Skip to main content

TCA Cycle and Glyoxylate Shunt of Corynebacterium glutamicum

  • Chapter
  • First Online:
Corynebacterium glutamicum

Part of the book series: Microbiology Monographs ((MICROMONO,volume 23))

Abstract

The enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles of Corynebacterium glutamicum and in particular their regulation have been intensively studied in the past years. Nearly all TCA and glyoxylate cycle genes are subject to growth phase- or carbon source-dependent transcriptional regulation. Seven different regulators were shown to be involved in expression control of TCA and glyoxylate cycle genes, i.e., AcnR, DtxR, GlxR, RamA, RamB, RipA, and SucR. At the level of enzyme activity, the 2-oxoglutarate dehydrogenase (ODH) complex was found to be controlled by the inhibitor protein OdhI in dependency of its phosphorylation state, which is determined by the serine/threonine protein kinases PknG, PknA, PknB, and PknL and by the phospho-serine/threonine protein phosphatase Ppp. OdhI was shown to be crucial for glutamate production. This chapter summarizes new data on TCA cycle enzymes and describes the current knowledge on the regulation of this pathway and of the glyoxylate shunt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arndt A, Eikmanns BJ (2008) Regulation of carbon metabolism in Corynebacterium glutamicum. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Norfolk, pp 155–182

    Google Scholar 

  • Arndt A, Auchter M, Ishige T, Wendisch VF, Eikmanns BJ (2008) Ethanol catabolism in Corynebacterium glutamicum. J Mol Microbiol Biotechnol 15:222–233

    Article  PubMed  CAS  Google Scholar 

  • Auchter M, Cramer A, Hüser A, Rückert C, Emer D, Schwarz P, Arndt A, Lange C, Kalinowski J, Wendisch VF, Eikmanns BJ (2010) RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J Biotechnol 154:126–139

    PubMed  Google Scholar 

  • Barthe P, Roumestand C, Canova MJ, Kremer L, Hurard C, Molle V, Cohen-Gonsaud M (2009) Dynamic and structural characterization of a bacterial FHA protein reveals a new autoinhibition mechanism. Structure 17:568–578

    Article  PubMed  CAS  Google Scholar 

  • Baumgart M, Bott M (2010) Biochemical characterisation of aconitase from Corynebacterium glutamicum. J Biotechnol 154:163–170

    Google Scholar 

  • Baumgart M, Mustafi N, Bott M (2011) Deletion of the aconitase gene in Corynebacterium glutamicum causes a strong selection pressure for secondary mutations inactivating citrate synthase. J Bacteriol 193:6864–6873

    Google Scholar 

  • Becker J, Klopprogge C, Schröder H, Wittmann C (2009) Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75:7866–7869

    Article  PubMed  CAS  Google Scholar 

  • Bendt AK, Burkovski A, Schaffer S, Bott M, Farwick M, Hermann T (2003) Towards a phosphoproteome map of Corynebacterium glutamicum. Proteomics 3:1637–1646

    Article  PubMed  CAS  Google Scholar 

  • Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599

    Article  PubMed  CAS  Google Scholar 

  • Bott M (2007) Offering surprises: TCA cycle regulation in Corynebacterium glutamicum. Trends Microbiol 15:417–425

    Article  PubMed  CAS  Google Scholar 

  • Bott M (2010) Signal transduction by serine/threonine protein kinases in bacteria. In: Krämer R, Jung K (eds) Bacterial signaling. Wiley-VCH Verlag, Weinheim, pp 427–447

    Google Scholar 

  • Bott M, Niebisch A (2003) The respiratory chain of Corynebacterium glutamicum. J Biotechnol 104:129–153

    Article  PubMed  CAS  Google Scholar 

  • Brocker M, Schaffer S, Mack C, Bott M (2009) Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA. J Bacteriol 191:3869–3880

    Article  PubMed  CAS  Google Scholar 

  • Brune I, Werner H, Hüser AT, Kalinowski J, Pühler A, Tauch A (2006) The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum. BMC Genomics 7:21

    Article  PubMed  Google Scholar 

  • Bussmann M, Emer D, Hasenbein S, Degraf S, Eikmanns BJ, Bott M (2009) Transcriptional control of the succinate dehydrogenase operon sdhCAB of Corynebacterium glutamicum by the cAMP-dependent regulator GlxR and the LuxR-type regulator RamA. J Biotechnol 143:173–182

