Skip to main content

Nucleation, Structure and Magnetism of Transition Metal Clusters from First Principles

  • Chapter
  • First Online:
Nanoparticles from the Gasphase

Part of the book series: NanoScience and Technology ((NANO))

  • 1732 Accesses

Abstract

Properties of transition metal (TM) clusters such as structural stability, growth and magnetic properties are studied using the density functional theory (DFT). We find that for both elemental and binary clusters, different morphologies are stable for different ranges of cluster sizes. We discuss possible structural transformations namely Jahn-Teller (JT) and Mackay transformation (MT) occurring in TM clusters. While the JT-distorted cluster is stable for a Fe\(_{13}\) icosahedron, the MT-distorted structure is stable for Co\(_{13}\). For Ni\(_{13}\), however, both distortions lead to similar energies. In larger clusters, both JT and MT compete with each other, and as a result we find a higher stability for large Fe clusters with a shell wise Mackay transformation. Studies on binary Fe-Pt clusters show a segregation tendency of Pt atoms to the surfaces of the clusters. The ordered Fe-Pt icosahedral structures show enhanced stability compared to the L1\(_0\) cuboctahedron. From the studies on magnetocrystalline anisotropy (MAE) for clusters, we find that relaxed Fe\(_{13}\) and Ni\(_{13}\) have several orders of magnitude larger MAE as compared to the corresponding bulk values. However, Co\(_{13}\) does not follow this trend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 (2000)

    Article  ADS  Google Scholar 

  2. Y. Xie, J.A. Blackman, Magnetism of iron clusters embedded in cobalt. Phys. Rev. B 66, 085410 (2002)

    Article  ADS  Google Scholar 

  3. O. Diéguez, M.M.G. Alemany, C. Rey, P. Ordejón, L.J. Gallego, Density-functional calculations of the structures, binding energies, and magnetic moments of Fe clusters with 2 to 17 atoms. Phys. Rev. B 63, 205407 (2001)

    Article  ADS  Google Scholar 

  4. A.V. Postnikov, P. Entel, J.M. Soler, Density functional simulation of small Fe nanoparticles. Eur. Phys. J. D 25, 261 (2003)

    Article  ADS  Google Scholar 

  5. H.M. Duan, Q.Q. Zheng, Symmetry and magnetic properties of transition metal clusters. Phys. Lett. A 280, 333 (2001)

    Article  ADS  Google Scholar 

  6. M.E. Gruner, P. Entel, Competition between ordering, twinning, and segregation in binary magnetic 3\(d\)-5\(d\) nanoparticles: a supercomputing perspective. Int. J. Quant. Chem. 112, 277 (2012)

    Article  Google Scholar 

  7. C. Antoniak, M.E. Gruner, M. Spasova, A.V. Trunova, F.M. Römer, A. Warland, B. Krumme, K. Fauth, S. Sun, P. Entel, M. Farle, H. Wende, A guideline for atomistic design and understanding of ultrahard nanomagnets. Nat. Commun. 2, 528 (2011)

    Article  Google Scholar 

  8. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  9. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  10. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  11. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  12. J.P. Perdew, in Electronic Structure of Solids’91, ed. by P. Ziesche, H. Eschrig (Akademie, Berlin, 1991), pp. 11–20

    Google Scholar 

  13. S.H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200 (1980)

    Article  ADS  Google Scholar 

  14. M.E. Gruner, G. Rollmann, P. Entel, Large-scale first-principles calculations of magnetic nanoparticles, in Proceedings of the NIC Symposium 2008, vol. 39, ed. by G. Münster, D. Wolf, M. Kremer, NIC Series (John von Neumann Institute for Computing, Jülich, 2008), p. 161

    Google Scholar 

  15. M.E. Gruner, P. Entel, Simulating functional magnetic materials on supercomputers. J. Phys. Condens. Matter 21, 293201 (2009)

