Skip to main content

7.8 Traces of Life

  • Chapter
  • First Online:
Reading the Archive of Earth’s Oxygenation

Abstract

When and how life on Earth started is still an open question. Biochemical fingerprints stored in the ancient rock record indicate the presence of traces of life back to some of the oldest sedimentary rocks on the planet. The Earth has thus harboured life throughout most of its geologic history, and biological processes have contributed significantly to shaping the environmental conditions on the surface of the planet. Tracking the nature of ancient life using morphological, mineralogical, chemical and isotopic proxies in the rock record on Earth needs, however, to surmount a number of obstacles. Most important are the effects of post-depositional alteration of the sedimentary host rocks due to exposure to metamorphic temperatures and pressures and metasomatism during the protracted time before their present exposure. Diagenetic and metamorphic overprints may have resulted in recrystallisation of the original mineral assemblages and deformation of the original textural features in the sedimentary rocks, in many cases blurring the biologic signatures and jeopardizing the reliable interpretation of the nature of the lifeform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aléon J, Robert F, Chaussidon M, Marty B (2003) Nitrogen isotopic composition of mantle macromolecular organic matter in interplanetary dust particles. Geochim Cosmochim Acta 67:3773–3783

    Google Scholar 

  • Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the early Archaean era of Australia. Nature 441:714–718

    Google Scholar 

  • Amard B, Bertrand-Safarti J (1997) Microfossils in 2000 Ma old cherty stromatolites of the Franceville Groups, Gabon. Precambrian Res 81:197–221

    Google Scholar 

  • Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Garvin J, Buick R (2007) A whiff of oxygen before the great oxidation event? Science 317:1903–1906

    Google Scholar 

  • Awramik SM, Barghorn ES (1977) The Gunflint microbiota. Precambrian Res 5:121–142

    Google Scholar 

  • Barghoorn ES, Tyler SM (1965) Microorganisms from the Gunflint chert. Science 147:563–577

    Google Scholar 

  • Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    Google Scholar 

  • Bengtson S, Rasmussen B (2009) New and ancient trace makers. Science 323:346–347

    Google Scholar 

  • Bengtson S, Rasmussen B, Krapez B (2007) The Paleoproterozoic megascopic Stirling biota. Paleobiology 33: 351–381

    Google Scholar 

  • Bernard S, Benzerara K, Beyssac O, Menguy N, Guyot F, Brown GE Jr, Goffé B (2007) Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks. Earth Planet Sci Lett 262:257–272

    Google Scholar 

  • Beyssac O, Goffé B, Chopin C, Rouzaud JN (2002) Raman spectra of carbonaceous material in metasediments: a new geothermometer. J Metamorph Geol 20:859–871

    Google Scholar 

  • Brandes JA, Cody GD, Rumble D III, Haberstroh P, Wirick S, Gelinas Y (2008) Carbon K-edge XANES spectromicroscopy of natural graphite. Carbon 46:1424–1434

    Google Scholar 

  • Brocks JJ, Buick R, Summons RE, Logan GA (2003) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78–2.45 billion year old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta 67:4321–4335

    Google Scholar 

  • Buick R (2008) When did oxygenic photosynthesis evolve? Philos Trans R Soc B 363:2731–2743

    Google Scholar 

  • Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450

    Google Scholar 

  • Cloud PE, Morrison K (1980) New microbial fossils from 2 Gyr old rocks in northern Michigan. Geomicrobiol J 2:161–178

    Google Scholar 

  • Dutkiewicz A, George SC, Mossman DJ, Ridley J, Volk H (2007) Oil and its biomarkers associated with the Palaeoproterozoic Oklo natural fission reactors, Gabon. Chem Geol 244:130–154

    Google Scholar 

  • El Albani A, Bengtson S, Canfield DE, Bekker A, Macchiarelli R, Mazurier A, Hammarlund EU, Boulvais P, Dupuy J-J, Fontaine C, Fürsich FT, Gauthier-Lafaye F, Janvier P, Javaux E, Ossa FO, Pierson-Wickmann A-C, Riboulleau A, Sardini P, Vachard D, Whitehouse M, Meunier A (2010) Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466:100–104

    Google Scholar 

  • Fralick P, Davis DW, Kissin SA (2002) The age of the Gunflint Formation, Ontario, Canada: single zircon U–Pb age determinations from reworked volcanic ash. Can J Earth Sci 39:1085–1091

    Google Scholar 

  • Gago R, Jimenez I, Albella JM (2001) Detecting with X-ray absorption spectroscopy the modifications of the bonding structure of graphitic carbon by amorphisation, hydrogenation and nitrogenation. Surf Sci 482:530–536