    Article  PubMed  CAS  Google Scholar 

  • Cho H-Y, Lee SG, Han SO (2010) Identification and characterization of a transcriptional regulator, SucR, that influences sucCD transcription in Corynebacterium glutamicum. Biochem Biophys Res Commun 401:300–305

    Article  PubMed  CAS  Google Scholar 

  • Claes WA, Pühler A, Kalinowski J (2002) Identification of two prpDBC gene clusters in Corynebacterium glutamicum and their involvement in propionate degradation via the 2-methylcitrate cycle. J Bacteriol 184:2728–2739

    Article  PubMed  CAS  Google Scholar 

  • Cozzone AJ, El-Mansi M (2005) Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli. J Mol Microbiol Biotechnol 9:132–146

    Article  PubMed  CAS  Google Scholar 

  • Cramer A, Gerstmeir R, Schaffer S, Bott M, Eikmanns BJ (2006) Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 188:2554–2567

    Article  PubMed  CAS  Google Scholar 

  • Delaunay S, Gourdon P, Lapujade P, Mailly E, Oriol E, Engasser JM, Lindley ND, Goergen JL (1999) An improved temperature-triggered process for glutamate production with Corynebacterium glutamicum. Enzyme Microb Technol 25:762–768

    Article  CAS  Google Scholar 

  • Deutscher J, Saier MH Jr (2005) Ser/Thr/Tyr protein phosphorylation in bacteria—for long time neglected, now well established. J Mol Microbiol Biotechnol 9:125–131

    Article  PubMed  CAS  Google Scholar 

  • Dietrich C, Nato A, Bost B, Le Maréchal P, Guyonvarch A (2009) Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum. Microbiology 155:1360–1375

    Article  PubMed  CAS  Google Scholar 

  • Ebbighausen H, Weil B, Krämer R (1991) Na+-dependent succinate uptake in Corynebacterium glutamicum. FEMS Microbiol Lett 77:61–65

    Article  CAS  Google Scholar 

  • Eikmanns BJ (2005) Central metabolism: tricarboxylic acid cycle and anaplerotic reactions. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, FL, pp 241–276

    Google Scholar 

  • Eikmanns BJ, Thum-Schmitz N, Eggeling L, Lüdtke KU, Sahm H (1994) Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828

    Article  PubMed  CAS  Google Scholar 

  • Eikmanns BJ, Rittmann D, Sahm H (1995) Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol 177:774–783

    PubMed  CAS  Google Scholar 

  • Emer D, Krug A, Eikmanns BJ, Bott M (2009) Complex expression control of the Corynebacterium glutamicum aconitase gene: Identification of RamA as a third transcriptional regulator besides AcnR and RipA. J Biotechnol 140:92–98

    Article  PubMed  CAS  Google Scholar 

  • England P, Wehenkel A, Martins S, Hoos S, Andre-Leroux G, Villarino A, Alzari PM (2009) The FHA-containing protein GarA acts as a phosphorylation-dependent molecular switch in mycobacterial signaling. FEBS Lett 583:301–307

    Article  PubMed  CAS  Google Scholar 

  • Fiuza M, Canova MJ, Zanella-Cleon I, Becchi M, Cozzone AJ, Mateos LM, Kremer L, Gil JA, Molle V (2008) From the characterization of the four serine/threonine protein kinases (PknA/B/G/L) of Corynebacterium glutamicum toward the role of PknA and PknB in cell division. J Biol Chem 283:18099–18112

    Article  PubMed  CAS  Google Scholar 

  • Frunzke J, Bott M (2008) Regulation of iron homeostasis in Corynebacterium glutamicum. In: Burkovski A (ed) Corynebacteria: genomics and molecular Biology. Caister Academic, Norfolk, pp 241–266

    Google Scholar 

  • Genda T, Watabe S, Ozaki H (2006) Purification and characterization of fumarase from Corynebacterium glutamicum. Biosci Biotechnol Biochem 70:1102–1109

    Article  PubMed  CAS  Google Scholar 

  • Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ (2003) Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol 104:99–122

    Article  PubMed  CAS  Google Scholar 

  • Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ (2004) RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 186:2798–2809

