Skip to main content

The Torpor-Arousal Cycle is Controlled by an Endogenous Clock

  • Chapter
  • First Online:
Living in a Seasonal World

Abstract

This chapter aims at elucidating the control of the torpor-arousal cycle of mammalian hibernators, based on recent progress in circadian biology. The circadian system is now viewed as a complex network of central and peripheral clocks. In euthermy, the whole system synchronizes to a master, light-driven clock, located in the suprachiasmatic nuclei of the hypothalamus (SCN). It is proposed that in a torpor bout another, non temperature-compensated clock, the torpor-arousal clock, takes over as the master clock. According to the Arrhenius law, the endogenous period of the torpor-arousal clock will expand as temperature decreases. The corresponding subjective time will then diverge from astronomical time. Body temperature recordings of 17 complete hibernation seasons of five species have been analyzed. In astronomical time, torpor bout length (TBL) varied up to fivefold, but the corresponding durations in subjective time were remarkably constant. In all cases, the animal would simply arouse at a constant subjective time given by the torpor-arousal clock. In the frame of modern circadian biology, this suggests a much broader role of the circadian system in the control of the torpor-arousal cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SCN:

Suprachiasmatic nuclei of the hypothalamus

T a :

Ambient temperature

T b :

Body temperature

TBL:

Torpor bout length

References

  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  PubMed  CAS  Google Scholar 

  • Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13:125–137

    Article  PubMed  CAS  Google Scholar 

  • Buck CL, Barnes BM (2000) Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am J Physiol Regul Integr Comp Physiol 279:R255–R262

    PubMed  CAS  Google Scholar 

  • Challet E, Mendoza J (2010) Metabolic and reward feeding synchronises the rhythmic brain. Cell Tissue Res 341:1–11

    Article  PubMed  Google Scholar 

  • Delezie J, Challet E (2011) Interactions between metabolism and circadian clocks: reciprocal disturbances. Ann NY Acad Sci 1243:30–46

    Article  PubMed  CAS  Google Scholar 

  • El Ouezzani S, Janati IA, Magoul R, Pevet P, Saboureau M (2010) Overwinter body temperature patterns in captive jerboas (Jaculus orientalis): influence of sex and group. J Comp Physiol B Bioch Syst Environ Physiol 181:299–309

    Article  Google Scholar 

  • Epperson LE, Karimpour-Fard A, Hunter LE, Martin SL (2011) Metabolic cycles in a circannual hibernator. Physiol Genomics 43:799–807

    Article  PubMed  CAS  Google Scholar 

  • Feillet CA, Mendoza J, Pevet P, Challet E (2008) Restricted feeding restores rhythmicity in the pineal gland of arrhythmic suprachiasmatic-lesioned rats. Eur J Neurosci 28:2451–2458

    Article  PubMed  Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274

    Article  PubMed  CAS  Google Scholar 

  • Geusz ME, Blakely KT, Hiler DJ, Jamasbi RJ (2009) Elevated mPer1 gene expression in tumor stroma imaged through bioluminescence. Int J Cancer 126:620–630

    Article  Google Scholar 

  • GĂ¼r MK, Refinetti R, GĂ¼r H (2009) Daily rhythmicity and hibernation in the Anatolian ground squirrel under natural and laboratory conditions. J Comp Physiol B Bioch Syst Environ Physiol 179:155–164

    Article  Google Scholar 

  • Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141:317–329

    Article  PubMed  Google Scholar 

  • Huang W, Ramsey KM, Marcheva B, Bass J (2011) Circadian rhythms, sleep, and metabolism. J Clin Invest 121:2133–2141

    Article  PubMed  CAS  Google Scholar 

  • Hut RA, Barnes BM, Daan S (2002) Body temperature patterns before, during, and after semi-natural hibernation in the European ground squirrel. J Comp Physiol B Bioch Syst Environ Physiol 172:47–58

    Article  CAS  Google Scholar 

  • Ishida N (2009) Role of PPARalpha in the control of torpor through FGF21-NPY pathway: from circadian clock to seasonal change in mammals. PPAR Res 2009:412949

    Article  PubMed  Google Scholar 

  • Karpovich SA, Tøien Ă˜, Buck CL, Barnes BM (2009) Energetics of arousal episodes in hibernating arctic ground squirrels. J Comp Physiol B Bioch Syst Environ Physiol 176:691–700

    Article  Google Scholar 

  • Kobbe S, Ganzhorn JU, Dausmann KH (2010) Extreme individual flexibility of heterothermy in free-ranging Malagasy mouse lemurs (Microcebus griseorufus). J Comp Physiol B Bioch Syst Environ Physiol 181:165–173

    Article  Google Scholar 

  • Körtner G, Song X, Geiser F (1998) Rhythmicity of torpor in a marsupial hibernator, the mountain pygmy-possum (Burramys parvus), under natural and laboratory conditions. J Comp Physiol B Bioch Syst Environ Physiol 168:631–638

