Skip to main content

Oxidative Damage and Macular Degeneration

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

This chapter summarizes the current evidence of oxidative stress in the pathogenesis of age-related macular degeneration (AMD) and its translation into clinical medicine. AMD is a degenerative disease of the retina, leading to loss of central vision. Indeed it is the foremost cause of blindness in the developed world. Although AMD is a complex multifactorial disease, oxidative stress is likely to be a key instigator in its pathogenesis. An accumulation of reactive oxygen species over one’s lifetime and a gradual decline in the antioxidant capacity may contribute to macular damage. Evidence for this includes studies that demonstrate the presence of lower systemic antioxidant levels in association with AMD, although systemic levels of reactive oxygen species are not correlated. There is also some evidence that sequence variations in antioxidant genes may be associated with AMD, especially in animal models. Progression of AMD can be reduced with oral antioxidant supplementation, and further compounds with antioxidant properties are being investigated both in vitro and in vivo. In future, genetic manipulation may provide a more robust mechanism for conferring antioxidant protection to a susceptible individual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Age-Related Eye Disease Study Research Group (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. [Erratum appears in arch ophthalmol. 2008 Sep; 126(9):1251]. Arch Ophthalmol 119:1417–1436

    PubMed Central  Google Scholar 

  • Andrews NC (1999) Disorders of iron metabolism. N Engl J Med 341:1986–1995

    CAS  PubMed  Google Scholar 

  • Arner ESJ, Holmgren A (2006) The thioredoxin system in cancer. Semin Cancer Biol 16:420–426

    CAS  PubMed  Google Scholar 

  • Ates O, Azizi S, Alp HH, Kiziltunc A, Beydemir S, Cinici E, Kocer I, Baykal O (2009) Decreased serum paraoxonase 1 activity and increased serum homocysteine and malondialdehyde levels in age-related macular degeneration. Tohoku J Exp Med 217:17–22

    CAS  PubMed  Google Scholar 

  • Axer-Siegel R, Bourla D, Ehrlich R, Dotan G, Benjamini Y, Gavendo S, Weinberger D, Sela BA (2004) Association of neovascular age-related macular degeneration and hyperhomocysteinemia. Am J Ophthalmol 137:84–89

    PubMed  Google Scholar 

  • Ballinger SW, Van HB, Jin GF, Conklin CA, Godley BF (1999) Hydrogen peroxide causes significant mitochondrial DNA damage in human RPE cells. Exp Eye Res 68:765–772

    CAS  PubMed  Google Scholar 

  • Barreau E, Brossas JY, Courtois Y, Treton JA (1996) Accumulation of mitochondrial DNA deletions in human retina during aging. Invest Ophthalmol Vis Sci 37:384–391

    CAS  PubMed  Google Scholar 

  • Baskol G, Karakucuk S, Oner AO, Baskol M, Kocer D, Mirza E, Saraymen R, Ustdal M (2006) Serum paraoxonase 1 activity and lipid peroxidation levels in patients with age-related macular degeneration. Ophthalmologica 220:12–16

    CAS  PubMed  Google Scholar 

  • Behndig A, Svensson B, Marklund SL, Karlsson K (1998) Superoxide dismutase isoenzymes in the human eye. Invest Ophthalmol Vis Sci 39:471–475

    CAS  PubMed  Google Scholar 

  • Berndt C, Lillig CH, Holmgren A (2007) Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol 292:H1227–H1236

    CAS  PubMed  Google Scholar 

  • Bertram KM, Baglole CJ, Phipps RP, Libby RT (2009) Molecular regulation of cigarette smoke induced-oxidative stress in human retinal pigment epithelial cells: implications for age-related macular degeneration. Am J Physiol Cell Physiol 297:C1200–C1210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bone RA, Landrum JT, Friedes LM, Gomez CM, Kilburn MD, Menendez E, Vidal I, Wang W (1997) Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp Eye Res 64:211–218

    CAS  PubMed  Google Scholar 

  • Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP, Schneider S (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355:1432–1444

    CAS  PubMed  Google Scholar 

  • Bruban J, Glotin AL, Dinet V, Chalour N, Sennlaub F, Jonet L, An N, Faussat AM, Mascarelli F (2009) Amyloid-beta(1–42) alters structure and function of retinal pigmented epithelial cells. Aging Cell 8:162–177

    CAS  PubMed  Google Scholar 

  • Butler H, Korbonits M (2009) Cannabinoids for clinicians: the rise and fall of the cannabinoid antagonists. Eur J Endocrinol 161:655–662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Capitani N, Lucherini OM, Sozzi E, Ferro M, Giommoni N, Finetti F, De FG, Cencini E, Raspadori D, Pelicci PG, Lauria F, Forconi F, Baldari CT (2010) Impaired expression of p66Shc, a novel regulator of B-cell survival, in chronic lymphocytic leukemia. Blood 115:3726–3736

    CAS  PubMed  Google Scholar 

  • Cardinault N, Abalain JH, Sairafi B, Coudray C, Grolier P, Rambeau M, Carre JL, Mazur A, Rock E (2005) Lycopene but not lutein nor zeaxanthin decreases in serum and lipoproteins in age-related macular degeneration patients. Clin Chim Acta 357:34–42

    CAS  PubMed  Google Scholar 

  • Centre de Recherche en Nutrition Humaine Rhone-Alpe F (2008) Superoxide dismutase (SOD) as antioxidant treatment of age related macular degeneration (ARMD). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2010 July 07]. Available from: http://clinicaltrials.gov/ct2/show/NCT00800995. NLM Identifier: NCT00800995

  • Chan CM, Huang JH, Lin HH, Chiang HS, Chen BH, Hong JY, Hung CF (2008) Protective effects of (−)-epigallocatechin gallate on UVA-induced damage in ARPE19 cells. Mol Vis 14:2528–2534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Patil S, Seal S, McGinnis JF (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1:142–150

    CAS  PubMed  Google Scholar 

  • Chen B, Caballero S, Seo S, Grant MB, Lewin AS, Chen B, Caballero S, Seo S, Grant MB, Lewin AS (2009) Delivery of antioxidant enzyme genes to protect against ischemia/reperfusion-induced injury to retinal microvasculature. Invest Ophthalmol Vis Sci 50:5587–5595

    PubMed Central  PubMed  Google Scholar 

  • Chong EW, Wong TY, Kreis AJ, Simpson JA, Guymer RH (2007) Dietary antioxidants and primary prevention of age related macular degeneration: systematic review and meta-analysis. BMJ 335:755–758

    PubMed Central  PubMed  Google Scholar 

  • Choudhary S, Xiao T, Srivastava S, Zhang W, Chan LL, Vergara LA, van Kuijk FJ, Ansari NH (2005) Toxicity and detoxification of lipid-derived aldehydes in cultured retinal pigmented epithelial cells. Toxicol Appl Pharmacol 204:122–134