    Article  PubMed  CAS  Google Scholar 

  • Hägerhall C, Hederstedt L (1996) A structural model for the membrane-integral domain of succinate:quinone oxidoreductases. FEBS Lett 389:25–31

    Article  PubMed  Google Scholar 

  • Han SO, Inui M, Yukawa H (2008a) Effect of carbon source availability and growth phase on expression of Corynebacterium glutamicum genes involved in the tricarboxylic acid cycle and glyoxylate bypass. Microbiology 154:3073–3083

    Article  PubMed  CAS  Google Scholar 

  • Han SO, Inui M, Yukawa H (2008b) Transcription of Corynebacterium glutamicum genes involved in tricarboxylic acid cycle and glyoxylate cycle. J Mol Microbiol Biotechnol 15:264–276

    Article  PubMed  CAS  Google Scholar 

  • Hoffelder M, Raasch K, van Ooyen J, Eggeling L (2010) The E2 domain of OdhA of Corynebacterium glutamicum has succinyltransferase activity dependent on lipoyl residues of the acetyltransferase AceF. J Bacteriol 192:5203–5211

    Article  PubMed  CAS  Google Scholar 

  • Huhn S, Jolkver E, Krämer R, Marin K (2010) Identification of the membrane protein SucE and its role in succinate transport in Corynebacterium glutamicum. Appl Microbiol Biotechnol 89:327–335

    Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    Article  PubMed  CAS  Google Scholar 

  • Inui M, Suda M, Okino S, Nonaka H, Puskas LG, Vertès AA, Yukawa H (2007) Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153:2491–2504

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  PubMed  CAS  Google Scholar 

  • Kaspar S, Perozzo R, Reinelt S, Meyer M, Pfister K, Scapozza L, Bott M (1999) The periplasmic domain of the histidine autokinase CitA functions as a highly specific citrate receptor. Mol Microbiol 33:858–872

    Article  PubMed  CAS  Google Scholar 

  • Kataoka M, Hashimoto KI, Yoshida M, Nakamatsu T, Horinouchi S, Kawasaki H (2006) Gene expression of Corynebacterium glutamicum in response to the conditions inducing glutamate overproduction. Lett Appl Microbiol 42:471–476

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Takahashi-Fuke K, Shimizu E, Nakamatsu T, Nakamori S (1997) Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Biosci Biotechnol Biochem 61:1109–1112

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Kim TH, Kim Y, Lee HS (2004) Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J Bacteriol 186:3453–3460

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Fukuda H, Hirasawa T, Nagahisa K, Nagai K, Wachi M, Shimizu H (2010) Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 86:911–920

    Article  PubMed  CAS  Google Scholar 

  • Kohl TA, Baumbach J, Jungwirth B, Pühler A, Tauch A (2008) The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. J Biotechnol 135:340–350

    Article  PubMed  CAS  Google Scholar 

  • Krawczyk S, Raasch K, Schultz C, Hoffelder M, Eggeling L, Bott M (2010) The FHA domain of OdhI interacts with the carboxyterminal 2-oxoglutarate dehydrogenase domain of OdhA in Corynebacterium glutamicum. FEBS Lett 584:1463–1468

    Article  PubMed  CAS  Google Scholar 

  • Krug A, Wendisch VF, Bott M (2005) Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum. J Biol Chem 280:585–595

    PubMed  CAS  Google Scholar 

  • Kurokawa T, Sakamoto J (2005) Purification and characterization of succinate:menaquinone oxidoreductase from Corynebacterium glutamicum. Arch Microbiol 183:317–324

    Article  PubMed  CAS  Google Scholar 

  • Liang XY, Van Doren SR (2008) Mechanistic insights into phosphoprotein-binding FHA domains. Acc Chem Res 41:991–999

    Article  PubMed  CAS  Google Scholar 

  • Lobell RB, Schleif RF (1990) DNA looping and unlooping by AraC protein. Science 250:528–532

    Article  PubMed  CAS  Google Scholar 

  • Mahajan A, Yuan C, Lee H, Chen ESW, Wu PY, Tsai MD (2008) Structure and function of the phosphothreonine-specific FHA domain. Sci Signal 1(51):re12

    Article  PubMed  Google Scholar 

  • Masse E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 99:4620–4625

    Article  PubMed  CAS  Google Scholar 

  • Molenaar D, van der Rest ME, Petrovic S (1998) Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum. Eur J Biochem 254:395–403

