Skip to main content

Physiological and Photomorphogenic Effects of Light on Marine Macrophytes

  • Chapter
  • First Online:
Seaweed Biology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 219))

Abstract

Although photoautotrophic organisms need light as primary energy source, excessively absorbed energy causes also impairment. Eulittoral and upper sublittoral seaweeds grow in an environment which is quite variable in light conditions. During high tide and/or phytoplankton blooms or high sediment load in the water, light penetration into the water body is relatively low, whereas under clear water conditions and low tide even the upper sublittoral zone can be exposed to excessive irradiances at noon. Thus, seaweeds need to acclimate to the changing light environment, using energy as much as possible under low light conditions, whereas under excessive light the energy conversion process needs to be down regulated by protective mechanisms, which among others convert the absorbed energy into harmless heat and the possibility that harmful oxygen species are produced is minimized. In addition, photosynthetic pigment composition acclimates to different underwater spectra and light is also used as environmental signal for control of morphogenetic processes. Thus, this chapter covers all the main aspects of light effects on seaweeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797

    PubMed  CAS  Google Scholar 

  • Arnold KE, Murray SN (1980) Relationships between irradiance and photosynthesis for marine benthic green algae (Chlorophyta) of differing morphologies. J Exp Mar Biol Ecol 43:183–192

    Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    PubMed  CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition, topics in photosynthesis, vol 9. Elsevier, Amsterdam, pp 89–109

    Google Scholar 

  • Baker NR, Bowyer JR (eds) (1994) Photoinhibition of photosynthesis: from the molecular mechanisms to the field. BIOS Scientific, Oxford, p 471

    Google Scholar 

  • Barber J, Andersson B (1992) Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci 17:61–66

    PubMed  CAS  Google Scholar 

  • Beer S, Levy I (1983) Effects of photon fluence rate and light spectrum composition on growth, photosynthesis and pigment relations in Gracilaria sp. J Phycol 19:516–522

    CAS  Google Scholar 

  • Biebl R (1962) Seaweeds. In: Lewin RA (ed) Physiology and biochemistry of algae. Academic, New York, pp 799–815

    Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1998a) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar Biol 131:597–605

    Google Scholar 

  • Bischof K, Hanelt D, Tüg H, Karsten U, Brouwer PEM, Wiencke C (1998b) Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–395

    Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1999) Acclimation of maximal quantum yield of photosynthesis in the brown alga Alaria esculenta under high light and UV radiation. Plant Biol 1:435–444

    CAS  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (2000a) UV-effects on photosynthesis and related enzyme reactions of marine macroalgae. Planta 211:555–562

    PubMed  CAS  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (2000b) UV-radiation and Arctic marine macroalgae. In: Hessen D (ed) UV-radiation and Arctic ecosystems, vol 153, Ecological Studies series. Springer, New York, pp 227–244

    Google Scholar 

  • Brouwer PEM (1996) In situ photosynthesis and estimated annual production of the red alga Myriogramme mangini in relation to underwater irradiance at Signy island (Antarctica). Antarct Sci 8:245–252

    Google Scholar 

  • Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29:345–378

    CAS  Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    PubMed  CAS  Google Scholar 

  • Critchley C, Russell AW (1994) Photoinhibition of photosynthesis in vivo: the role of protein turnover in photosystem II. Physiol Plant 92:188–196

    CAS  Google Scholar 

  • Dau H (1994a) Short-term adaptation of plants to changing light intensities and its relation to photosystem II photochemistry and fluorescence emission. J Photochem Photobiol B Biol 26:3–27

    CAS  Google Scholar 

  • Dau H (1994b) Molecular mechanisms and quantitative models of variable photosystem II fluorescence. Photochem Photobiol 60:1–23

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    CAS  Google Scholar 

  • Dring MJ (1981) Photosynthesis and development of marine macrophytes in natural sun light spectra. In: Smith H (ed) Plants and the day light spectrum. Academic, London, pp 297–314

    Google Scholar 

  • Dring MJ (1982) The biology of marine plants. Edward Arnold, London, p 199

    Google Scholar 

  • Dring MJ (1988) Photocontrol of development in algae. Annu Rev Plant Physiol Plant Mol Biol 39:157–174