    CAS  PubMed  Google Scholar 

  • Chowers I, Wong R, Dentchev T, Farkas RH, Iacovelli J, Gunatilaka TL, Medeiros NE, Presley JB, Campochiaro PA, Curcio CA, Dunaief JL, Zack DJ (2006) The iron carrier transferrin is upregulated in retinas from patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 47:2135–2140

    PubMed  Google Scholar 

  • Chucair AJ, Rotstein NP, SanGiovanni JP, During A, Chew EY, Politi LE (2007) Lutein and zeaxanthin protect photoreceptors from apoptosis induced by oxidative stress: relation with docosahexaenoic acid. Invest Ophthalmol Vis Sci 48:5168–5177

    PubMed  Google Scholar 

  • Cohen SM, Olin KL, Feuer WJ, Hjelmeland L, Keen CL, Morse LS (1994) Low glutathione reductase and peroxidase activity in age-related macular degeneration. Br J Ophthalmol 78:791–794

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coral K, Raman R, Rathi S, Rajesh M, Sulochana KN, Angayarkanni N, Paul PG, Ramakrishnan S (2006) Plasma homocysteine and total thiol content in patients with exudative age-related macular degeneration. Eye (Lond) 20:203–207

    CAS  Google Scholar 

  • Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG, Hollyfield JG (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99:14682–14687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crichton RR, Charloteaux-Wauters M (1987) Iron transport and storage. Eur J Biochem 164:485–506

    CAS  PubMed  Google Scholar 

  • Cruickshanks KJ, Klein R, Klein BE (1993) Sunlight and age-related macular degeneration. The Beaver dam eye study. Arch Ophthalmol 111:514–518

    CAS  PubMed  Google Scholar 

  • Darzins P, Mitchell P, Heller RF (1997) Sun exposure and age-related macular degeneration. An Australian case–control study. Ophthalmology 104:770–776

    CAS  PubMed  Google Scholar 

  • de Jong PT (2006) Age-related macular degeneration. N Engl J Med 355:1474–1485

    PubMed  Google Scholar 

  • de Jong PT, Chakravarthy U, Rahu M, Seland J, Soubrane G, Topouzis F, Vingerling JR, Vioque J, Young I, Fletcher AE (2011) Associations between aspirin use and aging macula disorder the European eye study. Ophthalmology 119(1):112–118

    PubMed  Google Scholar 

  • De La Paz MA, Zhang J, Fridovich I (1996) Red blood cell antioxidant enzymes in age-related macular degeneration. Br J Ophthalmol 80:445–450

    Google Scholar 

  • Decanini A, Nordgaard CL, Feng X, Ferrington DA, Olsen TW (2007) Changes in select redox proteins of the retinal pigment epithelium in age-related macular degeneration. Am J Ophthalmol 143:607–615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delcourt C, Cristol JP, Leger CL, Descomps B, Papoz L (1999) Associations of antioxidant enzymes with cataract and age-related macular degeneration. The POLA study. Pathologies Oculaires Liees a L’age. Ophthalmology 106:215–222

    CAS  PubMed  Google Scholar 

  • Dong A, Shen J, Krause M, Hackett SF, Campochiaro PA (2007) Increased expression of glial cell line-derived neurotrophic factor protects against oxidative damage-induced retinal degeneration. J Neurochem 103:1041–1052

    CAS  PubMed  Google Scholar 

  • Dong A, Xie B, Shen J, Yoshida T, Yokoi K, Hackett SF, Campochiaro PA (2009) Oxidative stress promotes ocular neovascularization. J Cell Physiol 219:544–552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunaief JL, Richa C, Franks EP, Schultze RL, Aleman TS, Schenck JF, Zimmerman EA, Brooks DG (2005) Macular degeneration in a patient with aceruloplasminemia, a disease associated with retinal iron overload. Ophthalmology 112:1062–1065

    PubMed  Google Scholar 

  • Dutta J, Fan Y, Gupta N, Fan G, Gelinas C (2006) Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene 25:6800–6816

    CAS  PubMed  Google Scholar 

  • Ebrahem Q, Renganathan K, Sears J, Vasanji A, Gu X, Lu L, Salomon RG, Crabb JW, Anand-Apte B (2006) Carboxyethylpyrrole oxidative protein modifications stimulate neovascularization: implications for age-related macular degeneration. Proc Natl Acad Sci USA 103:13480–13484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards AO, Ritter R III, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424

    CAS  PubMed  Google Scholar 

  • Ennis S, Jomary C, Mullins R, Cree A, Chen X, Macleod A, Jones S, Collins A, Stone E, Lotery A (2008) Association between the SERPING1 gene and age-related macular degeneration: a two-stage case–control study. Lancet 372:1828–1834

    CAS  PubMed  Google Scholar 

  • Esfandiary H, Chakravarthy U, Patterson C, Young I, Hughes AE (2005) Association study of detoxification genes in age related macular degeneration. Br J Ophthalmol 89:470–474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ethen CM, Reilly C, Feng X, Olsen TW, Ferrington DA (2007) Age-related macular degeneration and retinal protein modification by 4-hydroxy-2-nonenal. Invest Ophthalmol Vis Sci 48:3469–3479

    PubMed  Google Scholar 

  • Evereklioglu C, Er H, Doganay S, Cekmen M, Turkoz Y, Otlu B, Ozerol E (2003) Nitric oxide and lipid peroxidation are increased and associated with decreased antioxidant enzyme activities in patients with age-related macular degeneration. Doc Ophthalmol 106:129–136

    PubMed  Google Scholar 

  • Eye Disease Case–control Study Group (1993) Antioxidant status and neovascular age-related macular degeneration. Arch Ophthalmol 111:104–109

    Google Scholar 

  • Fagerness JA, Maller JB, Neale BM, Reynolds RC, Daly MJ, Seddon JM (2009) Variation near complement factor I is associated with risk of advanced AMD. Eur J Hum Genet 17:100–104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fawcett RJ, Osborne NN (2007) Flupirtine attenuates sodium nitroprusside-induced damage to retinal photoreceptors, in situ. Brain Res Bull 73:278–288

    CAS  PubMed  Google Scholar 

  • Feher J, Kovacs I, Artico M, Cavallotti C, Papale A, Balacco GC (2006) Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 27:983–993

    CAS  PubMed  Google Scholar 

  • Feigl B, Stewart I, Brown B (2007) Experimental hypoxia in human eyes: implications for ischaemic disease. Clin Neurophysiol 118:887–895