    Article  PubMed  CAS  Google Scholar 

  • Molenaar D, van der Rest ME, Drysch A, Yücel R (2000) Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum. J Bacteriol 182:6884–6891

    Article  PubMed  CAS  Google Scholar 

  • Nakamura J, Hirano S, Ito H, Wachi M (2007) Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl Environ Microbiol 73:4491–4498

    Article  PubMed  CAS  Google Scholar 

  • Nesvera J, Patek M (2008) Plasmids and promoters in corynebacteria and their applications. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Norfolk, pp 113–154

    Google Scholar 

  • Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281:12300–12307

    Article  PubMed  CAS  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464

    Article  PubMed  CAS  Google Scholar 

  • Pallen M, Chuadhuri R, Khan A (2002) Bacterial FHA domains: neglected players in the phospho-threonine signalling game? Trends Microbiol 10:556–563

    Article  PubMed  CAS  Google Scholar 

  • Perez J, Castaneda-Garcia A, Jenke-Kodama H, Müller R, Munoz-Dorado J (2008) Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome. Proc Natl Acad Sci USA 105:15950–15955

    Article  PubMed  CAS  Google Scholar 

  • Polen T, Schluesener D, Poetsch A, Bott M, Wendisch VF (2007) Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis. FEMS Microbiol Lett 273:109–119

    Article  PubMed  CAS  Google Scholar 

  • Radmacher E, Eggeling L (2007) The three tricarboxylate synthase activities of Corynebacterium glutamicum and increase of L-lysine synthesis. Appl Microbiol Biotechnol 76:587–595

    Article  PubMed  CAS  Google Scholar 

  • Radmacher E, Stansen KC, Besra GS, Alderwick LJ, Maughan WN, Hollweg G, Sahm H, Wendisch VF, Eggeling L (2005) Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum. Microbiology 151:1359–1368

    Article  PubMed  CAS  Google Scholar 

  • Ramos JL, Martinez-Bueno M, Molina-Henares AJ, Teran W, Watanabe K, Zhang XD, Gallegos MT, Brennan R, Tobes R (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356

    Article  PubMed  CAS  Google Scholar 

  • Schaffer S, Burkovski A (2005) Proteomics. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, FL, pp 99–118

    Google Scholar 

  • Schreiner ME, Fiur D, Holatko J, Patek M, Eikmanns B (2005) E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: molecular analysis of the gene and phylogenetic aspects. J Bacteriol 187:6005–6018

    Article  PubMed  CAS  Google Scholar 

  • Schröder J, Tauch A (2010) Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 34:685–737

    PubMed  Google Scholar 

  • Schultz C, Niebisch A, Gebel L, Bott M (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76:691–700

    Article  PubMed  CAS  Google Scholar 

  • Schultz C, Niebisch A, Schwaiger A, Viets U, Metzger S, Bramkamp M, Bott M (2009) Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol Microbiol 74:724–741

    Article  PubMed  CAS  Google Scholar 

  • Schwinde JW, Hertz PF, Sahm H, Eikmanns BJ, Guyonvarch A (2001) Lipoamide dehydrogenase from Corynebacterium glutamicum: molecular and physiological analysis of the lpd gene and characterization of the enzyme. Microbiology 147:2223–2231

    PubMed  CAS  Google Scholar 

  • Shah IM, Laaberki MH, Popham DL, Dworkin J (2008) A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135:486–496

    Article  PubMed  CAS  Google Scholar 

  • Shiio I, Ozaki H (1970) Regulation of nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase from Brevibacterium flavum, a glutamate-producing bacterium. J Biochem 68:633–647

    PubMed  CAS  Google Scholar 

  • Shiio I, Ujigawatakeda K (1980) Presence and regulation of α-ketoglutarate dehydrogenase complex in a glutamate-producing bacterium, Brevibacterium flavum. Agric Biol Chem 44:1897–1904

    Article  CAS  Google Scholar 

  • Shiio I, Ozaki H, Mori M (1982) Glutamate metabolism in a gutamate-producing bacterium, Brevibacterium flavum. Agric Biol Chem 46:493–500

    Article  CAS  Google Scholar 

  • Shimizu H, Tanaka H, Nakato A, Nagahisa K, Kimura E, Shioya S (2003) Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate production by Corynebacterium glutamicum. Bioprocess Biosyst Eng 25:291–298

    PubMed  CAS  Google Scholar 

  • Shingu H, Terui G (1971) Studies on process of glutamic acid fermentation at enzyme level. 1. Changes of α-ketoglutaric acid dehydrogenase in course of culture. J Ferment Technol 49:400–405

    CAS  Google Scholar 

  • Shirai T, Nakato A, Izutani N, Nagahisa K, Shioya S, Kimura E, Kawarabayasi Y, Yamagishi A, Gojobori T, Shimizu H (2005) Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab Eng 7:59–69

    Article  PubMed  CAS  Google Scholar 

  • Stock JB, Ninfa AJ, Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490

    PubMed  CAS  Google Scholar 

  • Teramoto H, Shirai T, Inui M, Yukawa H (2008) Identification of a gene encoding a transporter essential for utilization of C4 dicarboxylates in Corynebacterium glutamicum. Appl Environ Microbiol 74:5290–5296

    Article  PubMed  CAS  Google Scholar 

  • Usuda Y, Tujimoto N, Abe C, Asakura Y, Kimura E, Kawahara Y, Kurahashi O, Matsui H (1996) Molecular cloning of the Corynebacterium glutamicum (‘Brevibacterium lactofermentum’ AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase. Microbiology 142:3347–3354

    Article  PubMed  CAS  Google Scholar 

  • Uy D, Delaunay S, Goergen JL, Engasser JM (2005) Dynamics of glutamate synthesis and excretion fluxes in batch and continuous cultures of temperature-triggered Corynebacterium glutamicum. Bioprocess Biosyst Eng 27:153–162

    Article  PubMed  CAS  Google Scholar 

  • van Ooyen J, Emer D, Bussmann M, Bott M, Eikmanns BJ, Eggeling L (2010) Citrate synthase in Corynebacterium glutamicum is encoded by two gltA transcripts which are controlled by RamA, RamB, and GlxR. J Biotechnol 154:140–148

    PubMed  Google Scholar 

  • van Ooyen J, Noack S, Bott M., Reth A, Eggeling L. (2012) Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng. DOI 10.1002/bit.24486

    Google Scholar 

  • Wendisch VF, Spies M, Reinscheid DJ, Schnicke S, Sahm H, Eikmanns BJ (1997) Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes. Arch Microbiol 168:262–269

    Article  PubMed  CAS  Google Scholar 

  • Wendisch VF, De Graaf AA, Sahm H, Eikmanns BJ (2000) Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol 182:3088–3096

    Article  PubMed  CAS  Google Scholar 

  • Wennerhold J, Bott M (2006) The DtxR regulon of Corynebacterium glutamicum. J Bacteriol 188:2907–2918

    Article  PubMed  CAS  Google Scholar 

  • Wennerhold J, Krug A, Bott M (2005) The AraC-type regulator RipA represses aconitase and other iron proteins from Corynebacterium under iron limitation and is itself repressed by DtxR. J Biol Chem 280:40500–40508

    Article  PubMed  CAS  Google Scholar 

  • Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704

    Article  PubMed  CAS  Google Scholar 

  • Yeats C, Finn RD, Bateman A (2002) The PASTA domain: a beta-lactam-binding domain. Trends Biochem Sci 27:438–440

    Article  PubMed  CAS  Google Scholar 

  • Youn JW, Jolkver E, Krämer R, Marin K, Wendisch VF (2008) Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. J Bacteriol 190:6458–6466

    Article  PubMed  CAS  Google Scholar 

  • Youn JW, Jolkver E, Krämer R, Marin K, Wendisch VF (2009) Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. J Bacteriol 191:5480–5488

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Reichheld SE, Savchenko A, Parkinson J, Davidson AR (2010) A comprehensive analysis of structural and sequence conservation in the TetR family transcriptional regulators. J Mol Biol 400:847–864

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bott, M., Eikmanns, B.J. (2013). TCA Cycle and Glyoxylate Shunt of Corynebacterium glutamicum . In: Yukawa, H., Inui, M. (eds) Corynebacterium glutamicum. Microbiology Monographs, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29857-8_10

Download citation

Publish with us

Policies and ethics