    Google Scholar 

  • Dring MJ, Makarov V, Schoschina E, Lorenz M, Lüning K (1996) Influence of ultraviolet-radiation on chlorophyll fluorescence and growth in different life-history stages of three species of Laminaria (Phaeophyta). Mar Biol 126:183–191

    CAS  Google Scholar 

  • Dunton KH, Jodwalis CM (1988) Photosynthetic performance of Laminaria solidungula measured in situ in the Alaskan High Arctic. Mar Biol 98:277–285

    Google Scholar 

  • Eberhard S, Finazzi G, Wollmann FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    PubMed  CAS  Google Scholar 

  • Eggert A, Wiencke C (2000) Adaptation and acclimation of growth and photosynthesis of five Antarctic red algae to low temperatures. Polar Biol 23:609–618

    Google Scholar 

  • Engelmann TW (1883) Farbe und assimilation. Botan Zentr 41:1–29

    Google Scholar 

  • Engelmann TW (1884) Untersuchungen über die quantitativen beziehungen zwischen absorption des lichtes und assimilation in pflanzenzellen. Botan Zentr 42:82–95

    Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Scientific, Oxford

    Google Scholar 

  • Fischer G, Wiencke C (1992) Stable carbon isotope composition, depth distribution and fate of macroalgae from the Antarctic Peninsula region. Polar Biol 12:341–348

    Google Scholar 

  • Flores-Moya A, Hanelt D, López-Figueroa F, Altamirano M, Viñegla B, Salles S (1999) Solar UV-B radiation shows beneficial effects on recovery of inhibited photosynthesis in the brown alga Dictyota dichotoma. J Photochem Photobiol B Biol 49:129–135

    CAS  Google Scholar 

  • Flores-Moya A, Posudin YI, Fernández JA, Figueroa FL, Kawai H (2002) Photomovement of the swarmers of the brown algae Scytosiphon lomentaria and Petalonia fascia: effect of photon irradiance, spectral composition and UV dose. J Photochem Photobiol B Biol 66:134–140

    CAS  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    PubMed  PubMed Central  CAS  Google Scholar 

  • Franklin LA, Forster RM (1997) The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol 32:207–232

    Google Scholar 

  • Franklin LA, Osmond CB, Larkum AWD (2003) Photoinhibition, UV-B and algal photosynthesis. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer, Dordrecht, pp 351–384

    Google Scholar 

  • Glover HE, Keller MD, Guillard RRL (1986) Light quality and oceanic ultraphytoplankters. Nature 319:142–143

    Google Scholar 

  • Glover HE, Keller MD, Spinrad RW (1987) Effects of light quality and intensity on photosynthesis and growth of marine eukaryotic and prokaryotic phytoplankton clones. J Exp Mar Biol Ecol 105:137–159

    Google Scholar 

  • Gómez I, Thomas DN, Wiencke C (1995a) Longitudinal profiles of growth, photosynthesis and light independent carbon fixation in the Antarctic brown alga Ascoseira mirabilis. Bot Mar 38:157–164

    Google Scholar 

  • Gómez I, Wiencke C, Weykam G (1995b) Seasonal photosynthetic characteristics of Ascoseira mirabilis (Ascoseirales, Phaeophyceae) from King George Island, Antarctica. Mar Biol 123:167–172

    Google Scholar 

  • Gómez I, Weykam G, Klöser H, Wiencke C (1997) Photosynthetic light requirements, metabolic carbon balance and zonation of sublittoral macroalgae from King George Island (Antarctica). Mar Ecol Prog Ser 148:281–293

    Google Scholar 

  • Guenther JE, Melis A (1990) The physiological significance of photosystem II heterogeneity in chloroplasts. Photosynth Res 23:105–109

    PubMed  CAS  Google Scholar 

  • Häder DP, Figueroa FL (1997) Photoecophysiology of marine macroalgae. Photochem Photobiol 66:1–14

    Google Scholar 

  • Hanelt D (1992) Photoinhibition of photosynthesis in marine macrophytes of the South Chinese Sea. Mar Ecol Prog Ser 82:199–206

    Google Scholar 

  • Hanelt D (1998) Capability of dynamic photoinhibition in marine macroalgae is related to their depth distribution. Mar Biol 131:361–369