    PubMed  Google Scholar 

  • Fletcher AE, Bentham GC, Agnew M, Young IS, Augood C, Chakravarthy U, de Jong PT, Rahu M, Seland J, Soubrane G, Tomazzoli L, Topouzis F, Vingerling JR, Vioque J (2008) Sunlight exposure, antioxidants, and age-related macular degeneration. Arch Ophthalmol 126:1396–1403

    PubMed  Google Scholar 

  • Fliesler SJ, Anderson RE (1983) Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 22:79–131

    CAS  PubMed  Google Scholar 

  • Frank RN, Amin RH, Puklin JE (1999) Antioxidant enzymes in the macular retinal pigment epithelium of eyes with neovascular age-related macular degeneration. Am J Ophthalmol 127:694–709

    CAS  PubMed  Google Scholar 

  • Friedman DS, O’Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT, Nemesure B, Mitchell P, Kempen J (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122:564–572

    PubMed  Google Scholar 

  • Fritsche LG, Loenhardt T, Janssen A, Fisher SA, Rivera A, Keilhauer CN, Weber BH (2008) Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat Genet 40:892–896

    CAS  PubMed  Google Scholar 

  • Fuchshofer R, Yu AL, Teng HH, Strauss R, Kampik A, Welge-Lussen U (2009) Hypoxia/reoxygenation induces CTGF and PAI-1 in cultured human retinal pigment epithelium cells. Exp Eye Res 88:889–899

    CAS  PubMed  Google Scholar 

  • Gao X, Talalay P (2004) Induction of phase 2 genes by sulforaphane protects retinal pigment epithelial cells against photooxidative damage. Proc Natl Acad Sci USA 101:10446–10451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gawad AE, Schlichting L, Strauss O, Zeitz O (2009) Antiapoptotic properties of erythropoietin: novel strategies for protection of retinal pigment epithelial cells. Eye (Lond) 23:2245–2250

    CAS  Google Scholar 

  • Glotin AL, Debacq-Chainiaux F, Brossas JY, Faussat AM, Treton J, Zubielewicz A, Toussaint O, Mascarelli F (2008) Prematurely senescent ARPE-19 cells display features of age-related macular degeneration. Free Radic Biol Med 44:1348–1361

    CAS  PubMed  Google Scholar 

  • Godley BF, Jin GF, Guo YS, Hurst JS, Godley BF, Jin GF, Guo YS, Hurst JS (2002) Bcl-2 overexpression increases survival in human retinal pigment epithelial cells exposed to H(2)O(2). Exp Eye Res 74:663–669

    CAS  PubMed  Google Scholar 

  • Godley BF, Shamsi FA, Liang FQ, Jarrett SG, Davies S, Boulton M (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280:21061–21066

    CAS  PubMed  Google Scholar 

  • Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, Cramer K, Neel J, Bergeron J, Barile GR, Smith RT, Hageman GS, Dean M, Allikmets R, Chang S, Yannuzzi LA, Merriam JC, Barbazetto I, Lerner LE, Russell S, Hoballah J, Hageman J, Stockman H (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38:458–462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gotoh N, Yamada R, Matsuda F, Yoshimura N, Iida T (2008) Manganese superoxide dismutase gene (SOD2) polymorphism and exudative age-related macular degeneration in the Japanese population. Am J Ophthalmol 146:146–147

    CAS  PubMed  Google Scholar 

  • Gottsch JD, Pou S, Bynoe LA, Rosen GM (1990) Hematogenous photosensitization. A mechanism for the development of age-related macular degeneration. Invest Ophthalmol Vis Sci 31:1674–1682

    CAS  PubMed  Google Scholar 

  • Gu X, Meer SG, Miyagi M, Rayborn ME, Hollyfield JG, Crabb JW, Salomon RG (2003a) Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration. J Biol Chem 278:42027–42035

    CAS  PubMed  Google Scholar 

  • Gu X, Sun M, Gugiu B, Hazen S, Crabb JW, Salomon RG (2003b) Oxidatively truncated docosahexaenoate phospholipids: total synthesis, generation, and peptide adduction chemistry. J Org Chem 68:3749–3761

    CAS  PubMed  Google Scholar 

  • Gu J, Pauer GJ, Yue X, Narendra U, Sturgill GM, Bena J, Gu X, Peachey NS, Salomon RG, Hagstrom SA, Crabb JW, Clinical Genomic and Proteomic AMD Study Group (2009) Assessing susceptibility to age-related macular degeneration with proteomic and genomic biomarkers. Mol Cell Proteomics 8:1338–1349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hahn P, Milam AH, Dunaief JL (2003) Maculas affected by age-related macular degeneration contain increased chelatable iron in the retinal pigment epithelium and Bruch’s membrane. Arch Ophthalmol 121:1099–1105

    PubMed  Google Scholar 

  • Hahn P, Qian Y, Dentchev T, Chen L, Beard J, Harris ZL, Dunaief JL (2004) Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. Proc Natl Acad Sci USA 101:13850–13855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hahn P, Ying GS, Beard J, Dunaief JL (2006) Iron levels in human retina: sex difference and increase with age. Neuroreport 17:1803–1806

    CAS  PubMed  Google Scholar 

  • Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, Postel EA, Pericak-Vance MA (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421

    CAS  PubMed  Google Scholar 

  • Hashizume K, Hirasawa M, Imamura Y, Noda S, Shimizu T, Shinoda K, Kurihara T, Noda K, Ozawa Y, Ishida S, Miyake Y, Shirasawa T, Tsubota K (2008) Retinal dysfunction and progressive retinal cell death in SOD1-deficient mice. Am J Pathol 172:1325–1331

    PubMed Central  PubMed  Google Scholar 

  • Heuberger RA, Fisher AI, Jacques PF, Klein R, Klein BE, Palta M, Mares-Perlman JA (2002) Relation of blood homocysteine and its nutritional determinants to age-related maculopathy in the third national health and nutrition examination survey. Am J Clin Nutr 76:897–902

    CAS  PubMed  Google Scholar 

  • Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L, Ufret RL, Salomon RG, Perez VL (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14:194–198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hughes AE, Orr N, Esfandiary H, Diaz-Torres M, Goodship T, Chakravarthy U (2006) A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration. Nat Genet 38:1173–1177

    CAS  PubMed  Google Scholar 

  • Ikeda T, Obayashi H, Hasegawa G, Nakamura N, Yoshikawa T, Imamura Y, Koizumi K, Kinoshita S (2001) Paraoxonase gene polymorphisms and plasma oxidized low-density lipoprotein level as possible risk factors for exudative age-related macular degeneration. Am J Ophthalmol 132:191–195

    CAS  PubMed  Google Scholar 

  • Imamura Y, Noda S, Hashizume K, Shinoda K, Yamaguchi M, Uchiyama S, Shimizu T, Mizushima Y, Shirasawa T, Tsubota K (2006) Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci USA 103:11282–11287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jarrett SG, Boulton ME (2005) Antioxidant up-regulation and increased nuclear DNA protection play key roles in adaptation to oxidative stress in epithelial cells. Free Radic Biol Med 38:1382–1391

