Skip to main content

The Unusual Sunspot Minimum: Challenge to the Solar Dynamo Theory

  • Conference paper
  • First Online:
The Sun: New Challenges

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 30))

Abstract

The last cycle 23 was low, long, complex, and very unusual. The “peculiarity” of the minimum was that the field was weak, but also that the morphology of the heliosphere was very complex. A large number of features of intermediate scale—neither global nor local—were observed. There are reasons to believe that the amplitude and the period of a cycle are determined by the large-scale meridional circulation which, in turn, may be modulated by planetary tidal forces. There are evidences that at present the deep meridional circulation is very slow, from which a low and late maximum of cycle 24 can be predicted. Calculations of the planetary tidal forces indicate that cycle 25 will be still lower, and therefore cycle 24 is the beginning of a secular solar activity minimum. Various prediction methods are summarized, all indicating that we are entering a period of moderately low activity, and the possibility of a Maunder-type minimum is very small. Arguments are also presented in favor of a near-surface dynamo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagovitsyn, Yu. A., Nagovitsyna, E. Yu., Makarova, V. V.: Date of minimum of the “protracted” solar cycle 23. Astron. Lett. 36, 605–608 (2010)

    Google Scholar 

  2. Ivanov E.V., Obridko V.N., Nepomnyashchaya E.V., Kutilina N.V.: Relevance Ofcme to the Structure of Large-Scale Solar Magnetic Fields. Solar Phys. 184, 369–384 (1999)

    Google Scholar 

  3. Tokumaru, M., Kojima, M., Fujiki, K.: Solar cycle evolution of the solar wind speed distribution from 1985 to 2008, J. Geophys. Res. 115 (A4), CiteID A04102 (2010)

    Google Scholar 

  4. Babcock, H.W.: The topology of the sun’s magnetic field and the 22-year cycle, Astrophys. J. 133, 572–587 (1961)

    Google Scholar 

  5. Leighton, R.: A Magneto-Kinematic Model of the Solar Cycle. Astrophys. J. 156, 1–26 (1969)

    Google Scholar 

  6. Wang, Y.-M., Sheeley, N. R. Jr., Lean, J.: Meridional Flow and the Solar Cycle Variation of the Sun’s Open Magnetic Flux, Astrophys. J. 580, 1188–1196 (2002)

    Google Scholar 

  7. Hathaway, D., Nandy, D., Wilson R., Reichmann, E.: Evidence That a Deep Meridional Flow Sets the Sunspot Cycle Period, Astrophys. J. 589, 665–670 (2003)

    Google Scholar 

  8. Passos, D., Lopes, I.: Grand minima under the light of a low order dynamo model, 2009arXiv0908.0496P (2009)

    Google Scholar 

  9. Passos, D., Lopes, I.: Grand minima under the light of a low order dynamo model, J. Atm. Solar-Terr. Phys. 73 (2-3), 191–197 (2011)

    Google Scholar 

  10. Karak, B. B.: Importance of Meridional Circulation in Flux Transport Dynamo: The Possibility of a Maunder-like Grand Minimum, Astrophys. J. 724, 1021–1029 (2010)

    Google Scholar 

  11. Karak, B. B., Choudhuri, A. R.: The Waldmeier effect and the flux transport solar dynamo, Mon. Notic. Roy. Astron. Soc. 410, 1503 -1512 (2011)

    Google Scholar 

  12. Yeates, A.R., Nandy, D., Mackay, D.H.: Exploring the Physical Basis of Solar Cycle Predictions: Flux Transport Dynamics and Persistence of Memory in Advection- versus Diffusion-dominated Solar Convection Zones. Astrophys. J., 673 (1), 544–556 (2008)

    Google Scholar 

  13. Hotta, H., Yokoyama, T.: Importance of Surface Turbulent Diffusivity in the Solar Flux-Transport Dynamo. Astrophys. J.709 (2), 1009–1017 (2010)

    Google Scholar 

  14. Choudhuri, A. R.: Astrophysics for Physicists, Cambridge University Press, 2010

    Google Scholar 

  15. Georgieva, Kirov, B.: Solar dynamo and geomagnetic activity. J. Atm. and Solar-Terr. Phys., 73 (2-3), 207–222 (2009)

    Google Scholar 

  16. Georgieva, K.: Why the Sunspot Cycle Is Double Peaked. ISRN Astronomy and Astrophysics (2011) id.#437838

    Google Scholar 

  17. Ruediger, G., Brandenburg, A.:A solar dynamo in the overshoot layer: cycle period and butterfly diagram. Astron. Astrophys. 296, 557–556 (1995)

