Skip to main content

Seaweed and Man

  • Chapter
  • First Online:
Seaweed Biology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 219))

Abstract

Seaweeds have been utilized by man as food and medication for about 14,000 years. The ever rising demand for edible seaweeds and for biochemical components of seaweeds, mainly hydrocolloids like agar, alginate, and carrageenan, has fuelled a large aquaculture industry particularly in Asia. Future expansion of seaweed culture will include suitable farming sites in offshore areas associated with wind farms. Seaweeds as extractive and therefore bioremedial species are moreover an important component in Integrated Multi-Trophic Aquaculture (IMTA), where commercially valuable organisms of different trophic levels are combined in a culturing system resembling a small ecosystem. The employment created by seaweeds and other aquaculture secures an income to millions of people and is therefore of high socioeconomic importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu MA, Varela DA, Henríquez L, Villarroel A, Yarish C, Sousa-Pinto I, Buschmann AJ (2009) Traditional vs. Integrated Multi-Trophic Aquaculture of Gracilaria chilensis Bird CJ, McLachlan J & Oliveira EC: Productivity and physiological performance. Aquaculture 293:211–220

    Article  Google Scholar 

  • Abreu MH, Pereira R, Yarish C, Buschmann AH, Sousa-Pinto I (2011) IMTA with Gracilaria vermiculophylla: Productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312:77–87

    Article  Google Scholar 

  • Baker KD (1949) Conchocelis-phase in the life-history of Porphyra umbilicalis (L.) Kütz. Nature 164:748–749

    Article  Google Scholar 

  • Barrington K, Chopin T, Robinson S (2009) Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. In: Soto D (ed) Integrated mariculture: a global review. FAO Fisheries and Aquaculture Technical Paper. No. 529, Rome. FAO pp 7–46

    Google Scholar 

  • Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R, Karsten U, Molis M, Roleda MY, Schumann R, Schubert H, Valentin K, Weinberger F, Wiese J (2008) The genus Laminaria sensu lato: recent insights and developments. Eu J Phycol 43(1):1–86

    Article  Google Scholar 

  • Bidwell RGS, McLachlan J, Lloyd NDH (1985) Tank cultivation of Irish Moss, Chondrus crispus. Bot Mar 28:87–97

    Article  Google Scholar 

  • Bixler HJ, Porse H (2011) A decade of change in seaweed hydrocolloids industry. J Appl Phycol 23:321–335

    Article  Google Scholar 

  • Braden KW, Blanton JR, Montgomery JL, van Santen E, Allen VG, Miller MF (2007) Tasco supplementation: Effects on carcass characteristics, sensory attributes, and retail display shelf-life. J Anim Sci 85:754–768

    Article  PubMed  CAS  Google Scholar 

  • Bridger CJ, Costa-Pierce BA (2003) Open ocean aquaculture: from research to commercial reality. The World Aquaculture Society, Baton Rouge

    Google Scholar 

  • Buchholz C, Lüning K (1999) Isolated, distal blade discs of the brown alga Laminaria digitata form sorus, but not discs, near to the meristematic transition zone. J Appl Phycol 16:579–584

    Article  Google Scholar 

  • Buck BH (2002) Open Ocean Aquaculture und Offshore Windparks. Eine Machbarkeitsstudie über die multifunktionale Nutzung von Offshore-Windparks und Offshore-Marikultur im Raum Nordsee, Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, 412, p 252

    Google Scholar 

  • Buck BH (2004). Farming in a High Energy Environment: Potentials and Constraints of Sustainable Offshore Aquaculture in the German Bight (North Sea), Dissertation, University of Bremen, p 258

    Google Scholar 

  • Buck BH, Buchholz CM (2004) The offshore-ring: a new system design for the open ocean aquaculture of macroalgae. J Appl Phycol 16(5):355–368

    Article  Google Scholar 

  • Buck BH, Buchholz CM (2005) Response of offshore cultivated Laminaria saccharina to hydrodynamic forcing in the North Sea. Aquaculture 250:674–691