    CAS  PubMed  Google Scholar 

  • Javadzadeh A, Ghorbanihaghjo A, Rashtchizadeh N, Rafeey M, Rahimi-Ardabili B (2007) Enhanced susceptibility of low-density lipoprotein to oxidation in wet type age-related macular degeneration in male patients. Saudi Med J 28:221–224

    PubMed  Google Scholar 

  • Jia L, Liu Z, Sun L, Miller SS, Ames BN, Cotman CW, Liu J (2007) Acrolein, a toxicant in cigarette smoke, causes oxidative damage and mitochondrial dysfunction in RPE cells: protection by (R)-alpha-lipoic acid. Invest Ophthalmol Vis Sci 48:339–348

    PubMed Central  PubMed  Google Scholar 

  • Jiang S, Moriarty-Craige SE, Orr M, Cai J, Sternberg P Jr, Jones DP (2005) Oxidant-induced apoptosis in human retinal pigment epithelial cells: dependence on extracellular redox state. Invest Ophthalmol Vis Sci 46:1054–1061

    PubMed  Google Scholar 

  • Johnson F, Giulivi C (2005) Superoxide dismutases and their impact upon human health. Mol Aspects Med 26:340–352

    CAS  PubMed  Google Scholar 

  • Jonas JB, Neumaier M (2007) Erythropoietin levels in aqueous humour in eyes with exudative age-related macular degeneration and diabetic retinopathy. Clin Experiment Ophthalmol 35:186–187

    PubMed  Google Scholar 

  • Jones MM, Manwaring N, Wang JJ, Rochtchina E, Mitchell P, Sue CM (2007) Mitochondrial DNA haplogroups and age-related maculopathy. Arch Ophthalmol 125:1235–1240

    PubMed  Google Scholar 

  • Kalariya NM, Wills NK, Ramana KV, Srivastava SK, van Kuijk FJ (2009) Cadmium-induced apoptotic death of human retinal pigment epithelial cells is mediated by MAPK pathway. Exp Eye Res 89:494–502

    CAS  PubMed  Google Scholar 

  • Kamburoglu G, Gumus K, Kadayifcilar S, Eldem B (2006) Plasma homocysteine, vitamin B12 and folate levels in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 244:565–569

    CAS  PubMed  Google Scholar 

  • Kanda A, Chen W, Othman M, Branham KE, Brooks M, Khanna R, He S, Lyons R, Abecasis GR, Swaroop A (2007) A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci USA 104:16227–16232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karunadharma PP, Nordgaard CL, Olsen TW, Ferrington DA (2010) Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration. Invest Ophthalmol Vis Sci 51:5470–5479

    PubMed Central  PubMed  Google Scholar 

  • Kasahara E, Lin LR, Ho YS, Reddy VN (2005) SOD2 protects against oxidation-induced apoptosis in mouse retinal pigment epithelium: implications for age-related macular degeneration. Invest Ophthalmol Vis Sci 46:3426–3434

    PubMed Central  PubMed  Google Scholar 

  • Katavetin P, Tungsanga K, Eiam-Ong S, Nangaku M (2007) Antioxidative effects of erythropoietin. Kidney Int Suppl 72:S10–S15

    Google Scholar 

  • Kenney MC, Chwa M, Atilano SR, Pavlis JM, Falatoonzadeh P, Ramirez C, Malik D, Hsu T, Woo G, Soe K, Nesburn AB, Boyer DS, Kuppermann BD, Jazwinski SM, Miceli MV, Wallace DC, Udar N (2013) Mitochondrial DNA variants mediate energy production and expression levels for CFH, C3 and EFEMP1 genes: implications for age-related macular degeneration. PLoS One 8:e54339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kernt M, Walch A, Neubauer AS, Hirneiss C, Haritoglou C, Ulbig MW, Kampik A (2011) Filtering blue light reduces light-induced oxidative stress, senescence, and accumulation of extracellular matrix proteins in human retinal pigment epithelium cells. Clin Experiment Ophthalmol 40(1):e87–e97

    PubMed  Google Scholar 

  • Khachik F, Bernstein PS, Garland DL (1997) Identification of lutein and zeaxanthin oxidation products in human and monkey retinas. Invest Ophthalmol Vis Sci 38:1802–1811

    CAS  PubMed  Google Scholar 

  • Khan JC, Thurlby DA, Shahid H, Clayton DG, Yates JR, Bradley M, Moore AT, Bird AC (2006) Smoking and age related macular degeneration: the number of pack years of cigarette smoking is a major determinant of risk for both geographic atrophy and choroidal neovascularisation. Br J Ophthalmol 90:75–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khandhadia S, Lotery A (2010) Oxidation and age-related macular degeneration: insights from molecular biology. Expert Rev Mol Med 12:e34

    PubMed  Google Scholar 

  • Khandhadia S, Cipriani V, Yates JR, Lotery AJ (2011) Age-related macular degeneration and the complement system. Immunobiology 217:127–146

    PubMed  Google Scholar 

  • Kimura K, Isashiki Y, Sonoda S, Kakiuchi-Matsumoto T, Ohba N (2000) Genetic association of manganese superoxide dismutase with exudative age-related macular degeneration. Am J Ophthalmol 130:769–773

    CAS  PubMed  Google Scholar 

  • King RE, Kent KD, Bomser JA (2005) Resveratrol reduces oxidation and proliferation of human retinal pigment epithelial cells via extracellular signal-regulated kinase inhibition. Chem Biol Interact 151:143–149

    CAS  PubMed  Google Scholar 

  • Klein R, Klein BE, Linton KL, DeMets DL (1993) The beaver dam eye study: the relation of age-related maculopathy to smoking. Am J Epidemiol 137:190–200

    CAS  PubMed  Google Scholar 

  • Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein EA, Thompson IM Jr, Tangen CM, Crowley JJ, Lucia MS, Goodman PJ, Minasian LM, Ford LG, Parnes HL, Gaziano JM, Karp DD, Lieber MM, Walther PJ, Klotz L, Parsons JK, Chin JL, Darke AK, Lippman SM, Goodman GE, Meyskens FL Jr, Baker LH (2011) Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). JAMA 306:1549–1556

    CAS  PubMed  Google Scholar 

  • Kondo N, Bessho H, Honda S, Negi A (2009) SOD2 gene polymorphisms in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Mol Vis 15:1819–1826

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kook D, Wolf AH, Yu AL, Neubauer AS, Priglinger SG, Kampik A, Welge-Lussen UC (2008) The protective effect of quercetin against oxidative stress in the human RPE in vitro. Invest Ophthalmol Vis Sci 49:1712–1720

