Skip to main content

Physiological Responses to Fasting in Bats

  • Chapter
  • First Online:
Comparative Physiology of Fasting, Starvation, and Food Limitation

Abstract

The evolution of powered flight afforded bats the opportunity to fill ecological niches void of non-volant mammals, a circumstance that might explain their remarkable diversity in terms of number of species, diet, and habitat types that they occupy. However, besides its clear ecological advantages, the evolution of powered flight brought about high energetic costs for bats. To compensate for these costs, bats have evolved a variety of energy-saving thermoregulatory traits. The mechanisms underlying these attributes make bats a fascinating model for exploring physiological responses to fasting. In this chapter, we document the diversity of physiological traits behind the ability of bats to undergo long periods of fasting, and we associate it with their respective diets. At one extreme are hematophagous species that are unable to fast longer than 72 h due to its apparent inability to store and mobilize endogenous fuels; at the other are insectivorous vespertilionid and rhinolophid species that can fast for months at a stretch. Despite their ecological importance, far less is known about adaptations to fasting in bats than non-volant mammals or birds. Many questions remain open regarding the physiology, endocrinology, biochemistry, and energetics of fasting in bats and we hope that this review will encourage further investigation on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altringham JD (1996) Bats: biology and behaviour. Oxford University Press, New York

    Google Scholar 

  • Arevalo F, Burgos MJ, Delhoyo N, Lopezluna P (1990) Seasonal-variations in the lipid-composition of white and brown tissues in the bat Pipistrellus pipistrellus. Comp Biochem Physiol B 95:535–539

    Article  Google Scholar 

  • Armstrong RB, Ianuzzo CD, Kunz TH (1977) Histochemical and biochemical properties of flight-muscle fibers in little brown bat, Myotis lucifugus. J Comp Physiol B 119:141–154

    Article  CAS  Google Scholar 

  • Austad SN, Fischer KE (1991) Mammalian aging, metabolism, and ecology—evidence from the bats and marsupials. J Gernotol 46:B47–B53

    CAS  Google Scholar 

  • Bakken BH, Sabat P (2007) Evaporative water loss and dehydration during the night in hummingbirds. Rev Chil Hist Nat 80:267–273

    Google Scholar 

  • Bakken BH, Herrera LG, Carroll RM, Ayala-Berdon J, Schondube JE, del Rio CM (2008) A nectar-feeding mammal avoids body fluid disturbances by varying renal function. Am J Physiol 295:F1855–F1863

    Article  CAS  Google Scholar 

  • Bassett JE (2004) Role of urea in the postprandial urine concentration cycle of the insectivorous bat Antrozous pallidus. Comp Biochem Physiol A 137:271–284

    Article  CAS  Google Scholar 

  • Bauman WA (1990) Seasonal changes in pancreatic insulin and glucagon in the little brown bat (Myotis lucifugus). Pancreas 5:342–346

    Article  PubMed  CAS  Google Scholar 

  • Bennett AF, Ruben JA (1979) Endothermy and activity in vertebrates. Science 206:649

    Article  PubMed  CAS  Google Scholar 

  • Bisson IA, Safi K, Holland RA (2009) Evidence for repeated independent evolution of migration in the largest family of bats. PLoS One 4(10):e7504

    Google Scholar 

  • Borges-Silva CN, Fonseca-Alaniz MH, Alonso-Vale MIC, Takada J, Andreotti S, Peres SB, Cipolla-Neto J, Pithon-Curi TC, Lima FB (2005) Reduced lipolysis and increased lipogenesis in adipose tissue from pinealectomized rats adapted to training. J Pineal Res 39:178–184

    Article  PubMed  CAS  Google Scholar 

  • Boyles JG, Dunbar MB, Whitaker JO (2006) Activity following arousal in winter in North American vespertilionid bats. Mammal Rev 36:267–280

    Article  Google Scholar 

  • Breidenstein CP (1982) Digestion and assimilation of bovine blood by a vampire bat (Desmodus rotundus). J Mammal 63:482–484

    Article  Google Scholar 

  • Burlington RF, Klain GJ (1967) Gluconeogenesis during hibernation and arousal from hibernation. Comp Biochem Physiol 22:701–708

    Article  PubMed  CAS  Google Scholar 

  • Cahill GF (1976) Starvation in man. Clin Endocrinol Metab 5:397–415

    Article  CAS  Google Scholar 

  • Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Phys Rev 83:1153–1181

    CAS  Google Scholar 

  • Castellini MA, Rea LD (1992) The biochemistry of natural fasting at its limits. Experientia 48:575–582