    Google Scholar 

  16. R. Ferrando, A. Fortunelli, G. Rossi, Quantum effects on the structure of pure and binary metallic nanoclusters. Phys. Rev. B. 72, 085449 (2005)

    Article  ADS  Google Scholar 

  17. S. Heinrichs, W. Dieterich, P. Maass, Modeling epitaxial growth of binary alloy nanostructures on a weakly interacting substrate. Phys. Rev. B. 75, 085437 (2007)

    Article  ADS  Google Scholar 

  18. F.R. Negreiros, Z. Kuntová, G. Barcaro, G. Rossi, R. Ferrando, A. Fortunelli, Structures of gas-phase Ag-Pd nanoclusters: a computational study. J. Chem. Phys. 132, 234703 (2010)

    Article  ADS  Google Scholar 

  19. M. Pellarin, B. Baguenard, J.L. Vialle, J. Lerme, M. Broyer, J. Miller, A. Perez, Evidence for icosahedral atomic shell structure in nickel and cobalt clusters. Comparison with iron clusters. Chem. Phys. Lett. 217, 349 (1994)

    Article  ADS  Google Scholar 

  20. T. Vystavel, G. Palasantzas, S.A. Koch, J.T.M. De Hosson, Nanosized iron clusters investigated with in situ transmission electron microscopy. Appl. Phys. Lett. 82, 197 (2003)

    Article  ADS  Google Scholar 

  21. M.I. Katsnelson, Y.V. Irkhin, L. Chioncel, A.I. Lichtenstein, R.A. de Groot, Half-metallic ferromagnets: from band structure to many-body effects. Rev. Mod. Phys. 80, 315 (2008)

    Article  ADS  Google Scholar 

  22. M.E. Gruner, P. Entel, I. Opahle, M. Richter, Ab initio investigation of twin boundary motion in the magnetic shape memory Heusler alloy Ni\(_2\)MnGa. J. Mater. Sci. 43, 3825 (2008)

    Article  ADS  Google Scholar 

  23. E.C. Bain, The nature of martensite. Trans. Am. Inst. Min. Metall. Pet. Eng. 70, 25 (1924)

    Google Scholar 

  24. Z. Nishiyama, Martensitic Transformation (Academic Press, New York, 1978)

    Google Scholar 

  25. A.L. Mackay, A dense non-crystallographic packing of equal spheres. Acta Cryst. 15, 916–918 (1962)

    Article  Google Scholar 

  26. G. Rollmann, S. Sahoo, P. Entel, Structural and magnetic properties of Fe-Ni clusters. Phys. Status Solid. 201, 3263 (2004)

    Article  ADS  Google Scholar 

  27. G. Rollmann, M.E. Gruner, A. Hucht, P. Entel, Shellwise Mackay transformation in iron nanoclusters. Phys. Rev. Lett. 99, 083402 (2007)

    Article  ADS  Google Scholar 

  28. G. Rollmann, P. Entel, S. Sahoo, Competing structural and magnetic effects in small iron clusters. Comput. Mater. Sci. 35, 275 (2006)

    Article  Google Scholar 

  29. H. Jónsson, H.C. Andersen, Icosahedral ordering in the Lennard-Jones liquid and glass. Phys. Rev. Lett. 60, 2295 (1988)

    Article  ADS  Google Scholar 

  30. M.E. Gruner, G. Rollmann, A. Hucht, P. Entel, Structural and magnetic properties of transition metal nanoparticles from first principles, in Advances in Solid State Physics, vol. 47, ed. by R. Haug (Springer, Berlin, 2008), p. 117

    Google Scholar 

  31. I.M.L. Billas, J.A. Becker, A. Châtelain, W.A. de Heer, Magnetic moments of iron clusters with 25 to 700 atoms and their dependence on temperature. Phys. Rev. Lett. 71, 4067 (1993)