    PubMed  Google Scholar 

  • Koppenol WH (2001) The Haber-Weiss cycle–70 years later. Redox Rep 6:229–234

    CAS  PubMed  Google Scholar 

  • Kutty RK, Kutty G, Wiggert B, Chader GJ, Darrow RM, Organisciak DT (1995) Induction of heme oxygenase 1 in the retina by intense visible light: suppression by the antioxidant dimethylthiourea. Proc Natl Acad Sci USA 92:1177–1181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lakshminarayana R, Aruna G, Sangeetha RK, Bhaskar N, Divakar S, Baskaran V (2008) Possible degradation/biotransformation of lutein in vitro and in vivo: isolation and structural elucidation of lutein metabolites by HPLC and LC-MS (atmospheric pressure chemical ionization). Free Radic Biol Med 45:982–993

    CAS  PubMed  Google Scholar 

  • Li Q, Dinculescu A, Shan Z, Miller R, Pang J, Lewin AS, Raizada MK, Hauswirth WW (2008) Downregulation of p22phox in retinal pigment epithelial cells inhibits choroidal neovascularization in mice. Mol Ther 16:1688–1694

    CAS  PubMed  Google Scholar 

  • Liang FQ, Godley BF (2003) Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76:397–403

    CAS  PubMed  Google Scholar 

  • Liang FQ, Green L, Wang C, Alssadi R, Godley BF (2004) Melatonin protects human retinal pigment epithelial (RPE) cells against oxidative stress. Exp Eye Res 78:1069–1075

    CAS  PubMed  Google Scholar 

  • Lieu PT, Heiskala M, Peterson PA, Yang Y (2001) The roles of iron in health and disease. Mol Aspects Med 22:1–87

    CAS  PubMed  Google Scholar 

  • Liles MR, Newsome DA, Oliver PD (1991) Antioxidant enzymes in the aging human retinal pigment epithelium. Arch Ophthalmol 109:1285–1288

    CAS  PubMed  Google Scholar 

  • Lin H, Xu H, Liang FQ, Liang H, Gupta P, Havey AN, Boulton ME, Godley BF (2011) Mitochondrial DNA damage and repair in RPE associated with aging and age-related macular degeneration. Invest Ophthalmol Vis Sci 52:3521–3529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu XP, Goldring CE, Copple IM, Wang HY, Wei W, Kitteringham NR, Park BK (2007) Extract of Ginkgo biloba induces phase 2 genes through Keap1-Nrf2-ARE signaling pathway. Life Sci 80:1586–1591

    CAS  PubMed  Google Scholar 

  • Lu Q, Straiker A, Lu Q, Maguire G (2000) Expression of CB2 cannabinoid receptor mRNA in adult rat retina. Vis Neurosci 17:91–95

    CAS  PubMed  Google Scholar 

  • Lu L, Oveson BC, Jo YJ, Lauer TW, Usui S, Komeima K, Xie B, Campochiaro PA (2009) Increased expression of glutathione peroxidase 4 strongly protects retina from oxidative damage. Antioxid Redox Signal 11:715–724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lukinova N, Iacovelli J, Dentchev T, Wolkow N, Hunter A, Amado D, Ying GS, Sparrow JR, Dunaief JL (2009) Iron chelation protects the retinal pigment epithelial cell line ARPE-19 against cell death triggered by diverse stimuli. Invest Ophthalmol Vis Sci 50:1440–1447

    PubMed Central  PubMed  Google Scholar 

  • Mandal MN, Patlolla JM, Zheng L, Agbaga MP, Tran JT, Wicker L, Kasus-Jacobi A, Elliott MH, Rao CV, Anderson RE (2009) Curcumin protects retinal cells from light-and oxidant stress-induced cell death. Free Radic Biol Med 46:672–679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mares-Perlman JA, Brady WE, Klein R, Klein BE, Bowen P, Stacewicz-Sapuntzakis M, Palta M (1995) Serum antioxidants and age-related macular degeneration in a population-based case–control study. Arch Ophthalmol 113:1518–1523

    CAS  PubMed  Google Scholar 

  • Melo P, Zanon-Moreno V, Alves CJ, Magalhaes A, Tavares MA, Pinazo-Duran MD, Moradas-Ferreira P (2010) Oxidative stress response in the adult rat retina and plasma after repeated administration of methamphetamine. Neurochem Int 56:431–436

    CAS  PubMed  Google Scholar 

  • Miceli MV, Liles MR, Newsome DA (1994) Evaluation of oxidative processes in human pigment epithelial cells associated with retinal outer segment phagocytosis. Exp Cell Res 214:242–249

    CAS  PubMed  Google Scholar 

  • Michikawa T, Ishida S, Nishiwaki Y, Kikuchi Y, Tsuboi T, Hosoda K, Ishigami A, Iwasawa S, Nakano M, Takebayashi T (2009) Serum antioxidants and age-related macular degeneration among older Japanese. Asia Pac J Clin Nutr 18:1–7

    CAS  PubMed  Google Scholar 

  • Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313

    CAS  PubMed  Google Scholar 

  • Mueller EE, Schaier E, Brunner SM, Eder W, Mayr JA, Egger SF, Nischler C, Oberkofler H, Reitsamer HA, Patsch W, Sperl W, Kofler B (2012) Mitochondrial haplogroups and control region polymorphisms in age-related macular degeneration: a case–control study. PLoS One 7:e30874

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakajima Y, Shimazawa M, Otsubo K, Ishibashi T, Hara H (2009) Zeaxanthin, a retinal carotenoid, protects retinal cells against oxidative stress. Curr Eye Res 34:311–318

    CAS  PubMed  Google Scholar 

  • National Eye Institute (2005) Effects of antioxidants on human macular pigments [cited 2002 Feb 27]. Available from: http://clinicaltrials.gov/show/NCT00004451 NLM Identifier: NCT00004451.