    Article  PubMed  CAS  Google Scholar 

  • Caviedes-Vidal E, McWhorter TJ, Lavin SR, Chediack JG, Tracy CR, Karasov WH (2007) The digestive adaptation of flying vertebrates: High intestinal paracellular absorption compensates for smaller guts. 104:19132–19137

    CAS  Google Scholar 

  • Caviedes-Vidal E, Karasov WH, Chediack JG, Fasulo V, Cruz-Neto AP, Otani L (2008) Paracellular Absorption: A Bat Breaks the Mammal Paradigm. 3: Article No.: e1425

    Google Scholar 

  • Cherel Y, Robin JP, Le Maho Y (1988) Physiology and biochemistry of long-term fasting in birds. Can J Zool 66:159–166

    Article  CAS  Google Scholar 

  • Corssmit EPM, Romijn JA, Sauerwein HP (2001) Review article—Regulation of glucose production with special attention to nonclassical regulatory mechanisms: a review. Metabolism 50:742–755

    Article  PubMed  CAS  Google Scholar 

  • Damassa DA, Gustafson AW, Kwiecinski GG, Gagin GA (1995) Seasonal influences on the control of plasma sex hormone-binding globulin by T4 in male little brown bats. Am J Physiol 268:R1303–R1309

    PubMed  CAS  Google Scholar 

  • Dark J (2005) Annual lipid cycles in hibernators: integration of physiology and behavior. Annu Rev Nutr 25:469–497

    Article  PubMed  CAS  Google Scholar 

  • Decuypere E, Kuhn ER (1985) Effect of a single injection of prolactin on the serum concentrations of thyroid-hormones and corticosterone and liver monodeiodinase in the domestic-fowl before and after hatching. J Endocrinol 104:363–366

    Article  PubMed  CAS  Google Scholar 

  • Derlacz RA, Poplawski P, Napierala M, Jagielski AK, Bryla J (2005) Melatonin-induced modulation of glucose metabolism in primary cultures of rabbit kidney-cortex tubules. J Pineal Res 38:164–169

    Article  PubMed  CAS  Google Scholar 

  • Dodgen CL, Blood FR (1956) Energy sources in the bat. Am J Physiol 187:R151–R154

    Google Scholar 

  • Eddy SF, Storey KB (2004) Up-regulation of fatty acid-binding proteins during hibernation in the little brown bat, Myotis lucifugus. Biochim Biophys Acta 1676:63–70

    Article  PubMed  CAS  Google Scholar 

  • Foehring RC, Hermanson JW (1984) Morphology and histochemistry of flight muscles in free-tailed bats, Tadarida brasiliensis. J Mammal 65:388–394

    Article  Google Scholar 

  • Freitas MB, Welker AF, Millan SF, Pinheiro EC (2003) Metabolic responses induced by fasting in the common vampire bat Desmodus rotundus. J Comp Physiol B 173:703–707

    Article  PubMed  CAS  Google Scholar 

  • Freitas MB, Passos CBC, Vasconcelos RB, Pinheiro EC (2005) Effects of short-term fasting on energy reserves of vampire bats (Desmodus rotundus). Comp Biochem Physiol B 140:59–62

    Article  PubMed  CAS  Google Scholar 

  • Freitas MB, Goulart LS, Barros MS, Morais DB, Amaral TS, Matta SLP (2010) Energy metabolism and fasting in male and female insectivorous bats Molossus molossus (Chiroptera: Molossidae). Braz J Biol 70:617–621

    Article  PubMed  CAS  Google Scholar 

  • Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Article  PubMed  CAS  Google Scholar 

  • Gan JC, Jeffay H (1967) Origins and metabolism of the intracellular amino acid pools in rat liver and muscle. BBA-Gen Subjects 148:448–459

    Article  CAS  Google Scholar 

  • Gavrilova O, Barr V, MarcusSamuels B, Reitman M (1997) Hyperleptinemia of pregnancy associated with the appearance of a circulating form of the leptin receptor. J Biol Chem 272:30546–30551

    Article  PubMed  CAS  Google Scholar 

  • Geiser F (1988) Reduction of metabolism during hibernation and daily torpor in mammals and birds—temperature effect or physiological inhibition? J Comp Physiol B 158:25–37

    Article  PubMed  CAS  Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, McMurchie EJ (1984) Differences in the thermotropic behavior of mitochondrial-membrane respiratory enzymes from homeothermic and heterothermic endotherms. J Comp Physiol B 155:125–133

    Article  CAS  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds—physiological variables and classification of torpor patterns. Physiol Zool 68:935–966

    Google Scholar 

  • Groscolas R, Herzberg GR (1997) Fasting-induced selective mobilization of brown adipose tissue fatty acids. J Lipid Res 38:228–238

    PubMed  CAS  Google Scholar 

  • Guglielmo CG (2010) Move that fatty acid: fuel selection and transport in migratory birds and bats. Integr Comp Biol 50:336–345

    Article  PubMed  Google Scholar 

  • Guglielmo CG, Haunerland NH, Williams TD (1998) Fatty acid binding protein, a major protein in the flight muscle of migrating Western Sandpipers. Comp Biochem Physiol A 119:549–555

    Article  CAS  Google Scholar 

  • Gustafson AW, Belt WD (1981) The adrenal-cortex during activity and hibernation in the male little brown bat, Myotis lucifugus—annual rhythm of plasma-cortisol levels. Gen Comp Endocr 44:269–278

    Article  PubMed  CAS  Google Scholar 

  • Hannon JP, Vaughan DA (1961) Initial stages of intermediary glucose catabolism in hibernator and nonhibernator. Am J Physiol 201:217

    PubMed  CAS  Google Scholar 

  • Harrison JF, Roberts SP (2000) Flight respiration and energetics. Annu Rev Physiol 62:179–205

    Article  PubMed  CAS  Google Scholar 

  • Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141:317–329

    Article  PubMed  Google Scholar 

  • Hermanson JW, Foehring RC (1988) Histochemistry of flight muscles in the jamaican fruit bat, Artibeus jamaicensis—implications for motor control. J Morphol 196:353–362

    Article  PubMed  CAS  Google Scholar 

  • Hoyos M, Guerrero JM, Perez-Cano R, Olivan J, Fabiani F, Garcia-Perganeda A, Osuna C (2000) Serum cholesterol and lipid peroxidation are decreased by melatonin in diet-induced hypercholesterolemic rats. J Pineal Res 28:150–155

    Article  PubMed  CAS  Google Scholar 

  • Jenni-Eiermann S, Jenni L (1994) Plasma metabolite levels predict individual body-mass changes in a small long-distance migrant, the garden-warbler. Auk 111:888–899

    Article  Google Scholar 

  • Karasov WH, Pinshow B (2000) Test for physiological limitation to nutrient assimilation in a long-distance passerine migrant at a springtime stopover site. Physiol Biochem Zool 73:335–343

    Article  PubMed  CAS  Google Scholar 

  • Keegan DJ (1977) Aspects of assimilation of sugars by Rousettus aegyptiacus. Comp Biochem Physiol A 58:349–352

    Article  CAS  Google Scholar 

  • Kettelhut IC, Foss MC, Migliorini RH (1980) Glucose homeostasis in a carnivorous animal (cat) and in rats fed a high protein diet. Am J Physiol 239:R437–R444

    PubMed  CAS  Google Scholar 

  • Klain GJ, Whitten BK (1968) Carbon dioxide fixation during hibernation and arousal from hibernation. Comp Biochem Physiol 25:363–366

    Article  PubMed  CAS  Google Scholar 

  • Korine C, Zinder O, Arad Z (1999) Diurnal and seasonal changes in blood composition of the free living Egyptian fruit bat (Rousettus aegyptiacus). J Comp Physiol B 169:280–286

    Article  PubMed  CAS  Google Scholar 

  • Kronfeld-Schor N, Richardson C, Silvia BA, Kunz TH, Widmaier EP (2000) Dissociation of leptin secretion and adiposity during prehibernatory fattening in little brown bats. Am J Physiol 279:R1277–R1281

    CAS  Google Scholar 

  • Krutzsch PH, Hess M (1961) Studies on the ascorbic acid content of the adrenal of the bat (Myotis lucifugus). Endocrinology 69:664–666

    Article  PubMed  CAS  Google Scholar 

  • Kunz TH, Wrazen JA, Burnett CD (1998) Changes in body mass and fat reserves in pre-hibernating little brown bats (Myotis lucifugus). Ecoscience 5:8–17

    Google Scholar 

  • Lord GM, Matarese G, Howard LK, Baker RJ, Bloom SR, Lechler RI (1998) Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394:897–901

    Article  PubMed  CAS  Google Scholar 

  • Lyman CP, Leduc EH (1953) Changes in blood sugar and tissue glycogen in the hamster during arousal from hibernation. J Cell Comp Physiol 41:471–491

    Article  CAS  Google Scholar 

  • Mazepa RC, Cuevas MJ, Collado PS, Gonzalez-Gallego J (2000) Melatonin increases muscle and liver glycogen content in nonexercised and exercised rats. Life Sci 66:153–160

    Article  PubMed  CAS  Google Scholar 

  • McCue MD (2010) Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A 156:1–18

    Google Scholar 

  • McGuire LP, Guglielmo CG (2009) What can birds tell us about the migration physiology of bats? J Mammal 90:1290–1297

    Article  Google Scholar 

  • McGuire LP, Fenton MB, Faure PA, Guglielmo CG (2009) Determining feeding state and rate of mass change in insectivorous bats using plasma metabolite analysis. Physiol Biochem Zool 82:812–818

    Article  PubMed  CAS  Google Scholar 

  • McNab BK (1973) Energetics and the distribution of vampires. J Mammal 54:131–144

    Article  Google Scholar 

  • McNurlan MA, Tomkins AM, Garlick PJ (1979) The effect of starvation on the rate of protein synthesis in rat liver and small intestine. Biochem J 178:373–379

    PubMed  CAS  Google Scholar 

  • McWilliams SR, Karasov WH (2001) Phenotypic flexibility in digestive system structure and function in migratory birds and its ecological significance. Comp Biochem Physiol A 128:579–593

    CAS  Google Scholar 

  • McWilliams SR, Karasov WH, Greenberg R, Marra PP (2005) Migration takes guts: digestive physiology of migratory birds and its ecological significance. In: Greenberg R, Marra PP (eds) Birds of two worlds: the ecology and evolution of migration. The Johns Hopkins University Press, Baltimore and London

    Google Scholar 

  • Modan M, Halkin H, Almog S, Lusky A, Eshkol A, Shefi M, Shitrit A, Fuchs Z (1985) Hyperinsulinemia—a link between hypertension obesity and glucose-intolerance. J Clin Invest 75:809–817

    Article  PubMed  CAS  Google Scholar 

  • Mokrasch LC, Grady HJ, Grisolia S (1960) Thermogenic and adaptive mechanisms in hibernation and arousal from hibernation. Am J Physiol 199:945–949

    PubMed  CAS  Google Scholar 

  • Morris S, Curtin AL, Thompson MB (1994) Heterothermy, torpor, respiratory gas-exchange, water-balance and the effect of feeding in gould long-eared bat nyctophilus-gouldi. J Exp Biol 197:309–335

    PubMed  CAS  Google Scholar 

  • Munro D, Thomas DW (2004) The role of polyunsaturated fatty acids in the expression of torpor by mammals: a review. Zool 107:29–48

    Article  CAS  Google Scholar 

  • Munshi-South J, Wilkinson GS (2010) Bats and birds: exceptional longevity despite high metabolic rates. Ageing Res Rev 9:12–19

    Article  PubMed  CAS  Google Scholar 

  • Mustonen AM, Nieminen P, Hyvarinen H (2002) Melatonin and the wintering strategy of the tundra vole, Microtus oeconomus. Zool Sci 19:683–687

    Article  PubMed  CAS  Google Scholar 

  • Neuweiler G (2000a) The biology of bats. Oxford University Press, USA

    Google Scholar 

  • Neuweiler G (2000b) Heat and water balance. In: Neuweiler G (ed) The biology of bats. Oxford University Press, New York

    Google Scholar 

  • Nishida S, Segawa T, Murai I, Nakagawa S (2002) Long-term melatonin administration reduces hyperinsulinemia and improves the altered fatty-acid compositions in type 2 diabetic rats via the restoration of Delta-5 desaturase activity. J Pineal Res 32:26–33

    Article  PubMed  CAS  Google Scholar 

  • O’Shea TJ (1976) Fat content in migratory central Arizona Brazilian free-tailed bats, Tadarida brasiliensis (Molossidae). Southwest Nat 21:321–326

    Article  Google Scholar 

  • Okon EE (1977) Functional anatomy of alimentary canal in fruit bat, Eidolon helvum, and insect bat, Tadarida nigeriae. Acta Zool 58:83–93

    Article  Google Scholar 

  • Ortmann S, Heldmaier G, Schmid J, Ganzhorn JU (1997) Spontaneous daily torpor in Malagasy mouse lemurs. Naturwissenschaften 84:28–32

    Article  PubMed  CAS  Google Scholar 

  • Peschke E (2008) Melatonin, endocrine pancreas and diabetes. J Pineal Res 44:26–40

    PubMed  CAS  Google Scholar 

  • Pinheiro EC, Taddei VA, Mighorini RH, Kettelhut IC (2006) Effect of fasting on carbohydrate metabolism in frugivorous bats (Artibeus lituratus and Artibeus jamaicensis). Comp Biochem Physiol B 143:279–284

    Article  PubMed  CAS  Google Scholar 

  • Popa-Lisseanu AG, Voigt CC (2009) Bats on the move. J Mammal 90:1283–1289

    Article  Google Scholar 

  • Protzek AOP, Rafacho A, Viscelli BA, Bosqueiro JR, Cappelli AP, Paula FMM, Boschero AC, Pinheiro EC (2010) Insulin and glucose sensitivity, insulin secretion and beta-cell distribution in endocrine pancreas of the fruit bat Artibeus lituratus. Comp Biochem Physiol A 157:142–148

    Article  CAS  Google Scholar 

  • Rouk CS, Glass BP (1970) Comparative gastric histology of 5 north and central american bats. J Mammal 51:455–472

    Article  PubMed  CAS  Google Scholar 

  • Roy VK, Krishna A (2010) Role of leptin in seasonal adiposity associated changes in testicular activity of vespertilionid bat, Scotophilus heathi. Gen Comp Endocr 168:160–168

    Article  PubMed  CAS  Google Scholar 

  • Ruf T, Heldmaier G (1992) The impact of daily torpor on energy requirements in the Djungarian hamster, Phodopus sungorus. Physiol Zool 65:994–1010

    Google Scholar 

  • Ruf T, Arnold W (2008) Effects of polyunsaturated fatty acids on hibernation and torpor: a review. Am J Physiol 294:R1044–R1052

    Article  CAS  Google Scholar 

  • Schmid J, Ruf T, Heldmaier G (2000) Metabolism and temperature regulation during daily torpor in the smallest primate, the pygmy mouse lemur (Microcebus myoxinus) in Madagascar. J Comp Physiol B 170:59–68

    Article  PubMed  CAS  Google Scholar 

  • Singh UP, Krishna A, Bhatnagar KP (2002) Seasonal changes in thyroid activity in the female sheath-tailed bat, Taphozous longimanus (Chiroptera: Emballonuridae). Acta Biol Hung 53:267–278

    Article  PubMed  CAS  Google Scholar 

  • Speakman JR (2001) The evolution of flight and echolocation in bats: another leap in the dark. Mammal Rev 31:111–130

    Article  Google Scholar 

  • Speakman JR, Thomas DW (2003) Physiological ecology and energetics of bats. In: Kunz TH, Thomas DW (eds) Bat ecology. Chicago Press, Chicago

    Google Scholar 

  • Srivastava RK, Krishna A (2008) Seasonal adiposity, correlative changes in metabolic factors and unique reproductive activity in a vespertilionid bat, Scotophilus heathi. J Exp Zool A 309A:94–110

    Article  CAS  Google Scholar 

  • Srivastava RK, Krishna A (2010) Melatonin modulates glucose homeostasis during winter dormancy in a vespertilionid bat, Scotophilus heathi. Comp Biochem Physiol A 155:392–400

    Article  CAS  Google Scholar 

  • Stewart JM (2000) The cytoplasmic fatty-acid-binding proteins: thirty years and counting. Cell Mol Life Sci 57:1345–1359

    Article  PubMed  CAS  Google Scholar 

  • Studier EH (1970) Evaporative water loss in bats. Comp Biochem Physiol 35:935

    Article  Google Scholar 

  • Studier EH, Wilson DE (1983) Natural urine concentrations and composition in neotropical bats. Comp Biochem Physiol A 75:509–515

    Article  Google Scholar 

  • Szewczak JM (1997) Matching gas exchange in the bat from flight to torpor. Amer Zool 37:92–100

    Google Scholar 

  • Townsend KL, Kunz TH, Widmaier EP (2008) Changes in body mass, serum leptin, and mRNA levels of leptin receptor isoforms during the premigratory period in Myotis lucifugus. J Comp Physiol B 178:217–223

    Article  PubMed  CAS  Google Scholar 

  • Tracy CR, McWhorter TJ, Korine C, Wojciechowski MS, Pinshow B, Karasov WH (2007) Absorption of sugars in the Egyptian fruit bat (Rousettus aegyptiacus): a paradox explained. J Exp Biol 210:1726–1734

    Article  PubMed  CAS  Google Scholar 

  • Turbill C, Kortner G, Geiser F (2003) Natural use of heterothermy by a small, tree-roosting bat during Summer. Physiol Biochem Zool 76:868–876

    Article  PubMed  Google Scholar 

  • Van Breukelen F, Martin SL (2001) Translational initiation is uncoupled from elongation at 18 degrees C during mammalian hibernation. Am J Physiol 281:R1374–R1379

    Google Scholar 

  • Van Breukelen F, Carey HV (2002) Ubiquitin conjugate dynamics in the gut and liver of hibernating ground squirrels. J Comp Physiol B 172:269–273

    Article  PubMed  CAS  Google Scholar 

  • Vock R, Hoppeler H, Claassen H, Wu DXY, Billeter R, Weber JM, Taylor CR, Weibel ER (1996) Design of the oxygen and substrate pathways. 6. Structural basis of intracellular substrate supply to mitochondria in muscle cells. J Exp Biol 199:1689–1697

    PubMed  CAS  Google Scholar 

  • Wang LCH (1978) Energetic and field aspects of mammalian torpor: The richardson’s ground-squirrel. In: Wang LCH, Hudson JW (eds) Strategies in the cold. Academic Press, New York

    Google Scholar 

  • Warner ACI (1981) The mean retention times of digesta markers in the gut of the tammar, Macropus eugenii. Aust J Zool 29:759–771

    Article  Google Scholar 

  • Weber NS, Findley JS (1970) Warm-season changes in fat content of Eptesicus fuscus. J Mammal 51:160–162

    Article  Google Scholar 

  • Wells HJ, Makita M, Wells WW, Krutzsch PH (1965) A comparison of lipid composition of brown adipose tissue from male and female bats (Myotis lucifugus) during hibernating and non-hibernating seasons. Biochim Biophys Acta 98:269–277

    Article  PubMed  CAS  Google Scholar 

  • Whitten BK, Schrader LE, Huston RL, Honold GR (1970) Hepatic polyribosomes and protein synthesis—seasonal changes in a hibernator. Int J Biochem 1:406–408

    Article  CAS  Google Scholar 

  • Widmaier EP, Long J, Cadigan B, Gurgel S, Kunz TH (1997) Leptin corticotropin-releasing hormone (CRH), and neuropeptide Y (NPY) in free-ranging pregnant bats. Endocr 7:145–150

    Article  CAS  Google Scholar 

  • Widmaier EP, Gornstein ER, Hennessey JL, Bloss JM, Greenberg JA, Kunz TH (1996) High plasma cholesterol, but low triglycerides and plaque-free arteries, in Mexican free-tailed bats. Am J Physiol 271:R1101–R1106

    PubMed  CAS  Google Scholar 

  • Wilkinson GS (1984) Reciprocal food sharing in the vampire bat. Nature 308:181–184

    Article  Google Scholar 

  • Willis CKR, Lane JE, Liknes ET, Swanson DL, Brigham RM (2005) Thermal energetics of female big brown bats (Eptesicus fuscus). Can J Zool 83:71–879

    Article  Google Scholar 

  • Wojciechowski MS, Jefimow M, Tegowska E (2007) Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis). Comp Biochem Physiol A 147:828–840

    Article  CAS  Google Scholar 

  • Yacoe ME (1983) Maintenance of the pectoralis-muscle during hibernation in the big brown bat, Eptesicus fuscus. J Comp Physiol B 152:97–104

    Article  Google Scholar 

Download references

Acknowledgments

We thank the editor, Dr. Marshall D. McCue, for his valuable comments and suggestions and for inviting us to contribute to this book. This is paper 739 of the Mitrani Department of Desert Ecology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Ben-Hamo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ben-Hamo, M., Muñoz-Garcia, A., Pinshow, B. (2012). Physiological Responses to Fasting in Bats. In: McCue, M. (eds) Comparative Physiology of Fasting, Starvation, and Food Limitation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29056-5_16

Download citation

Publish with us

Policies and ethics