    Google Scholar 

  • Garcia-Ruiz JM, Hyde ST, Carnerup AM, Christy AG, Van Kranendonk MJ, Welham NJ (2003) Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302:1194–1197

    Google Scholar 

  • Golubic S, Hofmann HJ (1976) Comparison of Holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation. J Paleontol 50:1074–1082

    Google Scholar 

  • Grey K, Williams IR (1990) Problematic bedding-plane markings from the Middle Proterozoic Manganese Subgroup, Bangemall Basin, Western Australia. Precambrian Res 46:307–327

    Google Scholar 

  • Guo Q, Strauss H, Kaufman AJ, Schröder S, Gutzmer J, Wing B, Baker MA, Bekker A, Jin Q, Kim S-T, Farquhar J (2009) Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition. Geology 37:399–402

    Google Scholar 

  • Han T-M, Runnegar B (1992) Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron formation. Science 257:232–235

    Google Scholar 

  • Hannah JL, Bekker A, Stein HJ, Markey RJ, Holland HH (2004) Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet Sci Lett 225:43–52

    Google Scholar 

  • Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematic. J Palaeontol 50:1040–1073

    Google Scholar 

  • Hofmann HJ (2004) Archean microfossils and abiomorphs. Astrobiology 4:135

    Google Scholar 

  • Horodyski R (1982) Problematic bedding-plane markings from the Middle Proterozoic Appekunny Argillite, Belt Supergroup, northwestern Montana. J Paleontol 56:882–889

    Google Scholar 

  • House CH, Schopf JW, McKeegan KD, Coath CD, Harrison TM, Stetter KO (2000) Carbon isotopic composition of individual Precambrian microfossils. Geology 28:707–710

    Google Scholar 

  • Ivanova LV, Chapina OS, Melezhik VA (1988) Discovery of coccoidal microfossils in early Precambrian metamorphosed cherts. Commun USSR Acad Sci 303:210–211 (in Russian)

    Google Scholar 

  • Javaux EJ (2006) The early eukaryotic fossil record. In: Jekely G (ed) Origins and evolution of eukaryotic endomembranes and cytoskeleton, Advances in experimental medicine and biology. Landes Biosciences/Springer series, Austin, pp 1–19

    Google Scholar 

  • Javaux EJ, Benzerara K (2009) Microfossils. In: Gargaud M, Mustin C, Reisse J, Vandenabeele-Trambouze O (eds) Traces de vie présente ou passée: quels indices, signatures ou marqueurs? vol 8, Comptes Rendus Palevol Special Issue. AcadÕmie des Sciences/Elsevier Masson SAS, Paris/Issy les Moulineaux cedex, pp 605–615

    Google Scholar 

  • Javaux EJ, Marshall CP (2006) A new approach in deciphering early protist paleobiology and evolution: combined microscopy and microchemistry of single Proterozoic acritarchs. Rev Palaeobot Palynol 139:1–15

    Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2003) Recognizing and interpreting the fossils of early eukaryotes. Orig Life Evol Biosph 33:75–94

    Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2004) TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2:121–132

    Google Scholar 

  • Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938

    Google Scholar 

  • Kaufman AJ, Johnston DT, Farquhar J, Masterson A, Lyons TW, Bates S, Anbar AD, Arnold GL, Garvin J, Buick R (2007) Late Archean biospheric oxygenation and atmospheric evolution. Science 317:1900–1903

    Google Scholar 

  • Knoll AH (1996) Archean and proterozoic paleontology. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 1, American Association of Stratigraphic Palynologists Foundation. American Association of Stratigraphic Palynologists Foundation/Texas A&M University, College Station, pp 51–80

    Google Scholar 

  • Knoll AH (2003) Life on a young planet, the first three billion years of evolution on Earth. Princeton University Press, Princeton, 277 p

    Google Scholar 

  • Knoll AH, Golubic S (1992) Living and Proterozoic cyanobacteria. In: Schidlowski M, Golubic S, Kimberley MM (eds) Early organic evolution: implications for mineral and energy resources. Springer, Berlin, pp 450–462

    Google Scholar 

  • Knoll AH, Strother PK, Rossi S (1988) Distribution and diagenesis of microfofssils from the lower Proterozoic Duck Creek Dolomite, Western Australia. Precambrian Res 38:257–279

