Skip to main content

Reactive Oxygen Species and Diabetes-Associated Atherosclerosis – Evidence from Experimental Models and Targeted Antioxidant Therapy

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

The primary cause for mortality and morbidity in patients with diabetes is atherosclerosis, an inflammatory vascular disease. Over the past decade, it has become increasingly clear that in a diabetic milieu, oxidative stress plays a vital role in the pathogenesis of diabetes-associated atherosclerosis. In this chapter, we focus on mechanisms whereby oxidative stress contributes to the accelerated progression of atherosclerosis in diabetes. In particular, our emphasis is on experimental evidence from animal models, in which specific components leading to oxidative stress are targeted via genetic manipulation. We also explore the use of targeted pharmacological compounds to lower oxidative stress levels. Furthermore, we discuss novel antioxidant compounds that are proving to be beneficial in preclinical trials. Thus, by gaining an understanding of the molecular mechanisms by which diabetes-induced oxidative stress accelerates the progression of atherosclerosis, it is hoped that this will lead to the generation of new therapies that are more efficacious in reducing the burden of diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aljofan M, Ding H (2010) High glucose increases expression of cyclooxygenase-2, increases oxidative stress and decreases the generation of nitric oxide in mouse microvessel endothelial cells. J Cell Physiol 222:669–675

    CAS  PubMed  Google Scholar 

  • Ambasta RK, Schreiber JG, Janiszewski M, Busse R, Brandes RP (2006) Noxa1 is a central component of the smooth muscle NADPH oxidase in mice. Free Radic Biol Med 41:193–201

    Article  CAS  PubMed  Google Scholar 

  • Anrather J, Racchumi G, Iadecola C (2006) NF-kappaB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem 281:5657–5667

    Article  CAS  PubMed  Google Scholar 

  • Arnal JF, Tack I, Besombes JP, Pipy B, Negre-Salvayre A (1996) Nitric oxide and superoxide anion production during endothelial cell proliferation. Am J Physiol 271:C1521–C1526

    CAS  PubMed  Google Scholar 

  • Barry-Lane PA, Patterson C, van der Merwe M, Hu Z, Holland SM, Yeh ET, Runge MS (2001) p47phox is required for atherosclerotic lesion progression in ApoE(−/−) mice. J Clin Invest 108:1513–1522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basta G, Schmidt AM, De Caterina R (2004) Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 63:582–592

    Article  CAS  PubMed  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437

    CAS  PubMed  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson SH, Gulluyan LM, Dusting GJ, Drummond GR (2003) Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology. Clin Exp Pharmacol Physiol 30:849–854

    Article  CAS  PubMed  Google Scholar 

  • Bhabak KP, Mugesh G (2009) Amide-based glutathione peroxidase mimics: effect of secondary and tertiary amide substituents on antioxidant activity. Chem Asian J 4:974–983

    Article  CAS  PubMed  Google Scholar 

  • Blankenberg S, Rupprecht HJ, Bickel C, Torzewski M, Hafner G, Tiret L, Smieja M, Cambien F, Meyer J, Lackner KJ (2003) Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 349:1605–1613

    Article  CAS  PubMed  Google Scholar 

  • Booth G, Stalker TJ, Lefer AM, Scalia R (2002) Mechanisms of amelioration of glucose-induced endothelial dysfunction following inhibition of protein kinase C in vivo. Diabetes 51:1556–1564

    Article  CAS  PubMed  Google Scholar 

  • Bouloumie A, Bauersachs J, Linz W, Scholkens BA, Wiemer G, Fleming I, Busse R (1997) Endothelial dysfunction coincides with an enhanced nitric oxide synthase expression and superoxide anion production. Hypertension 30:934–941

    Article  CAS  PubMed  Google Scholar 

  • Brodsky SV, Gealekman O, Chen J, Zhang F, Togashi N, Crabtree M, Gross SS, Nasjletti A, Goligorsky MS (2004) Prevention and reversal of premature endothelial cell senescence and vasculopathy in obesity-induced diabetes by ebselen. Circ Res 94:377–384

    Article  CAS  PubMed  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  • Bu DX, Rai V, Shen X, Rosario R, Lu Y, D’Agati V, Yan SF, Friedman RA, Nuglozeh E, Schmidt AM (2010) Activation of the ROCK1 branch of the transforming growth factor-beta pathway contributes to RAGE-dependent acceleration of atherosclerosis in diabetic ApoE-null mice. Circ Res 106:1040–1051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bucciarelli LG, Wendt T, Qu W, Lu Y, Lalla E, Rong LL, Goova MT, Moser B, Kislinger T, Lee DC, Kashyap Y, Stern DM, Schmidt AM (2002) RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation 106:2827–2835

    Article  CAS  PubMed  Google Scholar 

  • Chan EC, Datla SR, Dilley R, Hickey H, Drummond GR, Dusting GJ (2007) Adventitial application of the NADPH oxidase inhibitor apocynin in vivo reduces neointima formation and endothelial dysfunction in rabbits. Cardiovasc Res 75:710–718

    Article  CAS  PubMed  Google Scholar 

  • Chew P, Yuen DY, Koh P, Stefanovic N, Febbraio MA, Kola I, Cooper ME, de Haan JB (2009) Site-specific antiatherogenic effect of the antioxidant ebselen in the diabetic apolipoprotein E-deficient mouse. Arterioscler Thromb Vasc Biol 29:823–830

    Article  CAS  PubMed  Google Scholar 

  • Chew P, Yuen DY, Stefanovic N, Pete J, Coughlan MT, Jandeleit-Dahm KA, Thomas MC, Rosenfeldt F, Cooper ME, de Haan JB (2010) Antiatherosclerotic and renoprotective effects of ebselen in the diabetic apolipoprotein E/GPx1-double knockout mouse. Diabetes 59:3198–3207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen G, Riahi Y, Alpert E, Gruzman A, Sasson S (2007) The roles of hyperglycaemia and oxidative stress in the rise and collapse of the natural protective mechanism against vascular endothelial cell dysfunction in diabetes. Arch Physiol Biochem 113:259–267

    Article  CAS  PubMed  Google Scholar 

  • Cosentino F, Hishikawa K, Katusic ZS, Luscher TF (1997) High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 96:25–28

    Article  CAS  PubMed  Google Scholar 

  • Davignon J, Ganz P (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109:III27–III32

    Article  PubMed  Google Scholar 

  • de Haan JB (2011) Nrf2 activators as attractive therapeutics for diabetic nephropathy. Diabetes 60:2683–2684

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Haan JB, Cooper ME (2011) Targeted antioxidant therapies in hyperglycemia-mediated endothelial dysfunction. Front Biosci (Schol Ed) 3:709–729

    Article  Google Scholar 

  • de Haan JB, Bladier C, Griffiths P, Kelner M, O’Shea RD, Cheung NS, Bronson RT, Silvestro MJ, Wild S, Zheng SS, Beart PM, Hertzog PJ, Kola I (1998) Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem 273:22528–22536

    Article  PubMed  Google Scholar 

  • De Haan JB, Crack PJ, Flentjar N, Iannello RC, Hertzog PJ, Kola I (2003) An imbalance in antioxidant defense affects cellular function: the pathophysiological consequences of a reduction in antioxidant defense in the glutathione peroxidase-1 (Gpx1) knockout mouse. Redox Rep 8:69–79

    Article  PubMed  CAS  Google Scholar 

  • Ding H, Hashem M, Triggle C (2007) Increased oxidative stress in the streptozotocin-induced diabetic apoE-deficient mouse: changes in expression of NADPH oxidase subunits and eNOS. Eur J Pharmacol 561:121–128

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Zhang M, Wang S, Liang B, Zhao Z, Liu C, Wu M, Choi HC, Lyons TJ, Zou MH (2010) Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo. Diabetes 59:1386–1396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunstan DW, Zimmet PZ, Welborn TA, De Courten MP, Cameron AJ, Sicree RA, Dwyer T, Colagiuri S, Jolley D, Knuiman M, Atkins R, Shaw JE (2002) The rising prevalence of diabetes and impaired glucose tolerance: the Australian diabetes, obesity and lifestyle study. Diabetes Care 25:829–834

    Article  PubMed  Google Scholar 

  • El-Remessy AB, Tawfik HE, Matragoon S, Pillai B, Caldwell RB, Caldwell RW (2010) Peroxynitrite mediates diabetes-induced endothelial dysfunction: possible role of Rho kinase activation. Exp Diabetes Res 2010:247861