    Google Scholar 

  18. Choudhuri, A.R., Schussler, M., Dikpati, M.: The solar dynamo with meridional circulation. Astronomy and Astrophysics, 303, L29-L32 (1995)

    Google Scholar 

  19. Tobias, S., Weiss, N.: The Solar Tachocline, Hughes D.W., Rosner R., Weiss N.O. (Eds.). Cambridge University Press, Cambridge, UK (2007)

    Google Scholar 

  20. Parker, E.N.: A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys. J., Part 1 408 (2), 707–719 (1993)

    Google Scholar 

  21. Benevolenskaya, E.E., Hoeksema, J.T., Kosovichev, A.G., Scherrer, P.H.: The Interaction of New and Old Magnetic Fluxes at the Beginning of Solar Cycle 23. Astrophys. J. 517 (2), L163-L166 (1999)

    Google Scholar 

  22. Birch, A.C.: Progress in sunspot helioseismology. J. Physics: Conference Series, 271 (1), 012001 (2011)

    Google Scholar 

  23. Obridko, V.N.: Solar and Stellar Variability: Impact on Earth and Planets, Proceedings of the International Astronomical Union, IAU Symposium 264, 241–250 (2010)

    Google Scholar 

  24. Lefebvre, S., Kosovichev, A.G., Nghiem, P., Turck-Chièze, S., Rozelot, J. P.: Cyclic variability of the seismic solar radius from SOHO/MDI and related physics. Proceedings of SOHO 18/GONG 2006/HELAS I, 7–11 August 2006, Sheffield, UK., Fletcher K. (Ed.). Thompson M. (Sci.Ed.), Published on CDROM, p.9.1 (2006)

    Google Scholar 

  25. Brandenburg ,A.: The Case for a Distributed Solar Dynamo Shaped by Near-Surface Shear. Astrophys. J., 625 (1), 539–547 (2005)

    Google Scholar 

  26. Pipin, V.V., Kosovichev, A.G.: The Asymmetry of Sunspot Cycles and Waldmeier Relations as a Result of Nonlinear Surface-shear Shaped Dynamo. Astrophys. J., 741 (1), article id. 1 (2011)

    Google Scholar 

  27. Hathaway, D. H.: The Solar Cycle, Living Rev. Solar Phys. 7 No 1, (2010)

    Google Scholar 

  28. Petrovay, K., Solar Cycle Prediction. Living Rev. Solar Phys. 7 No 6 (2010)

    Google Scholar 

  29. Nagovitsyn Yu.A. Scenario of Variations of Solar Activity Level in the Next Few Decades: Low Cycles? Cycles of Activity on the Sun and Stars, Obridko, V.N., Nagovitsyn, Yu.A. (eds), Euroasian Astronomical Society, St. Petersburg, 99–106 (2009)

    Google Scholar 

  30. Penn, M., Livingston, W.: Long-term Evolution of Sunspot Magnetic Fields. arXiv:1009.0784v1 To appear in IAU Symposium No. 273 (2011)

    Google Scholar 

  31. Pevtsov, A.A., Nagovitsyn, Yu.A., Tlatov, A.G., Rybak, A.L.: Long-term Trends in Sunspot Magnetic Fields. Astrophys. J. Lett. 742 (2), article id. L36 (2011)

    Google Scholar 

  32. Altrock, R. C.: The Progress of Solar Cycle 24 at High Latitudes. SOHO-23: p.147, in ASP Conf. Series Vol. 428, Cranmer S.R., Hoeksema T., John L. Kohl J.L. (Eds.). San Francisco: Astronomical Society of the Pacific (2010)

    Google Scholar 

  33. http://spaceweather.com/glossary/spotlessdays.htm

  34. McComas, D.J.; Ebert, R.W.; Elliott, H.A.; Goldstein, B.E.; Gosling, J.T.; Schwadron, N.A.; Skoug, R.M. Weaker solar wind from the polar coronal holes and the whole Sun Geophysical Research Letters, Volume 35, Issue 18, CiteID L18103 (2008)

    Google Scholar 

  35. http://www.predsci.com/corona/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Obridko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Obridko, V.N., Nagovitsyn, Y.A., Georgieva, K. (2012). The Unusual Sunspot Minimum: Challenge to the Solar Dynamo Theory. In: Obridko, V., Georgieva, K., Nagovitsyn, Y. (eds) The Sun: New Challenges. Astrophysics and Space Science Proceedings, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29417-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29417-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29416-7

  • Online ISBN: 978-3-642-29417-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics