Skip to main content

Role of Pineal Gland in Relieving Environmental Stress

  • Chapter
  • First Online:
Environmental Stress and Amelioration in Livestock Production

Abstract

Pineal gland is considered as a neuroendocrine transducer of cyclic photic input, which is responsible for the seasonal changes in the reproductive capability of various animal species. Considerable evidence has now been accumulated to indicate its participation in a wide range of reproductive processes and associated organs, among which pineal-adrenal, pineal-thyroid, and pineal-immune system relationships are the thrust areas of research investigations. Pineal gland is known to have an anti-stressogenic effect in mammals and birds. It is also known to have a tranquilizing effect on animals. Melatonin is included in the feed of pigs raised in commercial piggeries to protect them against occurrence of peptic ulcers. Although the antistress properties of melatonin are established, yet such reports are very meager in domestic livestock species. Several studies conducted on goats suggest that there is a strong interrelationship between the pineal gland and adrenal cortex in relieving thermal stress. The significant effect of melatonin on various adrenal cortex secretions and functions during thermal stress establishes such relationship between the two endocrine glands. These studies established the anti-stress properties of melatonin in goats. Several recent studies conducted in goats had established that apart from melatonin, there are several other peptides produced from the pineal gland, which have anti-thermal stress properties. The data generated from these studies help us to understand the functional relationship between pineal and adrenal glands, and how these influence each other for the well-being of the domestic and farm animals during thermal stress. Given the importance of thermal stress in hampering animal productivity to a greater extent in tropical countries, these findings have greater significance in terms of improving the economy of farm households as well as poor farmers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abecia JA, Valares JA, Forcada F (2005) The effect of melatonin treatment on wool growth and thyroxine secretion in sheep. Small Rumin Res 56:265–270

    Article  Google Scholar 

  • Aggarwal A, Upadhyay RC, Singh SV, Kumar P (2005) Adrenal–thyroid pineal interaction and effect of exokgenous melatonin during summer in crossbred cattle. Indian J Anim Sci 75:915–921

    CAS  Google Scholar 

  • Angeli A, Gatti G, Masera R, Sartori ML, Carignola R (1990) Chronobiologic aspects of neuroenodcrine-immune interactions. Int J Neurosci 51:341–343

    Article  PubMed  CAS  Google Scholar 

  • Balik A, Kretschmannova K, Mazna P, Svobodova I, Zemkova H (2004) Melatonin action on neonatal gonadotrophs. Physiol Res 53(suppl 1):S153–S166

    PubMed  CAS  Google Scholar 

  • Barriga C, Martin MI, Ortega E, Rodriguez AB (2002) Physiologic concentration of melatonin and corticosterone in stress and their relationship with phagocytic activity. J Neuroendocrinol 14:691–696

    Article  PubMed  CAS  Google Scholar 

  • Bauer MS, Poland RE, Whybow PC, Frazer A (1989) Pituitary, adrenal and thyroid effects on melatonin content of the rat. Psychoneuroendocrinology 14:165–175

    Article  PubMed  CAS  Google Scholar 

  • Buchanan KL, Yellon SM (1991) Delayed puberty in the male Djungarian hamster: effect of short photoperiod or melatonin treatment on the Gn-RH neuronal system. Neuroendocrinology 54:96–102

    Article  PubMed  CAS  Google Scholar 

  • Cannon WB (1915) Bodily changes in pain, hunger, fear, and rage. Appleton, New York

    Book  Google Scholar 

  • Carrillo-Vico A, Calvo JR, Abreu P, Lardone PJ, Garcia-Maurino S, Reiter RJ, Guerrero JM (2004) Evidence of melatonin synthesis by human lymphocytes and its physiologic significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J 18:537–539

    PubMed  CAS  Google Scholar 

  • Chemineau P, Guillaume D, Migaud M, Thiery JC, Pellicer-Rubio MT, Malpaux B (2008) Seasonality of reproduction in mammals: intimate mechanisms and practical applications. Reprod Domest Anim 43(suppl 2):40–47

    Article  PubMed  Google Scholar 

  • Claustrat B, Brun J, Chazot G (2005) The basic physiology and pathophysiology of melatonin. Sleep Med Rev 9:11–24

    Article  PubMed  Google Scholar 

  • Coelho LA, Rodrigues PA, Nonaka KO, Sasa A, Balieiro JC, Vincente WR, Cipolla-Neto J (2006) Annual pattern of plasma melatonin and progesterone concentrations in hair and wool ewe lambs kept under natural photoperiod at lower latitudes in the southern hemisphere. J Pineal Res 41:101–107

    Article  PubMed  CAS  Google Scholar 

  • Collier RJ, Collier JL, Rhoads RP, Baumgard LH (2008) Invited review: genes involved in the bovine heat stress response. J Dairy Sci 91(2):445–454

    Article  PubMed  CAS  Google Scholar 

  • Conti A, Maestroni GJM (1994) Melatonin-induced immuno-opioids: role in lymphoproliferative and autoimmune diseases. Adv Pineal Res 7:83–100

    CAS  Google Scholar 

  • Cupps T, Fauci AS (1982) Corticosteroid mediated immunoregulation in man. Immunol Rev 65:133–155

    Article  PubMed  CAS  Google Scholar 

  • Demisch L, Demisch K, Nickelsen T (1988) Influence of dexamethasone on nocturnal melatonin production in healthy adult subjects. J Pineal Res 5:317–321

    Article  PubMed  CAS  Google Scholar 

  • Dubocovich ML, Markowska M (2005) Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 27:101–110

    Article  PubMed  CAS  Google Scholar 

  • Esquifino AI, Pandi-Perumal SR, Cardinali DP (2004) Circadian organization of the immune response: a role for melatonin. Clin Appl Immunol Rev 4:423–433

    Article  CAS  Google Scholar 

  • Everly G (2002) A clinical guide to the treatment of the human stress response. Kluwer Academic Press, New York

    Google Scholar 

  • Fabris N (1994) Neuroendocrine regulation of immunity. Adv Pineal Res 7:41–56

    CAS  Google Scholar 

  • Farrell G (1960) Adrenoglomerulotropin. Circulation 21:1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Forner MA, Barriga C, Rodriguez AB, Ortega E (1995) A study of the role of corticosterone as a mediator in exerciseinduced stimulation of murine macrophage phagocytosis. J Physiol 488:789–794

    PubMed  CAS  Google Scholar 

  • Frungieri MB, Mayerhofer A, Zitta K, Pignataro OP, Calandra RS, Gonzalez-Calvar SI (2005) Direct action of melatonin on Syrian hamster testes: melatonin subtype 1a receptors, inhibition of androgen production, and interaction with local corticotropin-releasing hormone system. Endocrinology 146:1541–1552

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Perganeda A, Guerrero JM, Rafil-EI-Idrissi M, Paz Romero M, Polo d Calvo JR (1999) Characterization of membrane melatonin receptors in mouse peritoneal macrophage: inhibition of adenylyl cyclase by a pertussis toxin-sensitive G-protein. J Neuroimmunol 1:85–94

    Article  Google Scholar 

  • Goetzl EJ, Sreedharan SP (1992) Mediators of communication and adaptation in the neuroendocrine and immune system. FASEB J 6:2646–2652

    PubMed  CAS  Google Scholar 

  • Gromova EA, Kraus M, Krecek J (1967) Effect of melatonin and 5-hydroxytryptamine on aldosterone and corticosterone production by adrenal glands of normal and hypophysectomized rats. J Endocrinol 39(3):345–350

    Article  PubMed  CAS  Google Scholar 

  • Guerrero JM, Reiter RJ (2002) Melatonin-immune system relationships. Curr Top Med Chem 2:167–179

    Article  PubMed  CAS  Google Scholar 

  • Hardeland R (2005) Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 27:119–130

    Article  PubMed  CAS  Google Scholar 

  • Homo-Delarche F, Dardenne M (1993) The neuroendocrineimmune axis. Springer Semin Immunopathol 14:221–238

    Article  PubMed  CAS  Google Scholar 

  • Hriscu ML (2005) Modulatory factors of circadian phagocytic activity. Ann N Y Acad Sci 1057:403–430

    Article  PubMed  CAS  Google Scholar 

  • John TM, Itoh S, George JC (1978) On the role of pineal in thermoregulation in the pigeon. Horm Res 9(1):41–56

    Article  PubMed  CAS  Google Scholar 

  • Johnson LY (1982) The pineal as a modulator of the adrenal and thyroid axes. In: Reiter RJ (ed) The Pineal gland. Extra reproductive effects, vol 3. CRC Press, Boca Ratan, pp. 107–112

    Google Scholar 

  • Johnston JD, Messager S, Ebling FJ, Williams LM, Barrett P, Hazlerigg DG (2003) Gonadotrophin-releasing hormone drives melatonin down-regulation in the developing pituitary gland. Proc Natl Acad Sci U S A 100:2831–2835

    Article  PubMed  CAS  Google Scholar 

  • Kanchev LN, Baichev J, Kamenov I, Baikov B, Hallak AK (2006) Melatonin, corticosterone, stress and phagocytic activity. Bul J Vet Med 9:257–264

    Google Scholar 

  • Kannan G, Terrill TH, Kouakou B, Gazal OS, Gelaye S, Amoah EA, Samake S (2000) Transportation of goats: effects on physiologic stress responses and live weight loss. J Anim Sci 78:1450–1457

    PubMed  CAS  Google Scholar 

  • Karasek M (2004) Melatonin, human aging, and age-related diseases. Exp Gerontol 39:1723–1729

    Article  PubMed  CAS  Google Scholar 

  • Karsch FJ, Bittman EL, Foster DL, Goodman RL, Legan SJ, Robinson JE (1984) Neuroendocrine basis of seasonal reproduction. Recent Prog Horm Res 40:185–232

    PubMed  CAS  Google Scholar 

  • Khan R, Daya S, Potgieter B (1990) Evidence for a modulation of the stress response by the pineal gland. J Exp Edu 46(8):860–862

    CAS  Google Scholar 

  • Konakchieva R, Mitev Y, Almeida OF, Patchev VK (1997) Chronic melatonin treatment and the hypothalamo–pituitary–adrenal axis in the rat: attenuation of the secretory response to stress and effects on hypothalamic neuropeptides content and release. Biol Cell 89(9):587–596

    PubMed  CAS  Google Scholar 

  • Kristensen TN (2004) Environmental and genetic stress—integrating studies on Drosophila and farm animals. PhD Thesis. Department of Genetics and Ecology, Institute of Biologic Sciences, University of Aarhus, Denmark

    Google Scholar 

  • Lcvi F, Canon C, Depres-Brummer P, Adam R, Bourin P, Pati A, Florentin I, Misset JL, Bismuth H (1992) The rhythmic organization of the immune network: implications for the chronopharmacologic delivery of interferons, interleukins and cyclosporin. Adv Drug Deliv Rev 9:85–112

    Article  Google Scholar 

  • Lommer D (1966) Inhibition of corticosteroid 11-beta-hydroxylation by an extract of pineal body. Experientia 22(2):122–123

    Article  PubMed  CAS  Google Scholar 

  • Lopes C, Mariano M, Markus RP (2001) Interaction between the adrenal and the pineal gland in chronic experimental inflammation induced by BCG in mice. Inflamm Res 50:006–011

    Article  CAS  Google Scholar 

  • Maestroni GJ (2001) The immunotherapeutic potential of melatonin. Expert Opin Investig Drugs 10:467–476

    Article  PubMed  CAS  Google Scholar 

  • Maestroni GJ, Conti A, Pierpaoli W (1986) Role of the pineal gland in immunity. circadian synthesis and release of melatonin modulates the antibody response and antagonizes the immunosuppressive effect of corticosterone. J Neuroimmunol 13:19–30

    Article  PubMed  CAS  Google Scholar 

  • Maestroni GJM, Conti A, Pierpaoli W (1988) Role of the pineal gland in immunity III. melatonin antagonizes the immunosuppressive effects of acute stress opiatergic mechanism. Immunology 63:465–469

    PubMed  CAS  Google Scholar 

  • Malhotra S, Sawhney G, Pandhi P (2004) The therapeutic potential of melatonin: a review of the science. Medsc Gen Med 6:46–62

    Google Scholar 

  • Markus RP, Ferreira ZS, Fernandes PACM, Cecon E (2007) The immune-pineal axis: a shuttle between endocrine and paracrine melatonin sources. NeuroImmunomodulation 14:126–133

    Article  PubMed  CAS  Google Scholar 

  • McNulty JA, Relfson M, Fox LM, Fox LM, Kus L, Handa RJ, Schneider GB (1990) Circadian analysis of mononuclear cells in the rat following pinealectomy and superior cervical ganglionectomy. Brain Behav Immun 4:292–307

    Article  PubMed  CAS  Google Scholar 

  • Mess B (1983) The pineal gland and its endocrine role. Plenum press, New York, pp 477–508

    Google Scholar 

  • Mori W, Aoyama H, Mori N (1984) Melatonin protects rats from injurious effects of a glucocorticoid, dexamethasone. Jpn J Exp Med 54(6):255–261

    PubMed  CAS  Google Scholar 

  • Mostl E, Palme R (2002) Hormones as indicators of stress. Dom Anim Endocrinol 23(1–2):67–74

    Article  CAS  Google Scholar 

  • Nelson RJ (2004) Seasonal immune function and sickness responses. Trends Immunol 25:187–192

    Article  PubMed  CAS  Google Scholar 

  • Ogle TF, Kitay JI (1978) In vitro effects of melatonin and serotonin on adrenal steroidogenesis. Proc Soc Exp Biol Med 157:103–109

    PubMed  CAS  Google Scholar 

  • Paredes SD, Terron MP, Marchena AM, Barriga C, Pariente JA, Reiter RJ, Rodriguez AB (2007) Effect of exogenous melatonin on viability, ingestion capacity, and free radical scavenging in heterophils from young and old ringdoves (Streptopelia risoria). Mol Cell Biochem 304:305–314

    Article  PubMed  CAS  Google Scholar 

  • Pierpaoli W, Maestroni GJ (1987) Melatonin: a principal neuroimmunoregulatory and anti-stress hormone: its anti-aging effects. Immunol Lett 16(3–4):355–361

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ (1991) Neuroendocrine effects of light. Int J Biometereol 35:169–175

    Article  CAS  Google Scholar 

  • Reiter RJ (1995) The pineal gland and melatonin in relation to aging: the summary of theories and of the data. Exp Gerontol 30:199–212

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez AB, Terron MP, Duran J, Ortega E, Barriga C (2001) Physiologic concentrations of melatonin and corticosterone affect phagocytosis and oxidative metabolism of ringdove heterophils. J Pineal Res 31:31–38

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9

    Article  PubMed  CAS  Google Scholar 

  • Roy D, Angelini NL, Fujeda H, Brown GM, Belsham DD (2001) Cyclical regulation of GnRH gene expression in GTI-7 GnRH-secreting neurons by melatonin. Endocrinology 142:4711–4720

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto S, Nakamura K, Inoue K, Sakai T (2000) Melatonin stimulates thyroid-stimulating hormone accumulation in the thyrotropes of the rat pars tuberalis. Histochem Cell Biol 114:213–218

    PubMed  CAS  Google Scholar 

  • Sanchez S, Paredes SD, Martin MI, Barriga C, Rodriguez AB (2004) Effect of tryptophan on circulating levels of melatonin and phagocytic activity. J Appl Biomed 2:169–177

    CAS  Google Scholar 

  • Sanchez-Barcelo EJ, Cos S, Fernandez R, Mediavilla MD (2003) Melatonin and mammary cancer: a short review. Endocr Relat Cancer 10:153–159

    Article  PubMed  CAS  Google Scholar 

  • Sejian V (2007) Role of pineal gland and adrenal cortex to combat thermal stress in farm animals. In the short course manual on “Animal behavior and welfare” under centre of advanced studies in veterinary physiology, Division of Physiology and Climatology, Published by Director, IVRI, Izatnagar, pp 147–149

    Google Scholar 

  • Sejian V, Srivastava RS (2010a) Pineal-adrenal relationship under thermal stress with emphasis on effect of pineal proteins on endocrine profiles in chemically adrenalectomized does. Glob Vet 4(3):249–254

    CAS  Google Scholar 

  • Sejian V, Srivastava RS (2010b) Effects of melatonin on adrenal cortical functions of Indian goats under thermal stress. Vet Med Int 2010:6 (Article ID 348919) doi:10.4061/2010/348919

    Google Scholar 

  • Sejian V, Srivastava RS (2010c) Pineal-adrenal-immune system relationship under thermal stress: effect on physiologic, endocrine and non-specific immune response in goats. J Physiol Biochem 66(4):339–349. doi:10.1007/s13105-010-0040-8

    Article  PubMed  CAS  Google Scholar 

  • Sejian V, Srivastava RS (2010d) Effects of pineal proteins on biochemical profile, enzyme profile and non-specific immune response of Indian goats under thermal stress. Anim Prod Res Adv 6(1):1–6