    Google Scholar 

  • Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc B 361:1023–1038

    Google Scholar 

  • Kudryavtsev AB, Schopf JW, Agresti DG, Wdowiak TJ (2001) In situ laser-Raman imagery of Precambrian microscopic fossils. Proc Natl Acad Sci 98:823–826

    Google Scholar 

  • Kumar S (1995) Megafossils from the Mesoproterozoic Rohtas Formation (the Vindhyan Supergroup), Katni area, central India. Precambrian Res 72:171–184

    Google Scholar 

  • Lepot K, Benzerara K, Brown GE Jr, Philippot P (2008) Microbially influenced formation of 2724-million-year-old stromatolites. Nat Geosci 1:118–121

    Google Scholar 

  • Lepot K, Philippot P, Benzerara K, Wang G-Y (2009a) Garnet-filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt. Geobiology 7:6579–6599

    Google Scholar 

  • Lepot K, Benzerara K, Rividi N, Cotte M, Brown GE, Philippot P (2009b) Organic matter heterogeneities in 2.72 Ga stromatolites: alteration versus preservation by sulphur incorporation. Geochim Cosmochim Acta 73:6579–6599

    Google Scholar 

  • Matz MV, Frank TM, Marshall NJ, Widder EA, Sönke J (2008) Giant deep-sea protist produces bilaterian-like traces. Curr Biol 18:1849–1854

    Google Scholar 

  • Moreau JW, Sharp TG (2004) A transmission electron microscopy study of silica and kerogen biosignatures in 1.9 Ga Gunflint microfossils. Astrobiology 4:196–210

    Google Scholar 

  • Nasdala L, Smith DC, Kaindl R, Ziemann MA (2004) Raman spectroscopy: analytical perspectives in mineralogical research. In: Beran A, Libowitzky E (eds) Spectroscopic methods in mineralogy, vol 6, EMU notes in mineralogy. Eötvös University Press, Budapest, pp 281–343

    Google Scholar 

  • Nisbet EG, Grassineau NV, Howe CJ, Abel PI, Regelous M, Nisbet RER (2007) The age of Rubisco: the evolution of oxygenic photosynthesis. Geobiology 5:311–335

    Google Scholar 

  • Oehler DZ (1977) Microflora of the middle Proterozoic Balbirini Dolomite (McArthur Group) of Australia. Alcheringa 2:269–309

    Google Scholar 

  • Oehler DZ, Robert F, Mostefaoui S, Meibom A, Selo M, McKay DS (2006) Chemical mapping of Proterozoic organic matter at submicron spatial resolution. Astrobiology 6:838–850

    Google Scholar 

  • Oehler DZ, Robert F, Walter M, Sugitani K, Allwood AC, Meibom A, Mostefaoui S, Selo M, Thomen A, Gibson EK (2009) NanoSIMS: insights to biogenicity and syngeneity of Archean carbonaceous structures. Precambrian Res 173: 70–78

    Google Scholar 

  • Ono S, Beukes NJ, Rumble D, Fogel ML (2006) Early evolution of atmospheric oxygen from multiple-sulfur and carbon isotope records of the 2.9 Ga Mozaan Group of the Pongola Supergroup, Southern Africa. S Afr J Geol 109:97–108

    Google Scholar 

  • Pasteris JD (1989) Insitu analysis in geological thin-sections by laser Raman microprobe spectroscopy: a cautionary note. Appl Spectrosc 43:567–570

    Google Scholar 

  • Pasteris JD, Wopenka B (2002) Images of the Earth’s earliest fossils? Nature 420:476–477

    Google Scholar 

  • Pasteris JD, Wopenka B (2003) Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology 3:727–738

    Google Scholar 

  • Pawlowski J, Gooday AJ (2008) Precambrian biota: protistan origin of trace fossils? Curr Biol 19(1):R28–R30

    Google Scholar 

  • Planavsky N, Rouxel O, Bekker A, Shapiro R, Fralick P, Knudsen A (2009) Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth Planet Sci Lett 286:230–242

    Google Scholar 

  • Peng Y, Baoa H, Yuan X (2009) New morphological observations for Paleoprotrtozoic acritarchs from the Chuablinggou Formation, North China. Precambrian Res 168:223–232

    Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1105

    Google Scholar 

  • Rosing MT, Frei R (2004) U-rich Archean sea-floor sediments from Greenland-indication of >3700 Ma oxygenic photosynthesis. Earth Planet Sci Lett 217:237–244

    Google Scholar 

  • Samuelsson J, Butterfield NJ (2001) Neoproterozoic fossils from the Franklin Mountains, northwestern Canada: stratigraphic and palaeobiological implications. Precambrian Res 107:235–251