    Article  Google Scholar 

  • Kronfeld-Schor N, Einat H (2012) Circadian rhythms and depression: human psychopathology and animal models. Neuropharmacology 62:101–114

    Article  PubMed  CAS  Google Scholar 

  • Malan A (2008) Metabolism and rythmicity: the torpor arousal cycle. In: Lovegrove BG, McKechnie AE (eds) Hypometabolism in animals. Interpak Books, Pietermaritzburg, pp 215–222

    Google Scholar 

  • Malan A (2010) Is the torpor-arousal cycle of hibernation controlled by a non-temperature-compensated circadian clock? J Biol Rhythms 25:166–175

    Article  PubMed  Google Scholar 

  • Melvin RG, Andrews MT (2009) Torpor induction in mammals: recent discoveries fueling new ideas. Trends Endocrinol Metab 20:490–498

    Article  PubMed  CAS  Google Scholar 

  • Mendoza J, Challet E (2009) Brain clocks: from the suprachiasmatic nuclei to a cerebral network. Neuroscientist 15:477–488

    Article  PubMed  CAS  Google Scholar 

  • Mistlberger RE (2011) Neurobiology of food anticipatory circadian rhythms. Physiol Behav 104:535–545

    Article  PubMed  CAS  Google Scholar 

  • Monteleone P, Martiadis V, Maj M (2011) Circadian rhythms and treatment implications in depression. Prog Neuropsychopharmacol Biol Psychiatry 35:1569–1574

    Article  PubMed  CAS  Google Scholar 

  • Morin PJ, Storey KB (2009) Mammalian hibernation: differential gene expression and novel application of epigenetic controls. Int J Dev Biol 53:433–442

    Article  PubMed  CAS  Google Scholar 

  • Nowack J, Mzilikazi N, Dausmann KH (2010) Torpor on demand: heterothermy in the non-lemur primate Galago moholi. PLoS ONE 5:e10797

    Article  PubMed  Google Scholar 

  • Oklejewicz M, Daan S, Strijkstra AM (2001) Temporal organisation of hibernation in wild-type and tau mutant Syrian hamsters. J Comp Physiol B Bioch Syst Environ Physiol 171:431–439

    Article  CAS  Google Scholar 

  • Ortmann S, Heldmaier G (2000) Regulation of body temperature and energy requirements of hibernating Alpine marmots (Marmota marmota). Am J Physiol Regul Integr Comp Physiol 278:R698–R704

    PubMed  CAS  Google Scholar 

  • Pallier PN, Maywood ES, Zheng Z, Chesham JE, Inyushkin AN, Dyball R, Hastings MH, Morton AJ (2007) Pharmacological imposition of sleep slows cognitive decline and reverses dysregulation of circadian gene expression in a transgenic mouse model of Huntington’s disease. J Neurosci 27:7869–7878

    Article  PubMed  CAS  Google Scholar 

  • Pezuk P, Mohawk JA, Yoshikawa T, Sellix MT, Menaker M (2010) Circadian organization is governed by extra-SCN pacemakers. J Biol Rhythms 25:432–441

    Article  PubMed  Google Scholar 

  • Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O’Neill JS, Wong GK, Chesham J, Odell M, Lilley KS, Kyriacou CP, Hastings MH (2006) Circadian orchestration of the hepatic proteome. Curr Biol 16:1107–1115

    Article  PubMed  CAS  Google Scholar 

  • Ruby NF (2003) Hibernation: when good clocks go cold. J Biol Rhythms 18:275–286

    Article  PubMed  Google Scholar 

  • Strumwasser F (1959) Factors in the pattern, timing and predictability of hibernation in the squirrel, Citellus beecheyi. Am J Physiol 196:8–14

    PubMed  CAS  Google Scholar 

  • Turbill C, Körtner G, Geiser F (2008) Timing of the daily temperature cycle affects the critical arousal temperature and energy expenditure of lesser long-eared bats. J Exp Biol 211:3871–3878

    Article  PubMed  Google Scholar 

  • Twente JW, Twente J, Moy RM (1977) Regulation of arousal from hibernation by temperature in three species of Citellus. J Appl Physiol 42:191–195

    PubMed  CAS  Google Scholar 

  • Zhang EE, Liu AC, Hirota T, Miraglia LJ, Welch G, Pongsawakul PY, Liu X, Atwood A, Huss JW, Janes J, Su AI, Hogemesch JB, Kay A (2009) A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell 139:199–210

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Malan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malan, A. (2012). The Torpor-Arousal Cycle is Controlled by an Endogenous Clock. In: Ruf, T., Bieber, C., Arnold, W., Millesi, E. (eds) Living in a Seasonal World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28678-0_19

Download citation

Publish with us

Policies and ethics