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Esposito LA, Kokoszka JE, Waymire KG, Cottrell B, MacGregor GR, Wallace DC (2000) Mitochondrial oxidative stress in mice lacking the glutathione peroxidase-1 gene. Free Radic Biol Med 28:754–766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esposito C, Fasoli G, Plati AR, Bellotti N, Conte MM, Cornacchia F, Foschi A, Mazzullo T, Semeraro L, Dal Canton A (2001) Long-term exposure to high glucose up-regulates VCAM-induced endothelial cell adhesiveness to PBMC. Kidney Int 59:1842–1849

    Article  CAS  PubMed  Google Scholar 

  • Esterbauer H, Wag G, Puhl H (1993) Lipid peroxidation and its role in atherosclerosis. Br Med Bull 49:566–576

    CAS  PubMed  Google Scholar 

  • Filipovska A, Kelso GF, Brown SE, Beer SM, Smith RA, Murphy MP (2005) Synthesis and characterization of a triphenylphosphonium-conjugated peroxidase mimetic. Insights into the interaction of ebselen with mitochondria. J Biol Chem 280:24113–24126

    Article  CAS  PubMed  Google Scholar 

  • Forgione MA, Weiss N, Heydrick S, Cap A, Klings ES, Bierl C, Eberhardt RT, Farber HW, Loscalzo J (2002) Cellular glutathione peroxidase deficiency and endothelial dysfunction. Am J Physiol Heart Circ Physiol 282:H1255–H1261

    CAS  PubMed  Google Scholar 

  • Fumeron F, Reis AF, Velho G (2006) Genetics of macrovascular complications in diabetes. Curr Diab Rep 6:162–168

    Article  CAS  PubMed  Google Scholar 

  • Gealekman O, Brodsky SV, Zhang F, Chander PN, Friedli C, Nasjletti A, Goligorsky MS (2004) Endothelial dysfunction as a modifier of angiogenic response in zucker diabetic fat rat: amelioration with ebselen. Kidney Int 66:2337–2347

    Article  CAS  PubMed  Google Scholar 

  • Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gray SP, Di Marco E, Okabe J, Szyndralewiez C, Heitz F, Montezano AC, de Haan JB, Koulis C, El-Osta A, Andrews KL, Chin-Dusting JP, Touyz RM, Wingler K, Cooper ME, Schmidt HH, Jandeleit-Dahm KA (2013) Nox1 plays a key role in Diabetes Accelerated Atherosclerosis. Circulation, in press (5 April, Epub)

    Google Scholar 

  • Gupte S, Labinskyy N, Gupte R, Csiszar A, Ungvari Z, Edwards JG (2010) Role of NAD(P)H oxidase in superoxide generation and endothelial dysfunction in goto-kakizaki (GK) rats as a model of nonobese NIDDM. PLoS One 5:e11800

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guzik TJ, Sadowski J, Guzik B, Jopek A, Kapelak B, Przybylowski P, Wierzbicki K, Korbut R, Harrison DG, Channon KM (2006) Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler Thromb Vasc Biol 26:333–339

    Article  CAS  PubMed  Google Scholar 

  • Hadi HA, Suwaidi JA (2007) Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 3:853–876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamanishi T, Furuta H, Kato H, Doi A, Tamai M, Shimomura H, Sakagashira S, Nishi M, Sasaki H, Sanke T, Nanjo K (2004) Functional variants in the glutathione peroxidase-1 (GPx-1) gene are associated with increased intima-media thickness of carotid arteries and risk of macrovascular diseases in Japanese type 2 diabetic patients. Diabetes 53:2455–2460

    Article  CAS  PubMed  Google Scholar 

  • Harja E, Bu DX, Hudson BI, Chang JS, Shen X, Hallam K, Kalea AZ, Lu Y, Rosario RH, Oruganti S, Nikolla Z, Belov D, Lalla E, Ramasamy R, Yan SF, Schmidt AM (2008) Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE−/− mice. J Clin Invest 118:183–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayek T, Hussein K, Aviram M, Coleman R, Keidar S, Pavoltzky E, Kaplan M (2005) Macrophage foam-cell formation in streptozotocin-induced diabetic mice: stimulatory effect of glucose. Atherosclerosis 183:25–33

    Article  CAS  PubMed  Google Scholar 

  • Heinloth A, Heermeier K, Raff U, Wanner C, Galle J (2000) Stimulation of NADPH oxidase by oxidized low-density lipoprotein induces proliferation of human vascular endothelial cells. J Am Soc Nephrol 11:1819–1825