    Google Scholar 

  • Sangely L, Chaussidon M, Michels R, Huault V (2005) Microanalysis of carbon isotope composition in organic matter by secondary ion mass spectrometry. Chem Geol 223:179–195

    Google Scholar 

  • Schneider DA, Bickford ME, Cannon WF, Sculz KJ, Hamilton MA (2002) Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup: implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region. Can J Earth Sci 39:999–1012

    Google Scholar 

  • Schopf JW, Klein C (eds) (1992) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, p 1348

    Google Scholar 

  • Schopf JW, Kudryavtsev A (2005) Three-dimensional Raman imagery of precambrian microscopic organisms. Geobiology 3:1–12

    Google Scholar 

  • Schopf JW, Kudryavtsev A, Agresti DG, Wdowiak TJ, Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76

    Google Scholar 

  • Seilacher A (2001) Concretion morphologies reflecting diagenetic and epigenetic pathways. Sediment Geol 143:41–57

    Google Scholar 

  • Sharma M, Shukla Y (2009) Taxonomy and affinity of early Mesoproterozoic megascopic helically coiled and related fossils from the Rohtas Formation, the Vindhyan Supergroup, India. Precambrian Res 173:105–122

    Google Scholar 

  • Shen Y, Canfield DE, Knoll AH (2002) Middle Proterozoic ocean chemistry: evidence from the McArthur Basin, northern Australia. Am J Sci 302:81–109

    Google Scholar 

  • Sokolov I, Kievsky Y (2005) 3D design of self-assembled nanoporous colloids. Stud Surf Sci Catal 156:433–442

    Google Scholar 

  • Summons RE, Jahnke LL, Hope JM, Logen GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    Google Scholar 

  • Tice MM, Bostick BC, Lowe DR (2004) Thermal history of the 3.5–3.2 Ga Onverwacht and Fig Tree Groups, Barberton Greenstone Belt, South Africa, inferred by Raman microspectroscopy of carbonaceous material. Geology 32:37–40

    Google Scholar 

  • Timofeev BV (1982) Microphytofossils of the early Precambrian. Nauka, Leningrad, p 128 (in Russian, summary in English)

    Google Scholar 

  • Van Zuilen MA, Chaussidon M, Rollion-Bard C, Marty B (2006) Carbonaceous cherts of the Barberton Greenstone Belt, South Africa: isotopic, chemical, and structural characteristics of individual microstructures. Geochim Cosmochim Acta 71:655–669

    Google Scholar 

  • Walter MR, Goode ADT, Hall WDM (1976) Microfossils from a newly discovered Precambrian Stromatolitic Iron Formation in Western-Australia. Nature 261:221–223

    Google Scholar 

  • Westall F, Folk RL (2003) Exogenous carbonaceous microstructures in early Archaean cherts and BIFs from the Isua Greenstone Belt: implications for the search for life in ancient rocks. Precambrian Res 126:313–330

    Google Scholar 

  • Wilson JP, Fischer WW, Johnston DT, Knoll AH, Grotzinger JP, Walter MR, McNaughton NJ, Simon M, Abelson J, Schrag DP, Summons R, Allwood A, Andresh M, Gammon C, Garvin J, Rasby S, Schweizerb M, Watters WA (2010) Geobiology of the late Paleoproterozoic Duck Creek Formation, Western Australia. Precambrian Res 179:135–149

    Google Scholar 

  • Wirth R (2009) Focused Ion Beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol 261:217–229

    Google Scholar 

  • Wopenka B, Pasteris JD (1993) Structural characteristics of kerogens to granulite-facies graphite: applications of Raman microprobe spectroscopy. Am Mineral 78:533–557

    Google Scholar 

  • Xiao S, Dong L (2006) On the morphological and ecological history of Proterozoic macroalgae. In: Xiao S, Kaufman AJ (eds) Neoproterozoic geobiology and paleobiology. Springer, Dordrecht, pp 57–90

    Google Scholar 

  • Yochelson EL, Fedonkin MA (2000) A new tissue-grade organism 1.5 billion years old from Montana. Proc Biol Soc Wash 113:843–847

    Google Scholar 

  • Zhang Z (1986) Clastic facies microfossils from the Chuanlinggou Formation (1800 Ma) near Jixian, North China. J Micropalaeontol 5:9–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lepland, A. et al. (2013). 7.8 Traces of Life. In: Melezhik, V., et al. Reading the Archive of Earth’s Oxygenation. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29670-3_8

Download citation

Publish with us

Policies and ethics