    Article  Google Scholar 

  • Buck BH, Krause G (2012) Integration of Aquaculture and Renewable Energy Systems. In: Meyers RA (ed) Encyclopedia of Sustainability Science and Technology, Springer Science + Business Media LLC. Chapter No. 180 http://www.springer.com/physics/book/978-0-387-89469-0. Cited 10 Oct 2011

  • Buck BH, Krause G, Rosenthal H (2004) Extensive open ocean aquaculture development within wind farms in Germany: the prospect of offshore co-management and legal constraints. Ocean Coast Manag 47(3–4):95–122

    Article  Google Scholar 

  • Buck B, Krause G, Michler-Cieluch T, Brenner M, Buchholz C, Busch J, Fisch R, Geisen M, Zielinski O (2008) Meeting the quest for spatial efficiency: progress and prospects of extensive aquaculture within offshore wind farms. Helg Mar Res 62:269–281

    Article  Google Scholar 

  • Buschmann AH, Hernández-González MC, Aranda C, Chopin T, Neori A, Halling C, Troell M (2008) Mariculture waste management. In: Jørgensen SE, Fath BD (eds) Encyclopedia of ecology, vol 3, Ecological engineering. Elsevier, Oxford, pp 2211–2217

    Chapter  Google Scholar 

  • Butterworth A (2010) Integrated Multi-Trophic Aquaculture systems incorporating abalone and seaweeds; Report for Nuffield Australia Project No 0914 http://www.nuffieldinternational.org/rep_pdf/1287395494Nuffield_Report-_Adam_Butterworth.pdf. Cited 10 Oct 2011

  • Casas-Valdez M, Portillo-Clark G, Aguila-Ramirez N, Rodriguez-Astudillo S, Sanchez-Rodriguez I, Carillo-Dominguez S (2006) Effect of the marine alga Sargassum spp. On the productive parameters and cholesterol content of the brown shrimp, Farfantepenaeus californiensis (Holmes, 1900). Revista Biol Mar Oceanogr 41:97–105, in Spanish, English abstract

    Google Scholar 

  • Chen J (2006) Cultured aquatic species information programme—Laminaria japonica. Cultured Aquatic Species Fact Sheets. FAO Inland Water Resources and Aquaculture Service (FIRI)

    Google Scholar 

  • Chopin T, Yarish C, Wilkes R, Belyea E, Lu S, Mathieson A (1999) Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. J Appl Phycol 11:463–472

    Article  Google Scholar 

  • Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-Gonzalez JA, Yarish C, Neefus C (2001) Integrating seaweeds into mariculture systems: a key towards sustainability. J Phycol 37:975–986

    Article  Google Scholar 

  • Chopin T, Robinson SMC, Troell M, Neori A, Buschmann AH, Fang J (2008) Multitrophic integration for sustainable marine aquaculture. In: Jørgensen SE, Fath BD (eds) Encyclopedia of ecology, vol 3, Ecological engineering. Elsevier, Oxford, pp 2463–2475

    Chapter  Google Scholar 

  • Chung IK, Beardall J, Mehta S, Sahoo D, Stojkovic S (2011) Using marine macroalgae for carbon sequestration:a critical appraisal. J Appl Phycol 23:877–886

    Article  CAS  Google Scholar 

  • CIMTAN, Aquaculture R&D Review (2011) Aquaculture Association of Canada Special Publication 16 (2011). ISBN: 978-0-9780943-5-5: 24–30 http://www.aquacultureassociation.ca/publications/special. Cited 20 Aug 2011

  • Cook EJ, Kelly MS (2007) Enhanced production of the sea urchin Paracentrotus lividus in integrated open-water cultivation with Atlantic salmon Salmo salar. Aquaculture 273:573–585

    Article  Google Scholar 

  • Corbin JS (2007) Hawaii aquaculture development: twenty-five years and counting, lessons learned. In: Leung P, Lee CS, O’Bryen PJ (eds) Species and system selection for sustainable aquaculture. Blackwell Publishing, Ames, pp 209–224

    Chapter  Google Scholar 

  • Cosmetic Ingredient Dictionary (2002–2011) Algae http://www.cosmeticscop.com/cosmetic-ingredient-dictionary/A.aspx. Cited 16 Dec 2011

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Critchley AT, Ohno M (1997) Cultivation and Farming of Marine Plants. Biodiversity of Expert Centre for Taxonomic Identification (ETI). CD-ROM Version 1.0. Springer Electronic Media Dept, New York, USA

    Google Scholar 

  • Cross (2010) Problem to Opportunity—Use of the sea urchin, Strongylocentrotus droebachiensis, to control biofouling in an Integrated Multi-Trophic Aquaculture System. The World Aquaculture Society Meeting 2010 San Diego, CA https://www.was.org/WasMeetings/Meetings/SessionAbstracts.aspx?Code=AQ2010. Cited 20 Aug 2011

  • Dawes CP (1988) Seaweed culture technology. In: Consultants M, Munro A (eds) Feasibility study on the technology of mariculture. Vol. II: Review of technologies and services. Aberdeen, University Marine Studies, pp 107–116

    Google Scholar 

  • Dillehay TD, Ramírez C, Pino M, Collins MB, Rossen J, Pino-Navarro JD (2008) Monte Verde: seaweed, food, medicine, and the peopling of South America. Science 320:784–786. doi:10.1126/science.1156533

    Article  PubMed  CAS  Google Scholar 

  • FAO (2005–2011a) Cultured Aquatic Species Information Programme. Porphyra spp. Text by Jiaxin Chen and Pu Xu. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 18 February 2005. http://www.fao.org/fishery/culturedspecies/Porphyra_spp/en, Cited 11 Oct 2011

  • FAO (2005–2011b) Cultured Aquatic Species Information Programme. Laminaria japonica. Text by Chen J. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 1 January 2004. http://www.fao.org/fishery/culturedspecies/Laminaria_japonica/en, Cited 13 Jul 2011

  • FAO (2005–2011c) Cultured Aquatic Species Information Programme. Eucheuma spp. Text by Gavino C. Trono Jr. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 13 January 2005. http://www.fao.org/fishery/culturedspecies/Eucheuma_spp/en#tcNA0050, Cited 10 Oct 2011

  • FAO (2010–2011) Fisheries Global Information System (FAO-FIGIS) In: FAO Fisheries and Aquaculture Department [online]. Rome. http://www.fao.org/fishery/figis/en, Cited 13 Dec 2011

  • FAO (2010a) The State of World Fisheries and Aquaculture 2010 (SOFIA). FAO Fisheries and Aquaculture Department, Rome, p 197. http://www.fao.org/docrep/013/i1820e/i1820e00.htm, Cited 10 Oct 2011

    Google Scholar 

  • FAO (2010b) 2008 FAO Yearbook of Fishery and Aquaculture Statistics. ftp://ftp.fao.org/FI/CDrom/CD_yearbook_2008/navigation/index_content_aquaculture_e.htm. Cited 10 Oct 2011

  • FAO (2011a) FAO Fisheries Department, Fishery Information, Data and Statistics Unit. FishStatPlus. Universal Software for fishery statistical time series. Version 2.3 in 2000. Last database update in April 2011

    Google Scholar 

  • FAO (2011b) Fishery Statistical Collections Global Aquaculture Production, Status http://www.fao.org/fishery/statistics/global-aquaculture-production. Cited 10 Oct 2011

  • FAO (2011c) National Aquaculture Sector Overview (NASO) http://www.fao.org/fishery/naso/search/en Cited 10 Oct 2011

  • Fei X (2004) Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512:145–151

    Article  Google Scholar 

  • George M, Abraham TE (2006) Polyonic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan—a review. J Control Release 114:1–14