  • National Eye Institute (2009) Age-related eye disease study 2 (AREDS2). In: ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2010 March 20]. Available from: http://clinicaltrials.gov/ct2/show/NCT00345176. NLM Identifier: NCT00345176

  • National Eye Institute (2011) The AREDS formulation and age-related macular degeneration [cited 2013 March 01]. Available from: http://www.nei.nih.gov/amd/summary.asp

  • Newsome DA, Swartz M, Leone NC, Hewitt AT, Wolford F, Miller ED (1986) Macular degeneration and elevated serum ceruloplasmin. Invest Ophthalmol Vis Sci 27:1675–1680

    CAS  PubMed  Google Scholar 

  • Ng KP, Gugiu B, Renganathan K, Davies MW, Gu X, Crabb JS, Kim SR, Rozanowska MB, Bonilha VL, Rayborn ME, Salomon RG, Sparrow JR, Boulton ME, Hollyfield JG, Crabb JW (2008) Retinal pigment epithelium lipofuscin proteomics. Mol Cell Proteomics 7:1397–1405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nilsson SE, Sundelin SP, Wihlmark U, Brunk UT (2003) Aging of cultured retinal pigment epithelial cells: oxidative reactions, lipofuscin formation and blue light damage. Doc Ophthalmol 106:13–16

    PubMed  Google Scholar 

  • Nordgaard CL, Karunadharma PP, Feng X, Olsen TW, Ferrington DA (2008) Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 49:2848–2855

    PubMed  Google Scholar 

  • Nowak M, Swietochowska E, Wielkoszynski T, Marek B, Kos-Kudla B, Szapska B, Kajdaniuk D, Glogowska-Szelag J, Sieminska L, Ostrowska Z, Koziol H, Klimek J (2005) Homocysteine, vitamin B12, and folic acid in age-related macular degeneration. Eur J Ophthalmol 15:764–767

    CAS  PubMed  Google Scholar 

  • Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, Hammar S (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334:1150–1155

    CAS  PubMed  Google Scholar 

  • Online Mendelian Inheritance in Man (2010) McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD). World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    CAS  PubMed  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Packer L (1993) Antioxidant action of carotenoids in vitro and in vivo and protection against oxidation of human low-density lipoproteins. Ann N Y Acad Sci 691:48–60

    CAS  PubMed  Google Scholar 

  • Pemp B, Polska E, Karl K, Lasta M, Minichmayr A, Garhofer G, Wolzt M, Schmetterer L (2010) Effects of antioxidants (AREDS medication) on ocular blood flow and endothelial function in an endotoxin-induced model of oxidative stress in humans. Invest Ophthalmol Vis Sci 51:2–6

    PubMed  Google Scholar 

  • Peters S, Lamah T, Kokkinou D, Bartz-Schmidt KU, Schraermeyer U (2006) Melanin protects choroidal blood vessels against light toxicity. Z Naturforsch C 61:427–433

    CAS  PubMed  Google Scholar 

  • Popovici F, Dorostkar M, Boehm S (2008) The non-opioid analgesic flupirtine is a modulator of GABAA receptors involved in pain sensation. BMC Pharmacol 8:A14

    PubMed Central  Google Scholar 

  • Prashar S, Pandav SS, Gupta A, Nath R (1993) Antioxidant enzymes in RBCs as a biological index of age related macular degeneration. Acta Ophthalmol 71:214–218

    CAS  Google Scholar 

  • Rapp LM, Maple SS, Choi JH (2000) Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Invest Ophthalmol Vis Sci 41:1200–1209

    CAS  PubMed  Google Scholar 

  • Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82:844–851

    PubMed Central  PubMed  Google Scholar 

  • Rex TS, Tsui I, Hahn P, Maguire AM, Duan D, Bennett J, Dunaief JL (2004) Adenovirus-mediated delivery of catalase to retinal pigment epithelial cells protects neighboring photoreceptors from photo-oxidative stress. Hum Gene Ther 15:960–967

    CAS  PubMed  Google Scholar 

  • Rex TS, Wong Y, Kodali K, Merry S (2009) Neuroprotection of photoreceptors by direct delivery of erythropoietin to the retina of the retinal degeneration slow mouse. Exp Eye Res 89:735–740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rivera A, Fisher SA, Fritsche LG, Keilhauer CN, Lichtner P, Meitinger T, Weber BH (2005) Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet 14:3227–3236

    CAS  PubMed  Google Scholar 

  • Rochtchina E, Wang JJ, Flood VM, Mitchell P (2007) Elevated serum homocysteine, low serum vitamin B12, folate, and age-related macular degeneration: the blue mountains eye study. Am J Ophthalmol 143:344–346

    CAS  PubMed  Google Scholar 

  • Roehlecke C, Schaller A, Knels L, Funk RH (2009) The influence of sublethal blue light exposure on human RPE cells. Mol Vis 15:1929–1938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rohrer B, Guo Y, Kunchithapautham K, Gilkeson GS (2007) Eliminating complement factor D reduces photoreceptor susceptibility to light-induced damage. Invest Ophthalmol Vis Sci 48:5282–5289

    PubMed  Google Scholar 

  • Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355:1419–1431

    CAS  PubMed  Google Scholar 

  • Rozanowska M, Sarna T (2005) Light-induced damage to the retina: role of rhodopsin chromophore revisited. Photochem Photobiol 81:1305–1330

    CAS  PubMed  Google Scholar 

  • Rozanowski B, Cuenco J, Davies S, Shamsi FA, Zadlo A, Dayhaw-Barker P, Rozanowska M, Sarna T, Boulton ME (2008) The phototoxicity of aged human retinal melanosomes. Photochem Photobiol 84:650–657

    CAS  PubMed  Google Scholar 

  • SanGiovanni JP, Arking DE, Iyengar SK, Elashoff M, Clemons TE, Reed GF, Henning AK, Sivakumaran TA, Xu X, DeWan A, Agron E, Rochtchina E, Sue CM, Wang JJ, Mitchell P, Hoh J, Francis PJ, Klein ML, Chew EY, Chakravarti A (2009) Mitochondrial DNA variants of respiratory complex I that uniquely characterize haplogroup T2 are associated with increased risk of age-related macular degeneration. PLoS One 4:e5508

    PubMed Central  PubMed  Google Scholar 

  • SanGiovanni JP, Clemons TE, Smith LE, Sapieha PM, Agron E, Chew EY (2011) Genomic systems approach to study of mitochondria-related genes in age-related macular degeneration. ARVO Meet Abstr 52:3306

    Google Scholar 

  • Sanvicens N, Gomez-Vicente V, Masip I, Messeguer A, Cotter TG (2004) Oxidative stress-induced apoptosis in retinal photoreceptor cells is mediated by calpains and caspases and blocked by the oxygen radical scavenger CR-6. J Biol Chem 279:39268–39278

    CAS  PubMed  Google Scholar 

  • Sari A, Adiguzel U, Canacankatan N, Yilmaz N, Dinc E, Oz O (2009) Effects of intravitreal bevacizumab in repeated doses: an experimental study. Retina 29:1346–1355

    PubMed  Google Scholar 

  • Schmid-Kubista KE, Glittenberg CG, Cezanne M, Holzmann K, Neumaier-Ammerer B, Binder S (2009) Daytime levels of melatonin in patients with age-related macular degeneration. Acta Ophthalmol 87:89–93