    CAS  PubMed  Google Scholar 

  • Heumuller S, Wind S, Barbosa-Sicard E, Schmidt HH, Busse R, Schroder K, Brandes RP (2008) Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51:211–217

    Article  PubMed  CAS  Google Scholar 

  • Hort MA, Straliotto MR, Netto PM, da Rocha JB, Bem AF, Ribeiro-do-Valle RM (2011) Diphenyl diselenide effectively reduces atherosclerotic lesion in LDLr−/− mice by attenuation of oxidative stress and inflammation. J Cardiovasc Pharmacol 58:91–101

    Article  CAS  PubMed  Google Scholar 

  • Hsich E, Segal BH, Pagano PJ, Rey FE, Paigen B, Deleonardis J, Hoyt RF, Holland SM, Finkel T (2000) Vascular effects following homozygous disruption of p47(phox): an essential component of NADPH oxidase. Circulation 101:1234–1236

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Guo Y, Salvemini D, Dusting GJ (2003) Superoxide dismutase mimetic M40403 improves endothelial function in apolipoprotein(E)-deficient mice. Br J Pharmacol 139:1127–1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Judkins CP, Diep H, Broughton BR, Mast AE, Hooker EU, Miller AA, Selemidis S, Dusting GJ, Sobey CG, Drummond GR (2010) Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE−/− mice. Am J Physiol Heart Circ Physiol 298:H24–H32

    Article  CAS  PubMed  Google Scholar 

  • Khatri JJ, Johnson C, Magid R, Lessner SM, Laude KM, Dikalov SI, Harrison DG, Sung HJ, Rong Y, Galis ZS (2004) Vascular oxidant stress enhances progression and angiogenesis of experimental atheroma. Circulation 109:520–525

    Article  CAS  PubMed  Google Scholar 

  • Kirk EA, Dinauer MC, Rosen H, Chait A, Heinecke JW, LeBoeuf RC (2000) Impaired superoxide production due to a deficiency in phagocyte NADPH oxidase fails to inhibit atherosclerosis in mice. Arterioscler Thromb Vasc Biol 20:1529–1535

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Forte TM, Taniguchi S, Ishida BY, Oka K, Chan L (2000) The db/db mouse, a model for diabetic dyslipidemia: molecular characterization and effects of western diet feeding. Metabolism 49:22–31

    Article  CAS  PubMed  Google Scholar 

  • Kohler JJ, Cucoranu I, Fields E, Green E, He S, Hoying A, Russ R, Abuin A, Johnson D, Hosseini SH, Raper CM, Lewis W (2009) Transgenic mitochondrial superoxide dismutase and mitochondrially targeted catalase prevent antiretroviral-induced oxidative stress and cardiomyopathy. Lab Invest 89:782–790

    Article  CAS  PubMed  Google Scholar 

  • Lapenna D, de Gioia S, Ciofani G, Mezzetti A, Ucchino S, Calafiore AM, Napolitano AM, Di Ilio C, Cuccurullo F (1998) Glutathione-related antioxidant defenses in human atherosclerotic plaques. Circulation 97:1930–1934

    Article  CAS  PubMed  Google Scholar 

  • Lee IM, Cook NR, Gaziano JM, Gordon D, Ridker PM, Manson JE, Hennekens CH, Buring JE (2005) Vitamin E in the primary prevention of cardiovascular disease and cancer: the women’s health study: a randomized controlled trial. JAMA 294:56–65

    Article  CAS  PubMed  Google Scholar 

  • Lewis P, Stefanovic N, Pete J, Calkin AC, Giunti S, Thallas-Bonke V, Jandeleit-Dahm KA, Allen TJ, Kola I, Cooper ME, de Haan JB (2007) Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation 115:2178–2187

    Article  CAS  PubMed  Google Scholar 

  • Li D, Mehta JL (2000) Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells. Circulation 101:2889–2895

    Article  CAS  PubMed  Google Scholar 

  • Li SL, Reddy MA, Cai Q, Meng L, Yuan H, Lanting L, Natarajan R (2006) Enhanced proatherogenic responses in macrophages and vascular smooth muscle cells derived from diabetic db/db mice. Diabetes 55:2611–2619

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yang F, Yang XP, Jankowski M, Pagano PJ (2003) NAD(P)H oxidase mediates angiotensin II-induced vascular macrophage infiltration and medial hypertrophy. Arterioscler Thromb Vasc Biol 23:776–782