    Google Scholar 

  • Hanelt D, Nultsch W (1989) Action spectrum of phaeoplast displacement from the dark to the low intensity arrangement in the brown alga Dictyota dichotoma. J Photochem Photobiol B Biol 4:111–121

    CAS  Google Scholar 

  • Hanelt D, Nultsch W (2002) Photoinhibition in seaweeds. In: Heldmaier G, Werner D (eds) Environmental signal processing and adaptation. Springer, Berlin, pp 141–168

    Google Scholar 

  • Hanelt D, Roleda M (2009) UV-B radiation may ameliorate photoinhibition in specific shallow-water tropical marine macrophytes. Aquatic Bot 91:6–12

    CAS  Google Scholar 

  • Hanelt D, Huppertz K, Nultsch W (1992) Photoinhibition of photosynthesis and its recovery in red algae. Bot Acta 105:278–284

    Google Scholar 

  • Hanelt D, Huppertz K, Nultsch W (1993) Daily course of photosynthesis and photoinhibition in marine macroalgae investigated in the laboratory and in the field. Mar Ecol Prog Ser 97:31–71

    Google Scholar 

  • Hanelt D, Melchersmann B, Wiencke C, Nultsch W (1997a) Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Mar Ecol Prog Ser 149:255–266

    CAS  Google Scholar 

  • Hanelt D, Wiencke C, Nultsch W (1997b) Influence of UV-radiation on the photosynthesis of Arctic macroalgae in the field. J Photochem Photobiol B Biol 38:40–47

    CAS  Google Scholar 

  • Hanelt D, Wiencke C, Karsten U, Nultsch W (1997c) Photoinhibition and recovery after high light stress in different developmental and life-history stages of Laminaria saccharina (Phaeophyta). J Phycol 33:387–395

    Google Scholar 

  • Hanelt D, Wiencke C, Bischof K (2003) Photosynthesis in marine macroalgae. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae, vol 14. Kluwer, Dordrecht, pp 413–435

    Google Scholar 

  • Hanelt D, Hawes I, Rae R (2006) Reduction of UV-B radiation causes an enhancement of photoinhibition in high light stressed aquatic plants from New Zealand lakes. J Photochem Photobiol B Biol 84:89–102

    CAS  Google Scholar 

  • Harder R, Bederke B (1957) Über Wachstumsversuche mit Rot- und Grünalgen (Porphyridium cruentum, Trailliella intricata, Chlorella pyrenoidosa) in verschiedenfarbigem, energiegleichem Licht. Arch Mikrobiol 28:153–172

    PubMed  CAS  Google Scholar 

  • Haxo FT, Blinks LR (1950) Photosynthetic action spectra of marine algae. J Gen Physiol 33:389–442

    PubMed  PubMed Central  CAS  Google Scholar 

  • Huppertz K, Hanelt D, Nultsch W (1990) Photoinhibition of photosynthesis in the marine brown alga Fucus serratus as studied in field experiments. Mar Ecol Prog Ser 66:175–182

    Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, Amsterdam

    Google Scholar 

  • Johansson G, Snoeijs P (2002) Macroalgal photosynthetic responses to light in relation to thallus morphology and depth zonation. Mar Ecol Prog Ser 244:63–72

    Google Scholar 

  • Jones LW, Kok B (1966) Photoinhibition of chloroplast reactions I. Kinetics and action spectra. Plant Physiol 41:1037–1043

    PubMed  PubMed Central  CAS  Google Scholar 

  • Karsten U, Wiencke C (1999) Factors controlling the formation of UV-absorbing mycosporine-like amino acids in the marine red alga Palmaria palmata from Spitsbergen (Norway). J Plant Phys 155:407–415

    CAS  Google Scholar 

  • Kawai H, Müller DG, Fölster E, Häder DP (1990) Phototactic response in the gametes of the brown alga, Ectocarpus siliculosus. Planta 182:292–297

    PubMed  CAS  Google Scholar 

  • Kirst GO, Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31:181–199

    Google Scholar 

  • Kleine T, Kindgren P, Benedict C, Hendrickson L, Strand A (2007) Genome-wide gene expression analysis reveals a critical role for cryptochrome1 in the response of Arabidopsis to high irradiance. Plant Physiol 144:1391–1406

