Skip to main content

Zusammenfassung

Das somatosensorische System verarbeitet Informationen aus Haut-, Gelenk-, und Muskelrezeptoren und dient damit primär der Wahrnehmung sensorischer Qualitäten wie Druck, Berührung, Schmerz und Temperatur. Die Integrität dieses Systems ist eine notwendige Voraussetzung für das Verarbeiten komplexer Stimuli, z. B. für das Erkennen dreidimensionaler Strukturen und Objekte (Stereognosie). Weiterhin spielt der somatosensorische Kortex eine fundamentale Rolle bei der Erfassung von Bewegungsinformation (Kinästhesie) und der Wahrnehmung der Arm- und Handposition im Raum (Propriozeption). Daher besitzt das somatosensorische System vor allem mit dem motorischen System enge anatomische und funktionelle Verflechtungen. Funktionell fasst man beide Systeme auch als »sensomotorisches System « zusammen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Blankenburg F, Ruff CC, Deichmann R, Rees G, Driver J (2006) The cutaneous rabbit illusion affects human primary sensory cortex somatotopically. PLoS Biol 4: e69

    Article  Google Scholar 

  • Bodegard A, Geyer S, Grefkes C, Zilles K, Roland PE (2001) Hierarchical processing of tactile shape in the human brain. Neuron 31: 317–328

    Article  CAS  PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, Leipzig

    Google Scholar 

  • Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44: 2594–606

    Article  PubMed  Google Scholar 

  • Disbrow E, Roberts T, Krubitzer L (2000) Somatotopic organization of cortical fields in the lateral sulcus of Homo sapiens: Evidence for SII and PV. J Comp Neurol 418: 1–21

    Article  CAS  PubMed  Google Scholar 

  • Eickhoff S, Geyer S, Amunts K, Mohlberg H, Zilles K (2002) Cytoarchitectonic analysis and stereotaxic map of the human secondary somatosensory cortex region. NeuroImage 16 (S 1): 1780

    Google Scholar 

  • Eickhoff SB, Grefkes C, Zilles K, Fink GR (2007) The somatotopic organization of cytoarchitectonic areas on the human parietal operculum. Cereb Cortex 17: 1800–1811

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Grefkes C, Fink GR, Zilles K (2008) Functional lateralization of face, hand, and trunk representation in anatomically defined human somatosensory areas. Cereb Cortex 18: 2820–2830

    Article  CAS  PubMed  Google Scholar 

  • Fink GR, Frackowiak RSJ, Pietrzyk U, Passingham RE (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77: 2164–2174

    CAS  PubMed  Google Scholar 

  • Foerster O (1936) Motorische Felder und Bahnen. In: Bumke O, Foerster O (Hrsg) Handbuch der Neurologie. Springer, Berlin, S 1–357

    Google Scholar 

  • Freund HJ (2003) Somatosensory and motor disturbances in patients with parietal lobe lesions. Adv Neurol 93: 179–193

    PubMed  Google Scholar 

  • Grefkes C, Geyer S, Schormann T, Roland PE, Zilles K (2001) Human somatosensory area 2: observer-independent cytoarchitectonic mapping, interindividual variability, and population map. Neuro- Image 14: 617–631

    CAS  PubMed  Google Scholar 

  • Grefkes C, Weiss PH, Zilles K, Fink GR (2002) Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study implies equivalencies between humans and monkeys. Neuron 35: 173–184

    Article  CAS  PubMed  Google Scholar 

  • Grefkes C, Ritzl A, Zilles K, Fink GR (2004) Human medial intraparietal cortex subserves visuomotor coordinate transformation. Neuro- Image 23: 1494–1506

    PubMed  Google Scholar 

  • Grefkes C, Eickhoff SB, Nowak DA, Dafotakis M, Fink GR (2008) Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. Neuroimage 41: 1382–1394

    Article  PubMed  Google Scholar 

  • Hsiao S (2008) Central mechanisms of tactile shape perception. Curr Opin Neurobiol 18: 418–424

    Article  CAS  PubMed  Google Scholar 

  • Jäncke L, Kleinschmidt A, Mirzazade S, Shah NJ, Freund HJ (2001) The role of the inferior parietal cortex in linking the tactile perception and manual construction of object shapes. Cereb Cortex 11: 114–121

    Article  PubMed  Google Scholar 

  • Kitada R, Hashimoto T, Kochiyama T, Kito T, Okada T, Matsumura M, Lederman SJ, Sadato N (2005) Tactile estimation of the roughness of gratings yields a graded response in the human brain: an fMRI study. NeuroImage 25: 90–100

    Article  PubMed  Google Scholar 

  • Maldjian J, Gottschalk A, Patel R, Detre J, Alsop D (1999) The sensory somatotopic map of the human hand demonstrated at 4 Tesla. NeuroImage 10: 55–62

    Article  CAS  PubMed  Google Scholar 

  • Overduin SA, Servos P (2004) Distributed digit somatotopy in primary somatosensory cortex. NeuroImage 23: 462–472

    Article  PubMed  Google Scholar 

  • Penfield W, Rasmussen T (1952) The cerebral cortex of man. Macmillan, New York Randolph M, Semmes J (1974) Behavioral consequences of selective subtotal ablations in the postcentral gyrus of macaca mulatta. Brain Res 70: 55–70

    Google Scholar 

  • Reed CL, Caselli RJ, Farah MJ (1996) Tactile agnosia. Underlying impairment and implications for normal tactile object recognition. Brain 119: 875–888

    Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging. Thieme, Stuttgart

    Google Scholar 

  • Trulsson M, Francis ST, Kelly EF, Westling G, Bowtell R, McGlone F (2001) Cortical responses to single mechanoreceptive afferent microstimulation revealed with fMRI. NeuroImage 13: 613–622

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grefkes, C., Eickhoff, S., Fink, G.R. (2013). Somatosensorisches System. In: Schneider, F., Fink, G.R. (eds) Funktionelle MRT in Psychiatrie und Neurologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29800-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29800-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29799-1

  • Online ISBN: 978-3-642-29800-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics