Skip to main content

Noble Gases in Oil and Gas Accumulations

  • Chapter
The Noble Gases as Geochemical Tracers

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Noble gas geochemistry consists of a series of inert natural tracers which allow quantitative geological modeling relative to the migration, trapping and extraction of hydrocarbon reserves. The noble gas data allow accurate description of complex natural and technological processes involved in identifying and extracting oil and gas discoveries. Among others, the origins of non hydrocarbon gas compounds such as CO2 present in hydrocarbon accumulations, the physical interactions between hydrocarbon phases and water, the dynamics of oil and gas migration through porous sedimentary rocks, are some of the current applications of noble gases to hydrocarbon exploration in high risk areas. Unconventional hydrocarbon exploration and production, which may represent the future of our hydrocarbon consumption, raise new questions which may also be assessed with these unique tracers. Oil and gas shale production as well as gas hydrates, are future targets which may benefit from the specific properties of noble gases as tracers in hydrocarbon fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ballentine CJ, O’Nions RK, Oxburgh ER, Horvath F, Deak J (1991) Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin. Earth Planet Sci Lett 105:229–246

    Google Scholar 

  • Ballentine CJ, O’Nions RK (1994) The use of natural He, Ne and Ar isotopes to study hydrocarbon-related fluid provenance, migration and mass balance in sedimentary basins. In: Parnell J (ed) geofluids: origin, migration and evolution of fluids in sedimentary basins. Geol Soc Spec Pub, 78: 347–361

    Google Scholar 

  • Ballentine CJ, O’Nions RK, Coleman ML (1996) A magnus opus: helium, neon and argon isotopes in a North Sea oil field. Geochim Cosmochim Acta 60:831–849

    Google Scholar 

  • Ballentine CJ, Burnard PG (2002) Production, release and transport of noble gases in the continental crust. In noble gases in geochemistry and cosmoschemistry. Rev Mineral Geochem 47:481–538

    Google Scholar 

  • Ballentine CJ, Burgess R, Marty B (2002) Tracing fluid origin, transport and interaction in the crust. In noble gases in geochemistry and cosmoschemistry. Rev Mineral Geochem 47:539–614

    Google Scholar 

  • Ballentine CJ, Sherwood-Lollar BS (2002) Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field USA. Geochim Cosmochim Acta 66(14):2483–2497

    Google Scholar 

  • Ballentine CJ, Marty B, Lollar BS, Cassidy M (2005) Neon isotopes constrain convection and volatile origin in the Earth’s mantle. Nature 433(7021):33–38

    Google Scholar 

  • Battani A, Sarda P, Prinzhofer A (2000) Basin scale natural gas source, migration and trapping traced by noble gases and major elements; the Pakistan Indus Basin. Earth Planet Sci Lett 181:229–249

    Google Scholar 

  • Battani A, Prinzhofer A, Deville E, Ballentine CJ (2011) Trinidad mud volcanoes: the origin of the gas. In: Wood L (ed) Mobile shale basins, vol 93. AAPG Memoir, U.S., pp 1–14

    Google Scholar 

  • Berecz E, Balla-Achs M (1983) Gas hydrates. English translation of gazhidratok. Amsterdam : Series studies in inorganic chemistry N° 4, Elsevier, p 343, ISBN 0444996575

    Google Scholar 

  • Bosh A, Mazor E (1988) Noble gases association with water and oil as depicted by aztmospheric noble gases: case studies from the southeastern Mediterranean Coastal Plain. Earth Planet Sci Lett 87:338–346

    Google Scholar 

  • Brown A (2010) Formation of high helium gases: a guide for explorationists 2010 AAPG Conference, New Oleans, Louisiana, USA, April 11–14

    Google Scholar 

  • Burnard PG, Graham DW, Farley KA (1997) Vesicle-specific noble gas analyses of popping rocks: implication for primordial noble gases in Earth. Science 276:568–571

    Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Oxford University Press, Oxford, p 424

    Google Scholar 

  • Crovetto R, Fernandez-Prini R, Japas ML (1981) Solubility of intert gases and methane in H2O and in D2O in the temperature range of 300 to 600 K. J Chem Phys 76:1077–1086

    Google Scholar 

  • Deville E, Battani A, Griboulard R, Guerlais S, Herbin JP, Houzay JP, Muller C, Prinzhofer A (2003) Mud volcanism origin and processes: New insights from Trinidad. Special publication 216 of the Geological Society London on subsurface Sediment mobilisation, pp 475–490

    Google Scholar 

  • Dreyfus S. (2006) Impact de la migration et de la biodégradation sur les signatures chimiques et isotopiques des traceurs métalliques dans les huiles. PhD. Pau University/IFP, 27th April 2006

    Google Scholar 

  • Dunai TJ, Baur H (1995) Helium, neon and argon systematics of the European subcontinental mantle: implication for its geochemical evolution. Geochim Cosmochim Acta 59:2767–2783

    Google Scholar 

  • Dyadin YA, Larionov EG, Mirinskij DS, Mikina TV, Starostina LI (1996) Hydrate formation in the krypton-water and xenon-water systems up to 10 kbars. 2nd international conference on natural gaz hydrates, Toulouse, June 2–6, 1996, pp 59–66

    Google Scholar 

  • Elliot T, Ballentine CJ, O’Nions RK, Ricchiuto T (1993) Carbon, helium, neon and argon isotopes in a Po Basin (northern Italy) natural gas field. Chem Geol 106:429–440

    Google Scholar 

  • Ellouz-Zimmermann N, Deville E, Muller C, Lallemant S, Subhani AB, Tabreez AR (2007) Impact of sedimentation on convergent margin tectonics. Example of the Makran accretionary prism (Pakistan). In: Lacombe O, Lavé J, Roure F, Vergés J (eds) Thust belts and Foreland Basins, from fold kinematics to hydrocarbon systems. Springer, pp 327–350

    Google Scholar 

  • Fanale FP, Cannon WA (1971) Adsorption on the Martian regolith. Nature 230:502–504

    Google Scholar 

  • Frick U, Chang S (1977) Ancient carbon and noble gas fractionation. Proceedings Lunar Science conference 8th, pp 263–272

    Google Scholar 

  • Giannesini S, Prinzhofer A, Moreira M, Magnier C (2008) Influence of the bound water on molecular migration of CO2 and noble gases in clay media. Goldschmidt Conference, Vancouver, Canada

    Google Scholar 

  • Gilfillan SMV, Sherwood-Lollar B, Holland G, Blagburn D, Stevens S, Schoell M, Cassidy M, Ding Z, Zhou Z, Lacrampe-Couloume G, Ballentine CJ (2009) Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature 458:614–618

    Google Scholar 

  • Gold T, Held M (1987) Helium-nitrogen-methane systematic in natural gases of Texas and Kansas. J Pet Geol 10(4):415–424

    Google Scholar 

  • Graham DW (2002) Noble gas isotope geochemistry of mid-oceanic ridge and ocean island basalts: Characterization of mantle source reservoirs. In noble gases in geochemistry and cosmoschemistry. Review in Mineralogy and Geochemistry 47:247–304

    Google Scholar 

  • Harvey AH (1998) Applications of near-critical dilute-solution thermodynamics. Ind Eng Chem Res 37(8):3080–3088

    Google Scholar 

  • Honda M, McDougall I, Patterson DB, Doulgeris A, Clague DA (1991) Possible solar noble-gas component in Hawaiian basalts. Nature 349:149–151

    Google Scholar 

  • Jähne B, Heinz G, Dietrich W (1987) Measurement of the diffusion coefficient of sparingly soluble gases in water. J Geophys Res 92(10):767–776

    Google Scholar 

  • Jenden PD, Kaplan IR, Poreda RJ, Craig H (1988) Origin of nitrogen-rich natural gases in the California Great Valley: evidence from helium, carbon and nitrogen isotope ratios. Geochim Cosmochim Acta 52:851–861

    Google Scholar 

  • Jenden PD, Hilton DR, Kaplan IR, Craig H (1993) Abiogenic hydrocarbons and mantle helium in oil and gas fields. In: Howell DG (ed) The future of natural gas, U.S. geological survey professionnal paper, 1570: 31–56

    Google Scholar 

  • Kharaka YK, Specht DJ (1988) The solubility of noble gases in crude oil at 25–100 1C. Appl Geochem 3:137–144

    Google Scholar 

  • Kennedy BM, Hiyagon H, Reynolds JH (1990) Crustal neon: a striking uniformity. Earth Planet Sci Lett 98:277–286

    Google Scholar 

  • Kennedy BM, Torgersen T, Van Soest MC (2002) Multiple atmospheric noble gas components in hydrocarbon reservoirs: a study of the Northwest Shelf, Delaware Basin SE New Mexico. Geochim Cosmochim Acta 66(16):2807–2822

    Google Scholar 

  • Kipfer R, Aeschbach-Hertig W, Peeters F, Stute M (2002) Noble gas in lakes and ground waters. In noble gases in geochemistry and cosmoschemistry. Rev Mineral Geochem 47:615–689

    Google Scholar 

  • Kotarba MJ, Nagao K (2008) Composition and origin of natural gases accumulated in the Polish znd Ukrainian parts of the CArepathian region: gaseous hydrocarbons, noble gases, carbon dioxide and nitrogen. Chemical Geol 255:426–438

    Google Scholar 

  • Kurz MD, Jenkins WJ (1981) The distribution of helium in oceanic basaltic glasses. Earth Planet Sci Lett 53:41–54

    Google Scholar 

  • Magnier C, Prinzhofer A, Flauraud E, Giannesini S (2011) Effective diffusion rates of CO2 and associated noble gases in low permeability rocks. Submitted to OGST

    Google Scholar 

  • Mamyrin BA, Tolstikhin IN (1984) Helium isotopes in nature. Elsevier, Amsterdam, p 273

    Google Scholar 

  • Mazor E, Bosh A (1987) Noble gas in formations fluids from deep sedimentary basins: a review. Appl Geochem 2:621–627

    Google Scholar 

  • Moreira M, Allegre CJ (1998) Helium-neon systematic and the structure of the mantle. Chem Geol 147:53–59

    Google Scholar 

  • Morrison P, Pine J (1955) Radiogenic origin of the helium isotopes in rocks. Ann N Y Acad Sci 62:69–92

    Google Scholar 

  • Nagao K, Takaoka N, Matsubayashi O (1981) Rare gas isotopic compositions in natural gases of Japan. Earth Planet Sci Lett 53:175–188

    Google Scholar 

  • O’Nions RK, Oxburg ER (1988) Helium, volatile fluxes and the development of the continental crust. Earth Planet Sci Lett 90:331–447

    Google Scholar 

  • O’Nions RK, Ballentine CJ (1993) Rare gas studies of basin scale fluid movement. Phil Trans R Soc London A 344:141–156

    Google Scholar 

  • Oxburgh ER, O’Nions RK, Hill RI (1986) Helium isotopes in sedimentary basins. Nature 324(18/24):632–635

    Google Scholar 

  • Palya AP, Buick IS, Bebout GE (2011) Storage and mobility of nitrogen in the continental crust: evidence from partially melted metasedimentary rocks, Mt. Stafford Australia. Chemical Geology 281:211–226

    Google Scholar 

  • Pinti DL, Marty B (1995) Noble gases in crude oils from the Paris Basin, France: implications for the origin of fluids and constraints on oil-water-gas interactions. Geochim Cosmochim Acta 59:3389–3404

    Google Scholar 

  • Podosek FA, Bernatowicz TJ, Kramer FE (1982) Adsorption of xenon and krypton on shales. Geochim Cosmochim Acta 45(12):2401–2415

    Google Scholar 

  • Porcelli D, Ballentine CJ, Wieler R (2002) An overview of noble gas geochemistry and cosmochemistry. In noble gases in geochemistry and cosmoschemistry. Rev Mineral Geochem 47:1–20

    Google Scholar 

  • Prinzhofer A, Pernaton E (1997) Isotopically light methane in natural gases: bacterial imprint or segregative migration? Chem Geol 142:193–200

    Google Scholar 

  • Prinzhofer A, Guzman-Vega MA, Battani A, Escudero M (2000) Gas geochemistry of the Macuspana Basin, Mexico: thermogenic accumulations in sediments impregnated by bacterial gas. Mar Pet Geol 17:1029–1040

    Google Scholar 

  • Prinzhofer A, Battani A (2003) Gas isotope tracing: an important tool for hydrocarbon exploration. Revue de l’IFP, special publication for B. Tissot’s jubilee, June 2003. Oil and gas science and technology. Rev IFP. 58(2): 299–311

    Google Scholar 

  • Prinzhofer A, Dos Santos Vaz, Neto E, Battani A (2010) Coupled use of carbon isotopes and noble gas isotopes in the Potiguar basin (Brazil): Fluids migration and mantle influence. Mar Pet Geol 27:1273–1284

    Google Scholar 

  • Rebour V, Billotte J, Deveugele M, Jambon A, le Guen C (1997) Molecular diffusion in water saturated rocks: a new experimental method. J Cont Hydrol 28:71–93

    Google Scholar 

  • Reid RC, Praunsnitz JM, Sherwood TK (1977) The properties of gases and liquids. McGraw-Hill (ed), p 688

    Google Scholar 

  • Ricard E, Pecheyran C, Ortega GS, Prinzhofer A, Donard OFX (2011) Direct analysis of trace elements in crude oils by high-repetition-rate femtosecond laser ablation coupled to ICPMS detection. Anal Bioanal Chem 399:2153–2165

    Google Scholar 

  • Rudnick R, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Google Scholar 

  • Sano Y, Tominaga T, Wakita H (1982) Elemental and isotopic abundance of rare gases in natural gases obtained by a quadrupole mass spectrometer. Geochem J 16:279–286

    Google Scholar 

  • Sano Y, Watika H, Huang CW (1986) Helium flux in a continental land area from 3He/4He ratio in northern Taiwan. Nature 323:55–57

    Google Scholar 

  • Sarda P, Staudacher T, Allegre CJ (1988) Neon isotopes in submarine basalts. Earth Planet Sci Lett 91:73–88