    PubMed  PubMed Central  CAS  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis an evaluation of damaging and protective mechanisms. Physiol Plant 74:566–574

    CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    CAS  Google Scholar 

  • Küster A, Schaible R, Schubert H (2004) Light acclimation of the charophyte Lamprothamnium papulosum. Aquat Bot 79:111–124

    Google Scholar 

  • Larkum AWD, Wood WF (1993) The effect of UV-B radiation on photosynthesis and respiration of phytoplankton, benthic macroalgae and seagrasses. Photosynth Res 36:17–23

    PubMed  CAS  Google Scholar 

  • Larkum AWD, Drew EA, Crossett RN (1967) The vertical distribution of attached marine algae in Malta. J Ecol 55:361–371

    Google Scholar 

  • Leukart P, Lüning K (1994) Minimum spectral light requirements and maximum light levels for long-term germling growth of several red algae from different water depths and a green alga. Eur J Phycol 29:103–112

    Google Scholar 

  • Littler MM (1980) Morphological form and photosynthetic performances of marine macroalgae: tests of a functional/form hypothesis. Bot Mar 22:161–165

    Google Scholar 

  • Littler MM, Littler DS, Taylor PR (1983) Evolutionary strategies in a tropical barrier reef system: functional-form groups of marine macroalgae. J Phycol 19:229–237

    Google Scholar 

  • Littler MM, Littler DS, Blair SM, Norris JM (1986) Deep water plant communities from an uncharted seamount off San Salvador island, Bahamas: distribution, abundance and primary productivity. Deep Sea Res 33:881–892

    CAS  Google Scholar 

  • López-Figueroa F, Niell FX (1991) Photocontrol of chlorophyll and biliprotein synthesis in seaweeds: possible photoreceptors and ecological considerations. Scientia Marina 55:519–527

    Google Scholar 

  • López-Figueroa F, Rüdiger W (1991) Stimulation of nitrate net uptake and reduction by red and blue light and the reversion by far-red light in the green alga Ulva rigida. J Phycol 27:389–394

    Google Scholar 

  • López-Figueroa F, Lindemann P, Braslavsky SE, Schaffner K, Schneider-Poetsch HA, Rüdiger W (1989) Detection of a phytochrome -like protein in macroalgae. Bot Acta 102:178–180

    Google Scholar 

  • López-Figueroa F, Lindemann P, Braslavsky SE, Schaffner K, Schneider-Poetsch HA, Rüdiger W (1990) Detection of some conserved domains in phytochrome-like protein from algae. J Plant Physiol 136:484–487

    Google Scholar 

  • Lüder UH, Knoetzel J, Wiencke C (2001) Acclimation of photosynthesis and pigments to seasonally changing light conditions in the endemic Antarctic red alga Palmaria decipiens. Polar Biol 24:598–603

    Google Scholar 

  • Lüder UH, Wiencke C, Knoetzel J (2002) Acclimation of photosynthesis and pigments during and after six months of darkness in Palmaria decipiens (Rhodophyta): A study to simulate Antarctic winter sea ice cover. J Phycol 38:904–913

    Google Scholar 

  • Lüning K (1981) Light. In: Mj W, Lobban CS (eds) The biology of seaweeds. Blackwell, Oxford, pp 326–355

    Google Scholar 

  • Lüning K (1990) Seaweeds: their environment, biogeography and ecopysiology. Wiley, New York

    Google Scholar 

  • Lüning K, Dring MJ (1985) Action spectra and spectral quantum yield of photosynthesis in marine macroalgae with thin and thick thalli. Mar Biol 87:119–129

    Google Scholar 

  • Lüning K, tom Dieck I (1989) Environmental triggers in algal seasonality. Bot Mar 32:389–397

    Google Scholar 

  • Maegawa M, Kunieda M, Kida W (1993) The influence of ultraviolet radiation on the photosynthetic activity of several red algae from different depths. Jpn J Phycol 41:207–214

    CAS  Google Scholar 

  • Marquardt R, Schubert H, Varela DA, Huovinen P, Henríquez L, Buschmann AH (2010) Light acclimation strategies of three commercially important red algal species. Aquaculture 299:140–148