    Article  PubMed  CAS  Google Scholar 

  • Gómez I, Lüning K (2001) Constant short–day treatment of outdoor–cultivated Laminaria digitata prevents summer drop growth rate. Eur J Phycol 36:391–395

    Article  Google Scholar 

  • Hasegawa Y (1971) Forced cultivation of Laminaria. Bull Hokkaido Reg Fish Res Lab 37:49–52

    Google Scholar 

  • Hesley C (1997) Open Ocean Aquaculture: Chartering the Future of Ocean Farming. In: Proceedings of an International Conference, April 23–25, 1997, Maui, Hawaii. UNIHI-Seagrant-CP-98-08, Maui, University of Hawaii Sea Grant College Program p 353

    Google Scholar 

  • Holt TJ and Kain (Jones) JM (1983) The cultivation of large brown algae as an energy crop. In: Strub A, Chartier and Schleser P (eds) Energy from biomass 2nd conference, Applied Science Publishers, London, pp 319–323

    Google Scholar 

  • ICES (2011): Report of the Study Group on Social Dimensions of Aquaculture (SGSA). Bremen, Germany p 33

    Google Scholar 

  • Indergaard M, Østgaard K (1991) Polysaccharides for food and pharmaceutical uses. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe. Uses and potential. Wiley, Chichester, pp 169–183

    Google Scholar 

  • Kain JM (1991) Cultivation of attached seaweeds. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potential. Wiley, Chichester, UK, pp 309–377

    Google Scholar 

  • Kain JM, Dawes CP (1987) Useful European seaweeds: past hopes and present cultivation. Hydrobiologia 151(152):173–181

    Article  Google Scholar 

  • Kawashima S (1984) Kombu cultivation in Japan for human foodstuff. Jpn J Phycol 32:379–394

    Google Scholar 

  • Krause G, Buck BH, Rosenthal H (2003) Multifunctional use and environmental regulations: potentials in the offshore aquaculture development in Germany, rights and duties in the coastal zone—multidisciplinary scientific Conference on sustainable coastal zone management, 12–14 June 2003, Stockholm (Sweden)

    Google Scholar 

  • Langan R, Newell RIE, McVey JP, Newell C, Sowles JW, Rensel JE, Yarish C (2006) Country scenarios for ecosystem approaches for aquaculture: The United States. In: McVey JP, Lee C-S, O’Bryen PJ (eds) Aquaculture and ecosystems: an integrated coastal and ocean management approach. The World Aquaculture Society, Baton Rouge, Louisiana, pp 109–140

    Google Scholar 

  • Lombardi JV, de Almeida Marques HL, Lima Pereira RT, Salée Barreto J, de Paula EJ (2006) Cage polyculture of the Pacific white shrimp Litopenaeus vannamei and the Philippines seaweed Kappaphycus alvarezii. Aquaculture 258:412–415

    Article  Google Scholar 

  • Løvstad Holdt S, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Lowther A (2006) Highlights from the FAO database on Aquaculture Statistics. FAO Aquacult Newsletter 35:32–33

    Google Scholar 

  • Lüning K, Pang S (2003) Mass cultivation of seaweeds: current aspects and approaches. J Appl Phycol 15:115–119

    Article  Google Scholar 

  • Lüning K, Wagner A, Buchholz C (2000) Evidence for inhibitors of sporangium formation in Laminaria digitata (Phaeophyceae) during the season of rapid growth. J Phycol 36:1129–1134

    Article  Google Scholar 

  • Marra J (2005) When will we tame the oceans? Nature 436:175–176

    Article  PubMed  CAS  Google Scholar 

  • Mc Hugh, DJ (2003) A guide to the seaweed industry. FAO Fisheries Technical Papers T441