    Google Scholar 

  • Sherwood-Lollar B, Weise SM, Frape SK, Barker JF (1994) Isotopic constraints on the migration of hydrocarbon and helium gases of southwestern Ontario. Bull Can Pet Geol 42(3):283–295

    Google Scholar 

  • Sherwood-Lollar B, Ballentine CJ, O′Nions RK (1997) The fate of mantle-derived carbon in a continental sedimentary basin: integration of CHe relationships and stable isotope signatures. Geochim Cosmochim Acta 61(11):2295–2307

    Google Scholar 

  • Smith SP, Kennedy BM (1983) The solubility of noble gas in water and in NaCl brine. Geochim Cosmochim Acta 47:503–515

    Google Scholar 

  • Smith SP (1985) Noble gas solubility at high temperature. EOS Trans Am Geophys Union 66:397

    Google Scholar 

  • Staudacher T, Sarda P, Richardson SH, Allegre CJ, Sagna I, Dmitriev LV (1989) Noble gas in basalt glasses from a Mid-Atlantic Ridge topographic high at 14°N geodynamic consequences. Earth Planet Sci Lett 96:119–133

    Google Scholar 

  • Steiger RH, Jager E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Google Scholar 

  • Stuart FM, Lass-Evans S, Fitton G, Ellam RM (2003) High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424(6944):57–59

    Google Scholar 

  • Torgersen T, Kennedy BM (1999) Ar–Xe enrichments in Elk Hills oil field gases: role of water in migration and storage. Earth Planet Sci Lett 167:239–253

    Google Scholar 

  • Trieloff M, Kunz J, Clague DA, Harrison D, Allegre CJ (2000) The nature of pristine noble gases in mantle plumes. Science 288:1036–1039

    Google Scholar 

  • Trieloff M, Kunz J, Allegre CJ (2002) Noble gas systematic of the Réunion mantle plume source and the origin of primordial noble gases in Earth’s mantle. Earth Planet Sci Lett 200:297–313

    Google Scholar 

  • Vacquand C, Guyot F, Prinzhofer A, Magnier C (2011) An experimental study of hydrogen migration through water saturated porous rocks. Submitted to OGST

    Google Scholar 

  • Wacker JF, Zadnik MG, Anders E (1985) Laboratory simulation of meteoritic noble gases. I. Sorption of xenon on carbon: trapping experiments. Geochim Cosmochim Acta 49:1035–1048

    Google Scholar 

  • Wacker JF (1989) Laboratory simulation of meteoritic noble gases. III. Sorption of neon, argon, krypton and xenon on carbon elemental fractionation. Geochim Cosmochim Acta 53:1421–1433

    Google Scholar 

  • Wasserburg GJ, Mazor E, Zartman RE (1963) Isotopic and chemical composition of some terrestriam natural gases. In: Geiss J, Goldberg ED (eds) Earth science and meteorites, p 219–240

    Google Scholar 

  • Weis RF (1970) The solubility of nitrogen, oxygen and argon in water band seawater. Deep-Sea Res 17:721–735

    Google Scholar 

  • Weis RF (1971) Solubility of helium and neon in water and seawater. J Chem Eng Data 16:235–241

    Google Scholar 

  • Weis RF, Kyser TK (1978) Solubility of krypton in water and seawater. J Chem Eng Data 23:69–72

    Google Scholar 

  • Xu S, Nakai S, Wakita H, Wang X (1995) Mantle-derived noble gases in natural gases from Songliao Basin. China Geochem Cosmochem Acta 59:4675–4683

    Google Scholar 

  • Yang J, Lewis RS, Anders E (1982) Sorption of noble gases by solids, with reference to meteorites. I Magnetite and carbon. Geochim Cosmochim Acta 46:841–860

    Google Scholar 

  • Yu S, Lu X, Xu H, Xie Q, Liu X (2010) Geochemical evidence for differential accumulation of natural gas in Shiwu fault depression, Songliao Basin China. Energy Explor Exploit 28(4):239–258

    Google Scholar 

  • Zartman RE, Wasserburg GJ (1961) Helium, argon, and carbon in some natural gases. J Geophys Res 66(1):277–306

    Google Scholar 

  • Zhou Z, Ballentine CJ, Kipfer R, Schoell M, Thibodeaux S (2005) Noble gas tracing of groundwater/coalbed methane interaction in the San Juan Basin USA. Geochim Cosmochim Acta 69(23):5413–5428

    Google Scholar 

  • Zhou Z, Ballentine CJ (2006) 4He dating of groundwater associated with hydrocarbon reservoirs. Chem Geol 226(3–4):309–327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Prinzhofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prinzhofer, A. (2013). Noble Gases in Oil and Gas Accumulations. In: Burnard, P. (eds) The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28836-4_9

Download citation

Publish with us

Policies and ethics