    Article  CAS  PubMed  Google Scholar 

  • Lockhart CJ, Hamilton PK, McVeigh KA, McVeigh GE (2008) A cardiologist view of vascular disease in diabetes. Diabetes Obes Metab 10:279–292

    Article  CAS  PubMed  Google Scholar 

  • Lubos E, Kelly NJ, Oldebeken SR, Leopold JA, Zhang YY, Loscalzo J, Handy DE (2011) Glutathione peroxidase-1 (GPx-1) deficiency augments pro-inflammatory cytokine-induced redox signaling and human endothelial cell activation. J Biol Chem 286:35407–35417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mehta JL, Rasouli N, Sinha AK, Molavi B (2006) Oxidative stress in diabetes: a mechanistic overview of its effects on atherogenesis and myocardial dysfunction. Int J Biochem Cell Biol 38:794–803

    Article  CAS  PubMed  Google Scholar 

  • Morigi M, Angioletti S, Imberti B, Donadelli R, Micheletti G, Figliuzzi M, Remuzzi A, Zoja C, Remuzzi G (1998) Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. J Clin Invest 101:1905–1915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nadar S, Blann AD, Lip GY (2004) Endothelial dysfunction: methods of assessment and application to hypertension. Curr Pharm Des 10:3591–3605

    Article  CAS  PubMed  Google Scholar 

  • Naka Y, Bucciarelli LG, Wendt T, Lee LK, Rong LL, Ramasamy R, Yan SF, Schmidt AM (2004) RAGE axis: animal models and novel insights into the vascular complications of diabetes. Arterioscler Thromb Vasc Biol 24:1342–1349

    Article  CAS  PubMed  Google Scholar 

  • Nakhjavani M, Khalilzadeh O, Khajeali L, Esteghamati A, Morteza A, Jamali A, Dadkhahipour S (2010) Serum oxidized-LDL is associated with diabetes duration independent of maintaining optimized levels of LDL-cholesterol. Lipids 45:321–327

    Article  CAS  PubMed  Google Scholar 

  • Nemoto M, Nishimura R, Sasaki T, Hiki Y, Miyashita Y, Nishioka M, Fujimoto K, Sakuma T, Ohashi T, Fukuda K, Eto Y, Tajima N (2007) Genetic association of glutathione peroxidase-1 with coronary artery calcification in type 2 diabetes: a case control study with multi-slice computed tomography. Cardiovasc Diabetol 6:23

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    Article  CAS  PubMed  Google Scholar 

  • Njajou OT, Kanaya AM, Holvoet P, Connelly S, Strotmeyer ES, Harris TB, Cummings SR, Hsueh WC (2009) Association between oxidized LDL, obesity and type 2 diabetes in a population-based cohort, the health, aging and body composition study. Diabetes Metab Res Rev 25:733–739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olukman M, Orhan CE, Celenk FG, Ulker S (2010) Apocynin restores endothelial dysfunction in streptozotocin diabetic rats through regulation of nitric oxide synthase and NADPH oxidase expressions. J Diabetes Complications 24:415–423

    Article  PubMed  Google Scholar 

  • Papaharalambus CA, Griendling KK (2007) Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med 17:48–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ Jr, Chow WS, Stern D, Schmidt AM (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation end products. Nat Med 4:1025–1031

    Article  CAS  PubMed  Google Scholar 

  • Quagliaro L, Piconi L, Assaloni R, Da Ros R, Maier A, Zuodar G, Ceriello A (2005) Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis 183:259–267

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM (2005) Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 15:16R–28R

    Article  CAS  PubMed  Google Scholar 

  • Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ (2001) Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O(2)(−) and systolic blood pressure in mice. Circ Res 89:408–414

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Kanayama M, Shibata T, Itoh K, Kobayashi A, Yamamoto M, Uchida K (2006) Ebselen, a seleno-organic antioxidant, as an electrophile. Chem Res Toxicol 19:1196–1204

    Article  CAS  PubMed  Google Scholar 

  • San Martin A, Du P, Dikalova A, Lassegue B, Aleman M, Gongora MC, Brown K, Joseph G, Harrison DG, Taylor WR, Jo H, Griendling KK (2007) Reactive oxygen species-selective regulation of aortic inflammatory gene expression in type 2 diabetes. Am J Physiol Heart Circ Physiol 292:H2073–H2082