    Google Scholar 

  • Mattoo AK, Hoffman-Falk H, Marder JB, Edelman M (1984) Regulation of protein metabolism: coupling of photosynthetic electron transport in vivo degradation of the rapidly metabolised 32-kilodalton protein of the chloroplast membranes. Proc Natl Acad Sci USA 81:1380–1384

    PubMed  PubMed Central  CAS  Google Scholar 

  • Müller DG, Maier I, Müller H (1987) Flagellum autofluorescence and photoaccumulation in heterokont algae. Photochem Photobiol 46:1003–1008

    Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    PubMed  CAS  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:68–92

    Google Scholar 

  • Nikaido SS, Johnson CH (2000) Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem Photobiol 71:758–765

    PubMed  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749

    PubMed  CAS  Google Scholar 

  • Niyogi KK, Li XP, Rosenberg V, Jung HS (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56:375–382

    PubMed  CAS  Google Scholar 

  • Nultsch W, Pfau J, Materna-Weide M (1987) Fluence and wavelength dependence of photoinhibition in the brown alga Dictyota dichotoma. Mar Ecol Prog Ser 41:93–97

    Google Scholar 

  • Nultsch W, Pfau J, Huppertz K (1990) Photoinhibition of photosynthetic oxygen production and its recovery in the subtidal red alga Polyneura hilliae. Bot Acta 103:62–67

    Google Scholar 

  • Ohad I, Kyle DJ, Arntzen CJ (1984) Membrane protein damage and repair: Removal and replacement of inactivated 32-kilodalton polypeptides in chloroplast membranes. J Cell Biol 99:481–485

    PubMed  CAS  Google Scholar 

  • Öquist G, Chow WS (1992) On the relationship between the quantum yield of photosystem II electron transport, as determined by chlorophyll fluorescence and the quantum yield of CO2-dependent O2 evolution. Photosynth Res 33:51–62

    PubMed  Google Scholar 

  • Osmond CB (1994) What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis, from the molecular mechanisms to the field. BIOS Scientific, Oxford, pp 1–24

    Google Scholar 

  • Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Krishna K, Niyogi K (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–522

    PubMed  CAS  Google Scholar 

  • Pfündel EE, Dilley RA (1993) The pH dependence of violaxanthin deepoxidation in isolated pea chloroplasts. Plant Physiol 101:65–71

    PubMed  PubMed Central  Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44

    CAS  Google Scholar 

  • Ramus J (1981) The capture and transduction of light energy. In: Lobban CS, Wynne MJ (eds) The biology of seaweeds. University of California Press, Berkely, pp 458–492

    Google Scholar 

  • Ramus J, Beale SI, Mauzerall D, Howard KL (1976) Changes in photosynthetic pigment concentration in seaweeds as a function of water depth. Mar Biol 37:223–229

    CAS  Google Scholar 

  • Ramus J, Lemons F, Zimmerman C (1977) Adaptation of light-harvesting pigments to downwelling light and the consequent photosynthetic performance of the eulittoral rockweeds Ascophyllum nodosum and Fucus vesiculosus. Mar Biol 42:293–303

    CAS  Google Scholar 

  • Raven JA, Geider RJ (2003) Adaptation, acclimation and regulation in algal photosynthesis. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer, Dordrecht, pp 385–412

    Google Scholar 

  • Raven JA, Kübler JE, Beardall J (2000) Put out the light, and then put out the light. J Mar Biol Assoc UK 80:1–25

    CAS  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IH, Kennis JT, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoptotective energy dissipation in higher plants. Nature 450:575–578

    PubMed  CAS  Google Scholar 

  • Rüdiger W, López-Figueroa F (1992) Photoreceptors in algae. Photochem Photobiol 55:949–954

    Google Scholar 

  • Sagert S, Forster RM, Feuerpfeil P, Schubert H (1997) Daily course of photosynthesis and photoinhibition in Chondrus crispus (Rhodophyta) from different shore levels. Eur J Phycol 32:363–371

    Google Scholar 

  • Senger H, Humbeck K, Schiller H (2002) Light adaptation of the photosynthetic apparatus of green algae. In: Werner D, Heldmaier G (eds) Environmental signal processing and adaptation. Springer, Berlin, pp 71–86