    Google Scholar 

  • McVey JP, Buck BH (2008) IMTA-Design within an Offshore Wind Farm, “Aquaculture for Human Wellbeing—The Asian Perspective”. The Annual Meeting of the World Aquaculture Society, 23rd May 2008, Busan (Korea)

    Google Scholar 

  • McVey JP, Stickney R, Yarish C, Chopin T (2002) Aquatic polyculture and balanced ecosystem management: new paradigms for seafood production. In: Stickney RR, McVey JP (eds) Responsible aquaculture. CABI Wallingford, UK, pp 91–104

    Chapter  Google Scholar 

  • Merrill JE, Gillingham DM (1991) Bull kelp cultivation handbook. Publication No. NCRI-T-91-011. National Coastal Research and Development Institute, Portland, Oregon, USA

    Google Scholar 

  • Michler-Cieluch T (2009) Co-Management processes in integrated coastal management : the case of integrating marine aquaculture in offshore wind farms. PhD Thesis, University of Hamburg

    Google Scholar 

  • Msuya FE (1997) Women seaweed farmers in the Zanzibar Islands, Tanzania. InterCoast Network Narragansett, Rhode Island, USA, 29

    Google Scholar 

  • Msuya FE (2006) The impact of seaweed farming on the social and economic structure of seaweed farming communities in Zanzibar, Tanzania. In: Critchley AT, Ohno M, Largo DB (eds), World Seaweed Resources, Version: 1.0. p 27

    Google Scholar 

  • Msuya FE, Shalli MS, Sullivan K, Crawford B, Tobey J, Mmochi AJ (2007) A comparative economic analysis of two seaweed farming methods in Tanzania. The sustainable coastal communities and ecosystems program. Coastal Resources Center, University of Rhode Island and the Western Indian Ocean Marine Science Association, p 27

    Google Scholar 

  • Murata M, Nakazoe J (2001) Production and use of marine algae in Japan. Jpn Agr Res Q 35:281–290

    Google Scholar 

  • Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024

    Article  PubMed  CAS  Google Scholar 

  • Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling C, Shpigel M, Yarish C (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231:361–391

    Article  Google Scholar 

  • Neori A, Troell M, Chopin T, Yarish C, Critchley A, Buschmann AH (2007) The need for ecological balance in “blue revolution” aquaculture. Environment 49:36–42

    Article  Google Scholar 

  • Nobre AM, Robertson-Andersson D, Neori A, Sankar K (2010) Ecological–economic assessment of aquaculture options: comparison between abalone monoculture and integrated multi-trophic aquaculture of abalone and seaweeds. Aquaculture 306:116–126

    Article  Google Scholar 

  • North WJ (1987) Oceanic farming of Macrocystis. The problems and non-problems. In: Bird KT, Benson PH (eds) Seaweed Cultivation for Renewable Resources. Developments in Aquaculture and Fisheries Sciences, vol 16. Elsevier, Amsterdam, pp 39–67

    Google Scholar 

  • Ohno M (1993) Cultivation methods and physiological aspect for edible seaweeds in Japan. Ser Ocasional 2:163–170

    Google Scholar 

  • Pang SJ, Lüning K (2004) Breaking seasonal limitation: year-round sporogenesis in the brown alga Laminaria saccharina by blocking the transport of putative sporulation inhibitors. Aquaculture 240:531–541

    Article  Google Scholar 

  • Pereira R, Yarish C (2008) Mass production of marine macroalgae. In: Jørgensen SE, Fath BD (eds) Encyclopedia of ecology, vol 3, Ecological engineering. Elsevier, Oxford, pp 2236–2247

    Chapter  Google Scholar 

  • Pereira R, Yarish C (2010) The role of Porphyra in sustainable culture systems: physiology and applications. In: Israel A, Einav R (eds) Seaweeds and their role in a globally changing environment. Springer, Heidelberg, pp 339–354

    Chapter  Google Scholar 

  • Pereira R, Yarish C, Critchley A (2012) Seaweed aquaculture for human foods, land based. In: Costa-Pierce BA (ed) Ocean farming and sustainable aquaculture science and technology. Encyclopedia of sustainability science and technology. Springer Science, New York (in press)

    Google Scholar 

  • Petrell RJ, Alie SY (1996) Integrated cultivation of salmonids and seaweeds in open systems. Hydrobiologia 326(327):67–73

    Article  Google Scholar 

  • Polk M (1996) Open Ocean Aquaculture. Proceedings of an International Conference, 8-10 May 1996, Portland, Maine. UNHMP-CP-SG-96-9, Portland, New Hamshire/Maine Sea Grant College Program, p 642

    Google Scholar 

  • Rawson MV Jr, Chen C, Ji R, Zhu M, Wang D, Wang L, Yarish C, Sullivan JB, Chopin T, Carmona R (2002) Understanding the interaction of extractive and fed aquaculture using ecosystem modeling. In: Stickney RR, McVey JP (eds) Responsible aquaculture. CABI Wallingford, UK, pp 263–296

    Chapter  Google Scholar 

  • Rensel JE, Buschmann AH, Chopin T, Chung IK, Grant J, Helsley CE, Kiefer DA, Langan R, Newell RIE, Rawson M, Sowles JW, McVey JP, Yarish C (2006) Ecosystem based management: models and mariculture. In: McVey JP, Lee C-S, O’Bryen PJ (eds) Aquaculture and ecosystems: An integrated coastal and ocean management approach. The World Aquaculture Society, Baton Rouge, pp 207–220

    Google Scholar 

  • Robertson-Andersson DV, Potgieter M, Hansen J, Bolton JJ, Troell M, Anderson RJ, Halling C, Probyn T (2008) Integrated seaweed cultivation on an abalone farm in South Africa. J Appl Phycol 20:579–595

    Article  Google Scholar 

  • Roesijadi G, Copping AE, Huesemann MH, Forster J, Benemann JR (2008) Techno-economic feasibility analysis of offshore seaweed farming for bioenergy and biobased products. Independent research and development report IR # PNWD-3931, Battelle Pacific Northwest Division, p 115

    Google Scholar 

  • Ryan J (2005) Offshore aquaculture—do we need it, and why is it taking so long? International Salmon Farmers Association (Ireland). Expert workshop on “Sustainable Aquaculture. DG JRC European Commission, Institute for Prospective Technological Studies, 17–18 Jan 2005 Seville

    Google Scholar 

  • Ryther JD, Deboer JA, Lapointe BE (1979) Cultivation of seaweeds for hydrocolloids, waste treatment and biomass for energy conversion. Proc Int Seaweed Symp 9:1–16

    Google Scholar 

  • Sahoo D, Yarish C (2005) Mariculture of seaweeds. In: Andersen R (ed) Phycological methods: algal culturing techniques. Academic, Elsevier, Oxford, New York, pp 219–237

    Google Scholar 

  • Sanderson JK (2009) Bioremediation using seaweed culture. Reducing the environmental impact of sea-cage fish farming through cultivation of seaweed. SAMS, UHI Milleneum Institute, Open University, 2006; VDM Verlag, Saarbrücken

    Google Scholar 

  • Sanderson JC, Cromey CJ, Dring MJ, Kelly MS (2006) Distribution of nutrients for seaweed cultivation around salmon cages at farm sites in north-west Scotland. Aquaculture 278:60–68

    Article  CAS  Google Scholar 

  • Schuenhoff A, Shpigel M, Lupatsch I, Ashkenazi A, Msuya FE, Neori A (2003) A semi-recirculating, integrated system for the culture of fish and seaweed. Aquaculture 221(1–4):167–181

    Article  Google Scholar 

  • Shpigel M, Ragg NL, Lupatsch I, Neori A (1999) Protein content determines the nutritional value of the seaweed Ulva lactuca L for the abalone Haliotis tuberculata L. and H. discus hannai Ino. J Shellfish Res 18(1):227–233

    Google Scholar 

  • Smartfiber (2010) SeaCell® pure—SeaCell® active. http://www.smartfiber.de/index.php?option=com_content%26view=article%26id=9%26Itemid=30%26lang=en. Cited 16 Dec 2011

  • Soto D, Aguilar-Manjarrez J, Hishamunda N (2008) Building an Ecosystem Approach to Aquaculture. FAO/Universitat de les Illes Balears Expert Workshop, 7–11 May 2007, Palma de Mallorca, Spain. FAO Fisheries and Aquaculture Proceeding, No. 14. ftp://ftp.fao.org/docrep/fao/011/i0339e/i0339e.pdf. Cited 10 Oct 2011

  • Stead SM, Laird L (2002) Handbook of salmon farming. Springer, London, pp 163–166

    Google Scholar 

  • Stickney RR (1998) Joining Forces With Industry—Open Ocean Aquaculture. Proceedings of the Third Annual International Conference, May 10-15, Corpus Christi, Texas. TAMU-SG-99-103, Corpus Christi, Texas Sea Grant College Program. p 152

    Google Scholar 

  • Tamura T (1966) Marine aquaculture. 2nd edition (Translated from Japanese). Springfield, VA, USA

    Google Scholar 

  • Troell M (2009) Integrated marine and brackishwater aquaculture in tropical regions: research, implementation and prospects. In D. Soto (ed) Integrated mariculture: a global review. FAO Fisheries and Aquaculture Technical Paper No. 529:47–131

    Google Scholar 

  • Troell M, Rönnbäck P, Halling C, Kautsky N, Buschmann A (1999) Ecological engineering in aquaculture: use of seaweeds for removing nutrients from intensive mariculture. J Appl Phycol 11:89–97

    Article  CAS  Google Scholar 

  • Troell M, Halling C, Neori A, Buschmann AH, Chopin T, Yarish C, Kautsky N (2003) Integrated mariculture: asking the right questions. Aquaculture 226:69–90

    Article  Google Scholar 

  • Troell M, Buck BH, Angel D, Chopin T (2012) Possibilities for the development of IMTA, combined with other activities, in offshore environments. In: Chopin T, Neori A, Robinson S, Troell M (eds) Integrated multi-trophic aquaculture (IMTA) or the turquoise revolution: a greener ecosystem approach to the blue revolution. Springer, Berlin

    Google Scholar 

  • Trono GC (1990) Technical resource papers—Regional workshop on the culture and utilization of seaweeds, vol. 2, 190 pp http://www.fao.org/docrep/field/003/AB728E/AB728E00.htm. Cited 10 Oct 2011

  • Tseng CK (1984) Phycological research in the development of the Chinese seaweed industry. Hydrobiologia 116(117):7–18

    Google Scholar 

  • Tseng CK (1987) Laminaria mariculture in China. In: Doty MS, Caddy JF, Santelices B (eds) Case Studies of seven Commercial Seaweed Resources. FAO Fisheries Technical Paper 281, Food and Agriculture Organisation of the United Nations, Rome, Italy, pp 239–263

    Google Scholar 

  • Tseng CK (1989) Farming and ranching of the sea in China. Proc 2nd Gen Conf Org Third World Acad Sci. In: Faruqui AM, Hassan MH, (eds), The Future of Science in China and the Third World, World Scientific, pp 92–106

    Google Scholar 

  • Walker AB, Fournier HR, Neefus CD, Nardi GC, Berlinsky DL (2009) Partial replacement of fish meal with laver Porphyra spp. in diets for Atlantic cod. North Am J Aquacult 71:39–45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia M. Buchholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buchholz, C.M., Krause, G., Buck, B.H. (2012). Seaweed and Man. In: Wiencke, C., Bischof, K. (eds) Seaweed Biology. Ecological Studies, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28451-9_22

Download citation

Publish with us

Policies and ethics