    Article  ADS  Google Scholar 

  32. I.M.L. Billas, A. Châtelain, W.A. de Heer, Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 265, 1682 (1994)

    Article  ADS  Google Scholar 

  33. I.M.L. Billas, A. Châtelain, W.A. de Heer, Magnetism of Fe, Co and Ni clusters in molecular beams. J. Magn. Mat. 168, 64 (1997)

    Article  ADS  Google Scholar 

  34. H.C. Herper, E. Hoffmann, P. Entel, Ab initio full-potential study of the structural and magnetic phase stability of iron. Phys. Rev. B 60, 3839 (1999)

    Article  ADS  Google Scholar 

  35. M.L. Tiago, Y. Zhou, M.M.G. Alemany, Y. Saad, J.R. Chelikowsky, Evolution of magnetism in iron from the atom to the bulk. Phys. Rev. Lett. 97, 147201 (2006)

    Article  ADS  Google Scholar 

  36. M.E. Gruner, G. Rollmann, S. Sahoo, P. Entel, Magnetism of close packed Fe\(_{147}\) clusters. Phase Trans. 79, 701 (2006)

    Article  Google Scholar 

  37. R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845 (2008)

    Article  Google Scholar 

  38. J.M. Montejano-Carrizales, M.P. Iñiguez, J.A. Alonso, Embedded-atom method applied to bimetallic clusters: the Cu-Ni and Cu-Pd systems. Phys. Rev. B 49, 16649 (1994)

    Article  ADS  Google Scholar 

  39. F. Baletto, C. Mottet, R. Ferrando, Growth simulations of silver shells on copper and palladium nanoclusters. Phys. Rev. B 66, 155420 (2002)

    Article  ADS  Google Scholar 

  40. J.L. Rousset, A.M. Cadrot, F.J. Cadete Santos Aires, A. Renouprez, P.Mélinon, A. Perez, M. Pellarin, J.L. Vialle, M. Broyer, Study of bimetallic PdPt clusters in both free and supported phases. J. Chem. Phys. 102, 8574 (1995)

    Google Scholar 

  41. D. Zitoun, M. Respaud, M. Fromen, M.J. Casanove, P. Lecante, C. Amiens, B. Chaudret, Magnetic enhancement in nanoscale CoRh particles. Phys. Rev. Lett. 89, 037203 (2002)

    Article  ADS  Google Scholar 

  42. L.Y. Lu, D. Wang, X.G. Xu, Q. Zhan, Y. Jiang, Enhancement of magnetic properties for FePt nanoparticles by rapid annealing in a vacuum. J. Chem. Phys. 113, 19867 (2009)

    Google Scholar 

  43. M.L. Plumer, E.J. Van, D. Weller (eds.), The physics of ultra-high-density magnetic recording (Springer, Berlin, 2001)

    Google Scholar 

  44. D. Weller, A. Moser, Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35, 4423 (1999)

    Article  ADS  Google Scholar 

  45. U. Wiedwald, L. Han, J. Biskupek, U. Kaiser, P. Ziemann, Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles. Beilstein J. Nanotechnol. 1, 24 (2010)

    Article  Google Scholar 

  46. B. Rellinghaus, S. Stappert, M. Acet, E.F. Wassermann, Magnetic properties of FePt nanoparticles. J. Magn. Magn. Mater. 266, 142 (2003)

    Article  ADS  Google Scholar 

  47. M.E. Gruner, G. Rollmann, P. Entel, M. Farle, Multiply twinned morphologies of FePt and CoPt nanoparticles. Phys. Rev. Lett. 100, 087203 (2008)

    Article  ADS  Google Scholar 

  48. A. Dannenberg, M.E. Gruner, P. Entel, First-principles study of the structural stability of L\(1_1\) order in Pt-based alloys. J. Phys. Conf. Ser. 200, 072021 (2010)

    Article  ADS  Google Scholar 

  49. A. Dannenberg, M.E. Gruner, A. Hucht, P. Entel, Surface energies of stoichiometric FePt and CoPt alloys and their implications for nanoparticle morphologies. Phys. Rev. B 80, 245438 (2009)