    Article  CAS  PubMed  Google Scholar 

  • Sheikh-Ali M, Chehade JM, Mooradian AD (2011) The antioxidant paradox in diabetes mellitus. Am J Ther 18:266–278

    Article  PubMed  Google Scholar 

  • Sies H, Masumoto H (1997) Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. Adv Pharmacol 38:229–246

    Article  CAS  PubMed  Google Scholar 

  • Sies H, Sharov VS, Klotz LO, Briviba K (1997) Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J Biol Chem 272:27812–27817

    Article  CAS  PubMed  Google Scholar 

  • Singh U, Jialal I (2006) Oxidative stress and atherosclerosis. Pathophysiology 13:129–142

    Article  CAS  PubMed  Google Scholar 

  • Singh U, Jialal I (2008) Alpha-lipoic acid supplementation and diabetes. Nutr Rev 66:646–657

    Article  PubMed Central  PubMed  Google Scholar 

  • Sorescu D, Weiss D, Lassegue B, Clempus RE, Szocs K, Sorescu GP, Valppu L, Quinn MT, Lambeth JD, Vega JD, Taylor WR, Griendling KK (2002) Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 105:1429–1435

    Article  CAS  PubMed  Google Scholar 

  • Soro-Paavonen A, Watson AM, Li J, Paavonen K, Koitka A, Calkin AC, Barit D, Coughlan MT, Drew BG, Lancaster GI, Thomas M, Forbes JM, Nawroth PP, Bierhaus A, Cooper ME, Jandeleit-Dahm KA (2008) Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 57:2461–2469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stielow C, Catar RA, Muller G, Wingler K, Scheurer P, Schmidt HH, Morawietz H (2006) Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem Biophys Res Commun 344:200–205

    Article  CAS  PubMed  Google Scholar 

  • Sui H, Wang W, Wang PH, Liu LS (2005) Effect of glutathione peroxidase mimic ebselen (PZ51) on endothelium and vascular structure of stroke-prone spontaneously hypertensive rats. Blood Press 14:366–372

    Article  PubMed  CAS  Google Scholar 

  • ten Freyhaus H, Huntgeburth M, Wingler K, Schnitker J, Baumer AT, Vantler M, Bekhite MM, Wartenberg M, Sauer H, Rosenkranz S (2006) Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res 71:331–341

    Article  PubMed  CAS  Google Scholar 

  • Tiefenbacher CP, Kreuzer J (2003) Nitric oxide-mediated endothelial dysfunction–is there need to treat? Curr Vasc Pharmacol 1:123–133

    Article  CAS  PubMed  Google Scholar 

  • Torzewski M, Ochsenhirt V, Kleschyov AL, Oelze M, Daiber A, Li H, Rossmann H, Tsimikas S, Reifenberg K, Cheng F, Lehr HA, Blankenberg S, Forstermann U, Munzel T, Lackner KJ (2007) Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 27:850–857

    Article  CAS  PubMed  Google Scholar 

  • Unger BS, Patil BM (2009) Apocynin improves endothelial function and prevents the development of hypertension in fructose fed rat. Indian J Pharmacol 41:208–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Upmacis RK (2008) Atherosclerosis: a link between lipid intake and protein tyrosine nitration. Lipid Insights 2008(2):75–88

    CAS  Google Scholar 

  • Wang Z, Castresana MR, Newman WH (2001) Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochem Biophys Res Commun 285:669–674

    Article  CAS  PubMed  Google Scholar 

  • Wautier JL, Zoukourian C, Chappey O, Wautier MP, Guillausseau PJ, Cao R, Hori O, Stern D, Schmidt AM (1996) Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest 97:238–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL (2001) Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 280:E685–E694

    CAS  PubMed  Google Scholar 

  • Wei M, Gaskill SP, Haffner SM, Stern MP (1998) Effects of diabetes and level of glycemia on all-cause and cardiovascular mortality. The San Antonio heart study. Diabetes Care 21:1167–1172

    Article  CAS  PubMed  Google Scholar 

  • Wendel A, Tiegs G (1986) A novel biologically active seleno-organic compound–VI. Protection by ebselen (PZ 51) against galactosamine/endotoxin-induced hepatitis in mice. Biochem Pharmacol 35:2115–2118