    CAS  PubMed  Google Scholar 

  • Schmidt S, Hauser MA, Scott WK, Postel EA, Agarwal A, Gallins P, Wong F, Chen YS, Spencer K, Schnetz-Boutaud N, Haines JL, Pericak-Vance MA (2006) Cigarette smoking strongly modifies the association of LOC387715 and age-related macular degeneration. Am J Hum Genet 78:852–864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schutt F, Bergmann M, Holz FG, Kopitz J (2003) Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium. Invest Ophthalmol Vis Sci 44:3663–3668

    PubMed  Google Scholar 

  • Seddon JM, Gensler G, Klein ML, Milton RC (2006) Evaluation of plasma homocysteine and risk of age-related macular degeneration. Am J Ophthalmol 141:201–203

    CAS  PubMed  Google Scholar 

  • Seo SJ, Krebs MP, Mao H, Jones K, Conners M, Lewin AS (2012) Pathological consequences of long-term mitochondrial oxidative stress in the mouse retinal pigment epithelium. Exp Eye Res 101:60–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shah SS, Tsang SH, Mahajan VB (2009) Erythropoietin receptor expression in the human diabetic retina. BMC Res Notes 2:234

    PubMed Central  PubMed  Google Scholar 

  • Shamsi FA, Boulton M (2001) Inhibition of RPE lysosomal and antioxidant activity by the age pigment lipofuscin. Invest Ophthalmol Vis Sci 42:3041–3046

    CAS  PubMed  Google Scholar 

  • Simonelli F, Zarrilli F, Mazzeo S, Verde V, Romano N, Savoia M, Testa F, Vitale DF, Rinaldi M, Sacchetti L (2002) Serum oxidative and antioxidant parameters in a group of Italian patients with age-related maculopathy. Clin Chim Acta 320:111–115

    CAS  PubMed  Google Scholar 

  • Smith W, Mitchell P, Leeder SR (1996) Smoking and age-related maculopathy. The Blue Mountains Eye Study. Arch Ophthalmol 114:1518–1523

    CAS  PubMed  Google Scholar 

  • Song D, Song Y, Hadziahmetovic M, Zhong Y, Dunaief JL (2012) Systemic administration of the iron chelator deferiprone protects against light-induced photoreceptor degeneration in the mouse retina. Free Radic Biol Med 53:64–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41:1981–1989

    CAS  PubMed  Google Scholar 

  • Sparrow JR, Vollmer-Snarr HR, Zhou J, Jang YP, Jockusch S, Itagaki Y, Nakanishi K (2003) A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J Biol Chem 278:18207–18213

    CAS  PubMed  Google Scholar 

  • Sreekumar PG, Kannan R, Yaung J, Spee CK, Ryan SJ, Hinton DR (2005) Protection from oxidative stress by methionine sulfoxide reductases in RPE cells. [Erratum appears in Biochem Biophys Res Commun. 2005 Dec 2; 337(4):1353]. Biochem Biophys Res Commun 334:245–253

    CAS  PubMed  Google Scholar 

  • Suzuki M, Kamei M, Itabe H, Yoneda K, Bando H, Kume N, Tano Y (2007) Oxidized phospholipids in the macula increase with age and in eyes with age-related macular degeneration. Mol Vis 13:772–778

    CAS  PubMed Central  PubMed  Google Scholar 

  • Talalay P (2000) Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors 12:5–11

    CAS  PubMed  Google Scholar 

  • Talalay P, Dinkova-Kostova AT, Holtzclaw WD (2003) Importance of phase 2 gene regulation in protection against electrophile and reactive oxygen toxicity and carcinogenesis. Adv Enzyme Regul 43:121–134

    CAS  PubMed  Google Scholar 

  • Tanito M, Masutani H, Nakamura H, Ohira A, Yodoi J (2002) Cytoprotective effect of thioredoxin against retinal photic injury in mice. Invest Ophthalmol Vis Sci 43:1162–1167

    PubMed  Google Scholar 

  • Taylor HR, Munoz B, West S, Bressler NM, Bressler SB, Rosenthal FS (1990) Visible light and risk of age-related macular degeneration. Trans Am Ophthalmol Soc 88:163–173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thurman JM, Renner B, Kunchithapautham K, Ferreira VP, Pangburn MK, Ablonczy Z, Tomlinson S, Holers VM, Rohrer B (2009) Oxidative stress renders retinal pigment epithelial cells susceptible to complement-mediated injury. J Biol Chem 284:16939–16947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomany SC, Cruickshanks KJ, Klein R, Klein BE, Knudtson MD (2004) Sunlight and the 10-year incidence of age-related maculopathy: the Beaver dam eye study. Arch Ophthalmol 122:750–757

    PubMed  Google Scholar 

  • Totan Y, Cekic O, Borazan M, Uz E, Sogut S, Akyol O (2001) Plasma malondialdehyde and nitric oxide levels in age related macular degeneration. Br J Ophthalmol 85:1426–1428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Totan Y, Yagci R, Bardak Y, Ozyurt H, Kendir F, Yilmaz G, Sahin S, Sahin TU (2009) Oxidative macromolecular damage in age-related macular degeneration. Curr Eye Res 34:1089–1093

    CAS  PubMed  Google Scholar 

  • Tsai DC, Charng MJ, Lee FL, Hsu WM, Chen SJ (2006) Different plasma levels of vascular endothelial growth factor and nitric oxide between patients with choroidal and retinal neovascularization. Ophthalmologica 220:246–251

    CAS  PubMed  Google Scholar 

  • Vafai SB, Mootha VK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491:374–383

    CAS  PubMed  Google Scholar 

  • van Kuijk FJ, Buck P (1992) Fatty acid composition of the human macula and peripheral retina. Invest Ophthalmol Vis Sci 33:3493–3496

    PubMed  Google Scholar 

  • Vine AK, Stader J, Branham K, Musch DC, Swaroop A (2005) Biomarkers of cardiovascular disease as risk factors for age-related macular degeneration. Ophthalmology 112:2076–2080

    PubMed  Google Scholar 

  • Vingerling JR, Hofman A, Grobbee DE, de Jong PT (1996) Age-related macular degeneration and smoking. The Rotterdam study. Arch Ophthalmol 114:1193–1196

    CAS  PubMed  Google Scholar 

  • Wang Z, Dillon J, Gaillard ER (2006) Antioxidant properties of melanin in retinal pigment epithelial cells. Photochem Photobiol 82:474–479

    CAS  PubMed  Google Scholar 

  • Wang AL, Lukas TJ, Yuan M, Neufeld AH (2008a) Increased mitochondrial DNA damage and down-regulation of DNA repair enzymes in aged rodent retinal pigment epithelium and choroid. Mol Vis 14:644–651

    PubMed Central  PubMed  Google Scholar 

  • Wang XW, Tan BZ, Sun M, Ho B, Ding JL (2008b) Thioredoxin-like 6 protects retinal cell line from photooxidative damage by upregulating NF-kappaB activity. Free Radic Biol Med 45:336–344