    Article  ADS  Google Scholar 

  50. P. Gambardella, S. Rusponi, M. Veronese, S.S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P.H. Dederichs, K. Kern, C. Carbone, H. Brune, Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130 (2003)

    Article  ADS  Google Scholar 

  51. T. Balashov, T. Schuh, A.F. Takács, A. Ernst, S. Ostanin, J. Henk, I. Mertig, P. Bruno, T. Miyamachi, S. Suga, W. Wulfhekel, Magnetic anisotropy and magnetization dynamics of individual atoms and clusters of Fe and Co on Pt(111). Phys. Rev. Lett. 102, 257203 (2009)

    Article  ADS  Google Scholar 

  52. R. Félix-Medina, J. Dorantes-Dávila, G.M. Pastor, Ground-state magnetic properties of \(Co_{N}\) clusters on Pd(111): spin moments, orbital moments, and magnetic anisotropy. Phys. Rev. B 67, 094430 (2003)

    Article  ADS  Google Scholar 

  53. S. Rohart, C. Raufast, L. Favre, E. Bernstein, E. Bonet, V. Dupuis, Magnetic anisotropy of \(Co_{x}Pt_{1-{}x}\) clusters embedded in a matrix: influences of the cluster chemical composition and the matrix nature. Phys. Rev. B 74, 104408 (2006)

    Article  ADS  Google Scholar 

  54. A.N. Andriotis, M. Menon, Orbital magnetism: pros and cons for enhancing the cluster magnetism. Phys. Rev. Lett. 93, 026402 (2004)

    Article  ADS  Google Scholar 

  55. Å . Pick, V.S. Stepanyuk, A.L. Klavsyuk, L. Niebergall, W. Hergert, J. Kirschner, P. Bruno, Magnetism and structure on the atomic scale: small cobalt clusters in Cu(001). Phys. Rev. B 70, 224419 (2004)

    Article  ADS  Google Scholar 

  56. J. Hafner, D. Spišák, Morphology and magnetism of \(Fe_{n}\) clusters \((n=1-9)\) supported on a Pd(001) substrate. Phys. Rev. B 76, 094420 (2007)

    Article  ADS  Google Scholar 

  57. S. Bornemann, J. Minár, J.B. Staunton, J. Honolka, A. Enders, K. Kern, H. Ebert, Magnetic anisotropy of deposited transition metal clusters. Eur. Phys. J. D 45, 529 (2007)

    Article  ADS  Google Scholar 

  58. B. Nonas, I. Cabria, R. Zeller, P.H. Dederichs, T. Huhne, H. Ebert, Strongly enhanced orbital moments and anisotropies of adatoms on the Ag(001) surface. Phys. Rev. Lett. 86, 2146 (2001)

    Article  ADS  Google Scholar 

  59. G.M. Pastor, J. Dorantes-Dávila, S. Pick, H. Dreyssé, Magnetic anisotropy of \(3d\) transition-metal clusters. Phys. Rev. Lett. 75, 326 (1995)

    Article  ADS  Google Scholar 

  60. R.A. Guirado-López, J.M. Montejano-Carrizales, Orbital magnetism and magnetic anisotropy energy of Co nanoparticles: role of polytetrahedral packing, polycrystallinity, and internal defects. Phys. Rev. B 75, 184435 (2007)

    Article  ADS  Google Scholar 

  61. L. Fernández-Seivane, J. Ferrer, Magnetic anisotropies of late transition metal atomic clusters. Phys. Rev. Lett. 99, 183401 (2007)

    Article  ADS  Google Scholar 

  62. P. BÅ‚onski, J. Hafner, Magnetic anisotropy of transition-metal dimers: density functional calculations. Phys. Rev. B 79, 224418 (2009)