    Article  CAS  PubMed  Google Scholar 

  • Wendt MC, Daiber A, Kleschyov AL, Mulsch A, Sydow K, Schulz E, Chen K, Keaney JF Jr, Lassegue B, Walter U, Griendling KK, Munzel T (2005) Differential effects of diabetes on the expression of the gp91phox homologues nox1 and nox4. Free Radic Biol Med 39:381–391

    Article  CAS  PubMed  Google Scholar 

  • Wendt T, Harja E, Bucciarelli L, Qu W, Lu Y, Rong LL, Jenkins DG, Stein G, Schmidt AM, Yan SF (2006) RAGE modulates vascular inflammation and atherosclerosis in a murine model of type 2 diabetes. Atherosclerosis 185:70–77

    Article  CAS  PubMed  Google Scholar 

  • Williams HC, Griendling KK (2007) NADPH oxidase inhibitors: new antihypertensive agents? J Cardiovasc Pharmacol 50:9–16

    Article  CAS  PubMed  Google Scholar 

  • Wind S, Beuerlein K, Armitage ME, Taye A, Kumar AH, Janowitz D, Neff C, Shah AM, Wingler K, Schmidt HH (2010) Oxidative stress and endothelial dysfunction in aortas of aged spontaneously hypertensive rats by NOX1/2 is reversed by NADPH oxidase inhibition. Hypertension 56:490–497

    Article  CAS  PubMed  Google Scholar 

  • Witting PK, Pettersson K, Letters J, Stocker R (2000) Site-specific antiatherogenic effect of probucol in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 20:E26–E33

    Article  CAS  PubMed  Google Scholar 

  • Wollin SD, Jones PJ (2003) Alpha-lipoic acid and cardiovascular disease. J Nutr 133:3327–3330

    CAS  PubMed  Google Scholar 

  • Wong CH, Abeynaike LD, Crack PJ, Hickey MJ (2011) Divergent roles of glutathione peroxidase-1 (Gpx1) in regulation of leukocyte-endothelial cell interactions in the inflamed cerebral microvasculature. Microcirculation 18:12–23

    Article  CAS  PubMed  Google Scholar 

  • Wu KK, Wu TJ, Chin J, Mitnaul LJ, Hernandez M, Cai TQ, Ren N, Waters MG, Wright SD, Cheng K (2005) Increased hypercholesterolemia and atherosclerosis in mice lacking both ApoE and leptin receptor. Atherosclerosis 181:251–259

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Yamato E, Toyoda S, Tashiro F, Ikegami H, Yodoi J, Miyazaki J (2008) Transgenic expression of antioxidant protein thioredoxin in pancreatic beta cells prevents progression of type 2 diabetes mellitus. Antioxid Redox Signal 10:43–49

    Article  CAS  PubMed  Google Scholar 

  • Yi X, Maeda N (2006) Alpha-lipoic acid prevents the increase in atherosclerosis induced by diabetes in apolipoprotein E-deficient mice fed high-fat/low-cholesterol diet. Diabetes 55(8):2238–2244

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Maulik N, Engelman RM, Ho YS, Magnenat JL, Rousou JA, Flack JE 3rd, Deaton D, Das DK (1997) Glutathione peroxidase knockout mice are susceptible to myocardial ischemia reperfusion injury. Circulation 96:II-216–II-220

    Google Scholar 

  • Yoshizumi M, Fujita Y, Izawa Y, Suzaki Y, Kyaw M, Ali N, Tsuchiya K, Kagami S, Yano S, Sone S, Tamaki T (2004) Ebselen inhibits tumor necrosis factor-alpha-induced c-Jun N-terminal kinase activation and adhesion molecule expression in endothelial cells. Exp Cell Res 292:1–10

    Article  CAS  PubMed  Google Scholar 

  • Young LH, Wackers FJ, Chyun DA, Davey JA, Barrett EJ, Taillefer R, Heller GV, Iskandrian AE, Wittlin SD, Filipchuk N, Ratner RE, Inzucchi SE (2009) Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA 301:1547–1555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou MS, Hernandez Schulman I, Pagano PJ, Jaimes EA, Raij L (2006) Reduced NAD(P)H oxidase in low renin hypertension: link among angiotensin II, atherogenesis, and blood pressure. Hypertension 47:81–86

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy B. de Haan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Sharma, A., de Haan, J.B. (2014). Reactive Oxygen Species and Diabetes-Associated Atherosclerosis – Evidence from Experimental Models and Targeted Antioxidant Therapy. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_155

Download citation

Publish with us

Policies and ethics