    CAS  PubMed  Google Scholar 

  • Wang AL, Lukas TJ, Yuan M, Du N, Handa JT, Neufeld AH (2009a) Changes in retinal pigment epithelium related to cigarette smoke: possible relevance to smoking as a risk factor for age-related macular degeneration. PLoS One 4:e5304

    PubMed Central  PubMed  Google Scholar 

  • Wang G, Spencer KL, Court BL, Olson LM, Scott WK, Haines JL, Pericak-Vance MA (2009b) Localization of age-related macular degeneration-associated ARMS2 in cytosol, not mitochondria. Invest Ophthalmol Vis Sci 50:3084–3090

    PubMed Central  PubMed  Google Scholar 

  • Wang ZY, Shen LJ, Tu L, Hu DN, Liu GY, Zhou ZL, Lin Y, Chen LH, Qu J (2009c) Erythropoietin protects retinal pigment epithelial cells from oxidative damage. Free Radic Biol Med 46:1032–1041

    CAS  PubMed  Google Scholar 

  • Wassell J, Davies S, Bardsley W, Boulton M (1999) The photoreactivity of the retinal age pigment lipofuscin. J Biol Chem 274:23828–23832

    CAS  PubMed  Google Scholar 

  • Wei Y, Wang X, Wang L (2009) Presence and regulation of cannabinoid receptors in human retinal pigment epithelial cells. Mol Vis 15:1243–1251

    CAS  PubMed Central  PubMed  Google Scholar 

  • West SK, Rosenthal FS, Bressler NM, Bressler SB, Munoz B, Fine SL, Taylor HR (1989) Exposure to sunlight and other risk factors for age-related macular degeneration. Arch Ophthalmol 107:875–879

    CAS  PubMed  Google Scholar 

  • Wielgus AR, Chignell CF, Miller DS, Van HB, Meyer J, Hu DN, Roberts JE (2007) Phototoxicity in human retinal pigment epithelial cells promoted by hypericin, a component of St. John’s wort. Photochem Photobiol 83:706–713

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wing GL, Blanchard GC, Weiter JJ (1978) The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 17:601–607

    CAS  PubMed  Google Scholar 

  • Wolkow N, Song Y, Wu TD, Qian J, Guerquin-Kern JL, Dunaief JL (2011) Aceruloplasminemia: retinal histopathologic manifestations and iron-mediated melanosome degradation. Arch Ophthalmol 129:1466–1474

    PubMed  Google Scholar 

  • Wong WT, Kam W, Cunningham D, Harrington M, Hammel K, Meyerle CB, Cukras C, Chew EY, Sadda SR, Ferris FL (2010) Treatment of geographic atrophy by the topical administration of OT-551: results of a phase II clinical trial. Invest Ophthalmol Vis Sci 51(12):6131–6139

    PubMed Central  PubMed  Google Scholar 

  • Wu Z, Rogers B, Kachi S, Hackett SF, Sick A, Campochiaro PA (2006) Reduction of p66Shc suppresses oxidative damage in retinal pigmented epithelial cells and retina. J Cell Physiol 209:996–1005

    CAS  PubMed  Google Scholar 

  • Wu KH, Tan AG, Rochtchina E, Favaloro EJ, Williams A, Mitchell P, Wang JJ (2007) Circulating inflammatory markers and hemostatic factors in age-related maculopathy: a population-based case–control study. Invest Ophthalmol Vis Sci 48:1983–1988

    PubMed  Google Scholar 

  • Wysokinski D, Danisz K, Blasiak J, Dorecka M, Romaniuk D, Szaflik J, Szaflik JP (2013) An association of transferrin gene polymorphism and serum transferrin levels with age-related macular degeneration. Exp Eye Res 106:14–23

    CAS  PubMed  Google Scholar 

  • Yamaguchi K, Takahashi S, Kawanami T, Kato T, Sasaki H (1998) Retinal degeneration in hereditary ceruloplasmin deficiency. Ophthalmologica 212:11–14

    CAS  PubMed  Google Scholar 

  • Yamashita H, Horie K, Yamamoto T, Nagano T, Hirano T (1992) Light-induced retinal damage in mice. Hydrogen peroxide production and superoxide dismutase activity in retina. Retina 12:59–66

    CAS  PubMed  Google Scholar 

  • Yang D, Elner SG, Lin LR, Reddy VN, Petty HR, Elner VM (2009) Association of superoxide anions with retinal pigment epithelial cell apoptosis induced by mononuclear phagocytes. Invest Ophthalmol Vis Sci 50:4998–5005

    PubMed Central  PubMed  Google Scholar 

  • Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H, Clayton DG, Hayward C, Morgan J, Wright AF, Armbrecht AM, Dhillon B, Deary IJ, Redmond E, Bird AC, Moore AT (2007) Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med 357:553–561

    CAS  PubMed  Google Scholar 

  • Yildirim O, Ates NA, Tamer L, Muslu N, Ercan B, Atik U, Kanik A (2004) Changes in antioxidant enzyme activity and malondialdehyde level in patients with age-related macular degeneration. Ophthalmologica 218:202–206

    CAS  PubMed  Google Scholar 

  • Yodoi Y, Sasahara M, Kameda T, Yoshimura N, Otani A (2007) Circulating hematopoietic stem cells in patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 48:5464–5472

    PubMed  Google Scholar 

  • Young AJ, Lowe GM (2001) Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385:20–27

    CAS  PubMed  Google Scholar 

  • Yu AL, Fuchshofer R, Kook D, Kampik A, Bloemendal H, Welge-Lussen U (2009) Subtoxic oxidative stress induces senescence in retinal pigment epithelial cells via TGF-beta release. Invest Ophthalmol Vis Sci 50:926–935

    PubMed  Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    CAS  PubMed  Google Scholar 

  • Zhang B, Osborne NN (2006) Oxidative-induced retinal degeneration is attenuated by epigallocatechin gallate. Brain Res 1124:176–187

    CAS  PubMed  Google Scholar 

  • Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89:2399–2403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou J, Kim SR, Westlund BS, Sparrow JR (2009) Complement activation by bisretinoid constituents of RPE lipofuscin. Invest Ophthalmol Vis Sci 50:1392–1399

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the TFC Frost Charitable Trust, UK (registered charity number: 256590); the Gift of Sight charity, Southampton, UK (www.giftofsight.org.uk); the British Council for the Prevention of Blindness; Brian Mercer Charitable Trust; and Macular Society. The authors would like to thank the reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Lotery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Khandhadia, S., Cree, A., Lotery, A. (2014). Oxidative Damage and Macular Degeneration. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_171

Download citation

Publish with us

Policies and ethics