-fos. Nature 360(6406):741–745

    CAS  PubMed  Google Scholar 

  • Wang W, Pang CC, Rogers MS, Chang AM (1996) Lipid peroxidation in cord blood at birth. Am J Obstet Gynecol 174(1 Pt 1):62–65

    CAS  PubMed  Google Scholar 

  • Wang Y, Feinstein SI, Manevich Y, Ho YS, Fisher AB (2006) Peroxiredoxin 6 gene-targeted mice show increased lung injury with paraquat-induced oxidative stress. Antioxid Redox Signal 8(1–2):229–237

    PubMed  Google Scholar 

  • Wang J, Scully K, Zhu X, Cai L, Zhang J, Prefontaine GG, Krones A, Ohgi KA, Zhu P, Garcia-Bassets I, Liu F, Taylor H, Lozach J, Jayes FL, Korach KS, Glass CK, Fu XD, Rosenfeld MG (2007) Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446(7138):882–887

    CAS  PubMed  Google Scholar 

  • Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G, Gaudet F, Li E, Chen T (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41(1):125–129

    CAS  PubMed  Google Scholar 

  • Wang CC, Borchert A, Ugun-Klusek A, Tang LY, Lui WT, Chu CY, Billett E, Kuhn H, Ufer C (2011) Monoamine oxidase a expression is vital for embryonic brain development by modulating developmental apoptosis. J Biol Chem 286(32):28322–28330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang CC, Billett E, Borchert A, Kuhn H, Ufer C (2013) Monoamine oxidases in development. Cell Mol Life Sci 70(4):599–630

    CAS  PubMed  Google Scholar 

  • Weinberg F, Chandel NS (2009) Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci 66(23):3663–3673

    CAS  PubMed  Google Scholar 

  • Wells PG, Winn LM (1996) Biochemical toxicology of chemical teratogenesis. Crit Rev Biochem Mol Biol 31(1):1–40

    CAS  PubMed  Google Scholar 

  • Wells PG, Bhuller Y, Chen CS, Jeng W, Kasapinovic S, Kennedy JC, Kim PM, Laposa RR, McCallum GP, Nicol CJ, Parman T, Wiley MJ, Wong AW (2005) Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicol Appl Pharmacol 207(2 Suppl):354–366

    PubMed  Google Scholar 

  • Wilkinson DG, Bhatt S, Ryseck RP, Bravo R (1989) Tissue-specific expression of c-jun and junB during organogenesis in the mouse. Development 106(3):465–471

    CAS  PubMed  Google Scholar 

  • Xanthoudakis S, Miao G, Wang F, Pan YC, Curran T (1992) Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J 11(9):3323–3335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xanthoudakis S, Smeyne RJ, Wallace JD, Curran T (1996) The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc Natl Acad Sci USA 93(17):8919–8923

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yant LJ, Ran Q, Rao L, Van Remmen H, Shibatani T, Belter JG, Motta L, Richardson A, Prolla TA (2003) The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 34(4):496–502

    CAS  PubMed  Google Scholar 

  • Yoon D, Pastore YD, Divoky V, Liu E, Mlodnicka AE, Rainey K, Ponka P, Semenza GL, Schumacher A, Prchal JT (2006) Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development. J Biol Chem 281(35):25703–25711

    CAS  PubMed  Google Scholar 

  • Zhong H, Voll RE, Ghosh S (1998) Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1(5):661–671

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Ufer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ufer, C., Kuehn, H., Yin, T.L., Wang, C.C. (2014). Free Radicals and Embryo Development. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_34

Download citation

Publish with us

Policies and ethics