    Google Scholar 

  • Setlow RB (1974) The wavelengths in solar radiation effective in producing skin cancer: a theoretical analysis. Proc Nat Acad Sci USA 71:3363–3366

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sicora C, Máté Z, Vass I (2003) The interaction of visible and UV-B light during photodamage and repair of photosystem II. Photosynth Res 75:127–137

    PubMed  CAS  Google Scholar 

  • Steemann Nielsen E (1975) Marine photosynthesis. Elsevier, Amsterdam

    Google Scholar 

  • Stengel D, Dring M (1998) Seasonal variation in the pigment content and photosynthesis of different thallus regions of Ascophyllum nodosum (Fucales, Phaeophyta) in relation to position in the canopy. Phycologia 37:259–268

    Google Scholar 

  • Suzuki L, Johnson CH (2001) Algae know the time of day: circadian and photoperiodic programs. J Phycol 37:933–942

    Google Scholar 

  • Thomson PG, Davidson AT, Cadman N (2008) Temporal changes in effects of ambient UV radiation on natural communities of Antarctic marine protists. Aquat Microb Ecol 52:131–147

    Google Scholar 

  • Vass I (1997) Adverse effects of UV-B light on the structure and function of the photosynthetic apparatus. In: Pessarakli M (ed) Handbook of photosynthesis. Marcel Dekker, New York, pp 931–949

    Google Scholar 

  • Weykam G, Gómez I, Wiencke C, Iken K, Klöser H (1996) Photosynthetic characteristics and C:N ratios of macroalgae from King George Island (Antarctica). J Exp Mar Biol Ecol 204:1–22

    Google Scholar 

  • Wiencke C (1990a) Seasonality of brown macroalgae from Antarctica -a long-term culture study under fluctuating Antarctic daylength. Polar Biol 10:589–600

    Google Scholar 

  • Wiencke C (1990b) Seasonality of red and green macroalgae from Antarctica -a long-term culture study under fluctuating Antarctic daylength. Polar Biol 10:601–607

    Google Scholar 

  • Wiencke C, Fischer G (1990) Growth and stable carbon isotope composition of cold-water macroalgae in relation to light and temperature. Mar Ecol Prog Ser 65:283–292

    Google Scholar 

  • Wiencke C, Rahmel J, Karsten U, Weykam G, Kirst GO (1993) Photosynthesis of marine macroalgae from Antarctica: light and temperature requirements. Bot Acta 106:77–87

    Google Scholar 

  • Wiencke C, Gómez I, Pakker H, Flores-Moya A, Altamirano M, Hanelt D, Bischof K, Lopez-Figueroa F (2000) Impact of UV radiation on viability, photosynthetic characteristics and DNA of brown algal zoospores: Implications for depth zonation. Mar Ecol Prog Ser 197:217–229

    Google Scholar 

  • Wiencke C, Clayton MN, Gómez I, Iken K, Lüder UH, Amsler CD, Karsten U, Hanelt D, Bischof K, Dunton K (2007) Life strategy, ecophysiology and ecology of seaweeds in polar waters. Rev Environ Sci Biotechnol 6:95–126

    Google Scholar 

  • Wilhelm C, Selmar D (2011) Energy dissipation is an essential mechanism to sustain the viability of plants: The physiological limits of improved photosynthesis. J Plant Physiol 168:79–87

    PubMed  CAS  Google Scholar 

  • Wilson A, Ajlanib G, Verbavatzb JM, Vassc I, Kerfeldd CA, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wood WF (1987) Effect of solar ultraviolet radiation on the kelp Ecklonia radiata. Mar Biol 96:143–150

    Google Scholar 

  • Yokohama Y, Misonou T (1980) Chlorophyll a:b ratios in marine benthic algae. Jpn J Phycol 28:219–223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Hanelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hanelt, D., Figueroa, F.L. (2012). Physiological and Photomorphogenic Effects of Light on Marine Macrophytes. In: Wiencke, C., Bischof, K. (eds) Seaweed Biology. Ecological Studies, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28451-9_1

Download citation

Publish with us

Policies and ethics