    Article  ADS  Google Scholar 

  63. T.O. Strandberg, C.M. Canali, A.H. MacDonald, Transition-metal dimers and physical limits on magnetic anisotropy. Nat. Mater. 6, 648 (2007)

    Article  ADS  Google Scholar 

  64. D. Fritsch, K. Koepernik, M. Richter, H. Eschrig, Transition metal dimers as potential molecular magnets: a challenge to computational chemistry. J. Comp. Chem. 29, 2210 (2008)

    Article  Google Scholar 

  65. J. Kortus, T. Baruah, M.R. Pederson, Magnetic moment and anisotropy in Fe\(_n\)Co\(_m\) clusters. Appl. Phys. Lett. 80, 4193 (2002)

    Article  ADS  Google Scholar 

  66. J. Hong, R.Q. Wu, First principles determinations of magnetic anisotropy energy of Co nanoclusters. J. Appl. Phys. 93, 8764 (2003)

    Article  ADS  Google Scholar 

  67. J.H. van Vleck, On the anisotropy of cubic ferromagnetic crystals. Phys. Rev. B 52, 1178 (1937)

    Article  ADS  MATH  Google Scholar 

  68. S. Sahoo, A. Hucht, M.E. Gruner, G. Rollmann, P. Entel, A. Postnikov, J. Ferrer, L. Fernández-Seivane, M. Richter, D. Fritsch, S. Sil, Magnetic properties of small Pt-capped Fe, Co., and Ni clusters: a density functional theory study. Phys. Rev. B 82, 054418 (2010)

    Article  ADS  Google Scholar 

  69. L. Néel, The surface anisotropy of ferromagnetic substances. C. R. Acad. Sci. Paris 237, 1468 (1953)

    MATH  Google Scholar 

  70. L. Néel, Surface magnetic anisotropy and orientational superstructures. J. Phys. Radium 15, 225 (1954)

    Article  MATH  Google Scholar 

  71. S.V. Halilov, A. Ya, Perlov, P. M. Oppeneer, A. N. Yaresko, and V. N. Antonov, Magnetocrystalline anisotropy energy in cubic Fe, Co., and Ni: applicability of local-spin-density theory reexamined. Phys. Rev. B 57, 9557 (1998)

    Article  ADS  Google Scholar 

  72. M.A. Uijttewaal, T. Hickel, J. Neugebauer, M.E. Gruner, P. Entel, Understanding the phase transitions of the Ni\(_2\)MnGa magnetic shape memory system from first principles. Phys. Rev. Lett. 102, 035702 (2009)

    Article  ADS  Google Scholar 

  73. S.I. Sanchez, L.D. Menard, A. Bram, J.H. Kang, M.W. Small, R.G. Nuzzo, A.I. Frenkel, The Emergence of nonbulk properties in supported metal clusters: negative thermal expansion and atomic disorder in Pt nanoclusters supported on \(\gamma \)-Al\(_2\)O\(_3\). J. Am. Chem. Soc. 131, 7040 (2009)

    Article  Google Scholar 

  74. B. Roldan Cuenya, A.I. Frenkel, S. Mostafa, F. Behafarid, J.R. Croy, L.K. Ono, Q. Wang, Anomalous lattice dynamics and thermal properties of supported size- and shape-selected Pt nanoparticles. Phys. Rev. B 82, 155450 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the John von Neumann Institute for Computing, the Jülich supercomputing Center and the Center for Computational Sciences and Simulation (CCSS), University of Duisburg-Essen for computation time and support. Also Financial support was granted by the Deutsche Forschungsgemeinschaft through SFB 445.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Entel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sahoo, S., Gruner, M.E., Hucht, A., Rollmann, G., Entel, P. (2012). Nucleation, Structure and Magnetism of Transition Metal Clusters from First Principles. In: Lorke, A., Winterer, M., Schmechel, R., Schulz, C. (eds) Nanoparticles from the Gasphase. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28546-2_3

Download citation

Publish with us

Policies and ethics