    Google Scholar 

  • Sejian V, Srivastava RS (2010e) Interrelationship of endocrine glands under thermal stress: effect of exogenous glucocorticoids on mineral, enzyme, thyroid hormone profiles and phagocytosis index of Indian goats. Endocr Regul 44:101–107

    Article  PubMed  CAS  Google Scholar 

  • Sejian V, Srivastava RS, Varshney VP (2008a) Pineal-adrenal relationship: modulating effects of glucocorticoids on pineal function to ameliorate thermal stress in goats. Asian Australas J Anim Sci 21(7):988–994

    CAS  Google Scholar 

  • Sejian V, Srivastava RS, Varshney VP (2008b) Pineal-adrenal-thyroid relationships under thermal stress: effect on circulating levels of thyroid hormones in goats. Indian J Anim Sci 78:1263–1264

    Google Scholar 

  • Sejian V, Srivastava RS, Varshney VP (2010a) Effect of thermal stress on endocrine profile and phagocytosis index in Marwari goats. Indian Vet J 87:1156–1157

    Google Scholar 

  • Sejian V, Srivastava RS, Varshney VP (2010b) Effect of exogenous melatonin on different organ weights of adrenalectomized rats. Indian Vet J 87:15–16

    CAS  Google Scholar 

  • Sejian V, Srivastava RS, Varshney VP (2010c) Effect of short-term thermal stress on biochemical profile in Marwari goats. Indian Vet J 87:503–504

    Google Scholar 

  • Selye H (1946) General adaptation syndrome and the diseases of adaptation. J Clin Endocrinol 6:117

    Article  CAS  Google Scholar 

  • Selye H (1950) The physiology and pathology of exposure to stress. Acta Montreal, Canada

    Google Scholar 

  • Sibarov DA, Kovalenko RI, Nozdrachev AD, Malinin VV, Khavinson VK (2002) Effects of pineal-gland peptides on the electric activity of pinealocytes in rats. Dokl Biol Sci 385:331–333

    Article  PubMed  CAS  Google Scholar 

  • Silman RE (1993) Melatonin: a contraceptive for the nineties. Eur J Obstet Gynecol Reprod Biol 49:3–9

    Article  PubMed  CAS  Google Scholar 

  • Skwarlo-Sonta K (2002) Melatonin in immunity: comparative aspects. Neuro Endocrinol Lett 23(1):61–66

    PubMed  CAS  Google Scholar 

  • Srinivasan V (2000) Physiologic role of pineal in homeostasis. In the short course manual on “Physiology of pineal gland” under centre of advanced studies in veterinary physiology, Division of Physiology and Climatology, Published by Director, IVRI, Izatnagar, pp 69–72

    Google Scholar 

  • Srinivasan V, Maestroni GJM, Cardinali DP, Esquifino AI, Perumal SRP, Miller SC (2005) Melatonin, immune function and aging. Immun Ageing 2:17

    Article  PubMed  CAS  Google Scholar 

  • Stephanie WF, Siu SWF, Lau KW, Tam PC, Shiu SYW (2002) Melatonin and prostate cancer cell proliferation: interplay with castration, epidermal growth factor, and androgen sensitivity. Prostate 52(2):106–122

    Article  Google Scholar 

  • Sudhakumari CC, Haldar C, Senthilkumaran B (2001) Seasonal changes in adrenal and gonadal activity in the quail, Perdicula asiatica: involvement of the pineal gland. Comp Biochem Physiol B 128:793–804

    Article  Google Scholar 

  • Tamura H, Nakamura Y, Korkmaz A, Manchester LC, Tan DX, Sugino N, Reiter RJ (2008) Melatonin and the ovary: physiologic and pathophysiologic implications. Fertil Steril (in press). published online ahead of print 18 Sept 2008. doi:10.1016/j.fertnstert..05.016

  • Tan DX, Chen LD, Poeggeler B, Manchester LC, Melatonin Reiter RJ (1993) A potent, endogenous hydroxyl radical scavenger. Endocrine J 1:57–60

    Google Scholar 

  • Tomas-Zapio C, Coto-Montes A (2005) A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res 39:99–104

    Article  Google Scholar 

  • Torres-Farfan H, Richter G, Rojas-Garcia P (2003) Mt1 melatonin receptor in the primate adrenal gland: inhibition of adrenocorticotropin-stimulated cortisol production by melatonin. J Clin Endocrinol Metab 88(1):1450–1458

    Article  Google Scholar 

  • Touitou Y, Bogdan A, Auzeby A, Touitou C (1989) Activity of melatonin and other pineal indoles on the in vitro synthesis of cortisol, cortisone, and adrenal androgens. J Pineal Res 6(4):341–350

    Article  PubMed  CAS  Google Scholar 

  • Troiani ME, Reiter RJ, Vaughan MK, Gonzalez-Brito A, Herbert DC (1988) The depression in rat pineal melatonin production after saline injection at night may be elicited by corticosterone. Brain Res 450(1–2):18–24

    Article  PubMed  CAS  Google Scholar 

  • Tsigos C, Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psych Res 53:865–871

    Article  Google Scholar 

  • Varga G, Ehrchen J, Tsianakas A, Tenbrock K, Rattenholl A, Seeliger S, Mack M, Roth J, Sunderkoetter C (2008) Glucocorticoids induce an activated, anti-inflammatory monocyte subset in mice that resembles myeloid-derived suppressor cells. J Leukoc Biol 84:644–650

    Article  PubMed  CAS  Google Scholar 

  • Vaughan GM (1984) Melatonin in humans. Pineal Res Rev 2:141–201

    CAS  Google Scholar 

  • Vaughan MK, Vaughan GM, Reiter RJ, Benson B (1972) Effect of melatonin and other pineal indoles on adrenal enlargement produced in female mice by pinealectomy, unilateral adrenalectomy, castration and stress. Neuroendocrinology 10:139–154

    Article  PubMed  CAS  Google Scholar 

  • Vijayalaxmi, Thomas CR Jr, Reiter RJ, Herman TS (2002) Melatonin: from basic research to cancer treatment clinics. J Clin Oncol 20(10):2575–2601

    Article  PubMed  CAS  Google Scholar 

  • Vincenzo A, Vincenzo S, Alberto M (1996) The pineal gland and reproduction. Hum Reprod Update 2:225–235

    Article  Google Scholar 

  • Wagner GC, Johnston JD, Clarke IJ, Lincoln GA, Hazlerigg DG (2008) Redefining the limits of daylength responsiveness in a seasonal mammal. Endocrinology 149:32–39

    Article  PubMed  CAS  Google Scholar 

  • Weaver DR, Stehle JH, Stopa EG, Reppert SM (1993) Melatonin receptors in human hypothalamus and pituitary: implications for circadian and reproductive responses to melatonin. J Clin Endocrinol Metab 76:295–301

    Article  PubMed  CAS  Google Scholar 

  • Wen JC, Dhabhar FS, Prendergast BJ (2007) Pineal dependent and -independent effects of photoperiod on immune function in Siberian hamsters (Phodopus sungorus). Horm Behav 51(1):31–39

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC, Kitaysky AS (2002) Endocrine responses to unpredictable environmental events: stress or anti-stress hormones? Integr Comp Biol 42(3):600–609

    Article  PubMed  CAS  Google Scholar 

  • Woo MM, Tai CJ, Kang SK, Nathwani SP, Pang SF, Leung PC (2001) Direct action of melatonin in human granulosa-luteal cells. J Clin Endocrinol Metab 86:4789–4797

    Article  PubMed  CAS  Google Scholar 

  • Zawilska JB, Sadowska M (2002) Prolonged treatment with glucocorticoid dexamethasone suppresses melatonin production by the chick pineal gland and retina. Pol J Pharmacol 54:61–66

    PubMed  CAS  Google Scholar 

  • Zwirska-Korczala K, Kniazewski B, Ostrowska Z, Buntner B (1991) Influence of melatonin on rat thyroid, adrenals and testis secretion during the day. Folia Histochem Cytobiol 29:19–24

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to the Senior Research Fellows Miss Saumya Bahadur, Miss Rajni Chhetri, Miss. Indu Shekhawat, Mr. Anoop Kumar, and Mr. Kamal Kumar for their valuable help in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerasamy Sejian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sejian, V., Bahadur, S., Bharti, V.K., Srivastava, R.S. (2012). Role of Pineal Gland in Relieving Environmental Stress. In: Sejian, V., Naqvi, S., Ezeji, T., Lakritz, J., Lal, R. (eds) Environmental Stress and Amelioration in Livestock Production. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29205-7_9

Download citation

Publish with us

Policies and ethics