Skip to main content

Maxwell’s Equations, Photons and the Density of States

  • Chapter
  • First Online:
Semiconductor Optics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 6823 Accesses

Abstract

In this chapter we consider Maxwells equations and what they reveal about the propagation of light in vacuum and in matter. We introduce the concept of photons and present their density of states. Since the density of states is a rather important property in general and not only for photons, we approach this quantity in a rather general way. We will use the density of states later also for other (quasi-) particles including systems of reduced dimensionality. In addition, we introduce the occupation probability of these states for various groups of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some authors prefer to use \({\bf{M}}^{{\prime}} =\bf{ M}{\mu }_{0}^{-1}\) and thus \(\bf{B} = {\mu }_{0}(\bf{H} +{ \bf{M}}^{{\prime}})\). We prefer (2.1e, f) for symmetry arguments [93R1].

  2. 2.

    A constant term in this power expansion such as \(\bf{P} =\bf{ {P}}_{0} + \chi E\) would describe a spontaneous polarization of matter which occurs e.g., in pyro- or ferro-electric materials. With arguments similar to the ones given for ferromagnetics we can neglect such phenomena in the discussion of the optical properties of semiconductors.

  3. 3.

    The letter ϕ has been already used for the electrostatic potential e.g., in (2.50). Since there are more different physical quantities than letters of the alphabet, we sometimes use the same letter for different quantities, but from the context it should be clear what is meant.

References

  1. J.C. Maxwell, Philos. Trans. R. Soc. Lond. 155, 459 (1865)

    Article  Google Scholar 

  2. Ph. Lenard, Ann. der Physik (Leipzig), 8, 149 (1902)

    Google Scholar 

  3. A. Einstein, Ann. der Physik (Leipzig), 17, 132 (1905)

    Google Scholar 

  4. R.A. Millikan, Phys. Rev. 7, 355 (1916)

    Article  ADS  Google Scholar 

  5. L.I. Schiff, Quantum Mechanics, 2nd edn. Advanced Solid State Physics (McGraw-Hill, New York, 1955)

    Google Scholar 

  6. R.J. Glauber (ed.), Quantum Optics (Academic, New York, 1969)

    Google Scholar 

  7. A.L. Fetter, J.D. Walecka, Quantum Theory of Many Particle Systems (McGraw Hill, New York, 1971)

    Google Scholar 

  8. L. Mandel, E. Wolf (eds.), Coherence and Quantum Optics (Plenum Press, New York, 1973)

    Google Scholar 

  9. H. Haken, Quantenfeldtheorie des Festkörpers Teubner (B.G. Teubner, Stuttgart, 1973)

    Book  Google Scholar 

  10. R. Loudon, The Quantum Theory of Light (Clarendon Press, Oxford, 1973)

    Google Scholar 

  11. H. Haken, Quantum Field Theory of Solids (North Holland, Amsterdam, 1976)

    Google Scholar 

  12. S.M. Kay, A. Maitland (eds.), Quantum Optics (Academic, New York, 1979)

    Google Scholar 

  13. H. Haken, H.C. Wolf, Atom- und Quantenphysik (Springer, Berlin/Heidelberg, 1980)

    Book  Google Scholar 

  14. P. Würfel, J. Phys. C 15, 3967 (1982)

    Article  ADS  Google Scholar 

  15. M. Abramowitz, J.A. Stegun (eds.), Pocket Book of Mathematical Functions (Deutsch, Thun, 1984)

    Google Scholar 

  16. W. Greiner, Theoretische Physik, vol. 1–10 (Deutsch, Frankfurt, 1985)

    Google Scholar 

  17. J.K. Furdyna, J. Kossut (eds.), Diluted Magnetic Semiconductors. Semiconductors and Semimetals, vol 25 (Academic, Boston, 1988)

    Google Scholar 

  18. R. Kidd et al., Am. J. Phys. 57, 27 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  19. H.A. Bachor, A Guide to Experiments in Quantum Optics (Wiley-VCH, Weinheim, 1989)

    Google Scholar 

  20. P. Tombesi (ed.), Squeezed and Nonclassical Light. NATO ASI Series B, vol 190 (Plenum Press, New York, 1989)

    Google Scholar 

  21. I.N. Bronstein, K.A. Semendjajew, Taschenbuch der Mathematik, 25th edn. (Teubner, Stuttgart, 1991)

    Google Scholar 

  22. M. von Ortenberg, Festkörperprobleme/Adv. Solid State Phys. 31, 261 (1991)

    Article  Google Scholar 

  23. O. Goede, W. Heimbrodt, Adv. Solid State Phys. 32, 237 (1992)

    Article  Google Scholar 

  24. P. Meystre, M. Sargent III, Elements of Quantum Optics, 2nd edn. (Springer, Berlin/ Heidelberg, 1992)

    Google Scholar 

  25. H. Stöc ker (ed.), Taschenbuch Mathematischer Formeln und Moderner Verfahren (Deutsch, Frankfurt, 1992)

    Google Scholar 

  26. K. Schick et al., Appl. Phys. A 54, 109 (1992)

    Article  ADS  Google Scholar 

  27. D.R. Yakovlev, Festkörperprobleme/Adv. Solid State Phys. 32, 251 (1992)

    Article  Google Scholar 

  28. H.Ruder, M. Ruder, Die spezielle Relativitätstheorie (Vieweg, Braunschweig, 1993)

    Book  MATH  Google Scholar 

  29. W. Stößel, Fourieroptik (Springer, Berlin, 1993)

    Google Scholar 

  30. I. Abraham, J.A. Levenson, in Nonlinear Spectroscopy of Solids: Advances and Application (1993). NATO ASI Series B, vol. 339 (Plenum Press, New York, 1994), p. 251

    Google Scholar 

  31. B. Bowlby, in Nonlinear Spectroscopy of Solids: Advances and Application (1993). NATO ASI Series B, vol. 339 (Plenum Press, New York, 1994), p. 385

    Google Scholar 

  32. T. Dietl, in Diluted Magnetic Semiconductors. Handbook of Semiconductors, vol 38, T.S. Moss (ed.), (North Holland, New York, 1994)

    Google Scholar 

  33. J.A. Gaj et al., Phys. Rev. B. 50, 5512 (1994)

    Article  ADS  Google Scholar 

  34. E. Daub, P. Würfel, Phys. Rev. Lett. 74, 1020 (1995)

    Article  ADS  Google Scholar 

  35. R. Hellmann et al., J. Crystal Growth 159, 976 (1996)

    Article  ADS  Google Scholar 

  36. Leitfaden für den Gebrauch des Internationalen Einheitensystems, Physikalisch Technische Bundesanstalt (PTB), Braunschweig (1996) or various textbooks on physics

    Google Scholar 

  37. R.v. Baltz, in Ultrafast Dynamics of Quantum Systems (1997). NATO ASI Series B, vol. 372 (Plenum Press, New York, 1998), p. 303

    Google Scholar 

  38. R.v. Baltz, C. Klingshirn, in Ultrafast Dynamics of Quantum Systems (1997). NATO ASI Series B, vol. 372 (Plenum Press, New York, 1998), p. 381

    Google Scholar 

  39. R.v. Baltz, in Ultrafast Dynamics of Quantum Systems (1997). NATO ASI Series B, vol. 372 (Plenum Press, New York, 1998), p. 323

    Google Scholar 

  40. B. Di Bartolo, in Ultrafast Dynamics of Quantum Systems (1997). NATO ASI Series B, vol. 372 (Plenum Press, New York, 1998), p. 1

    Google Scholar 

  41. H. Ohno, Science 281, 951 (1998)

    Article  ADS  Google Scholar 

  42. H. Paul, Photonen: eine Einführung in die Quantenoptik (B.G. Teubner, Stuttgart, 1999)

    Google Scholar 

  43. M.O. Scully, S.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  44. M. Planck, Verhandl. Deutsch Phys. Gesellschaft, 2, 202, 237 (1900); Ann. der Physik, 4, 553

    Google Scholar 

  45. G. Messin et al., Optics Lett. 26, 1891 (2001)

    Article  ADS  Google Scholar 

  46. Tao-Hua et al., Acta Optica Sinica 21, 1486 (2001)

    Google Scholar 

  47. W. Tittel, W. Martienssen, Physikal. Blätter 57, Heft 7/8, 81 (2001)

    Google Scholar 

  48. G. Bayer et al., Physica E 12, 900 (2002)

    Article  ADS  Google Scholar 

  49. G.A. Durkin, C. Simon, D. Bouwmeester, Phys. Rev. Lett. 88, 187902 (2002)

    Article  ADS  Google Scholar 

  50. O. Gywat, G. Burkard, D. Loss, Phys. Rev. B 65, 205329 (2002)

    Article  ADS  Google Scholar 

  51. Ye-Liu, Guo-Guangcan, Acta Optica Sinica 22, 407 (2002)

    Google Scholar 

  52. T. Dietl, Europhys. News 34, 216 (2003)

    Article  ADS  Google Scholar 

  53. Ch.C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  54. S. Haroche, J.-M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons (Oxford University Press, Oxford, 2006)

    MATH  Google Scholar 

  55. Y.B. Band, Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers (Wiley, Chchester, 2007)

    Google Scholar 

  56. D.A.B. Miller, Quantummechanics for Scientists and Engineers (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  57. M. Assmann et al., Science, 325, 297 (2009)

    Article  ADS  Google Scholar 

  58. K. Henneberger, Phys. Status Solidi B 246, 283 (2009)

    Article  ADS  Google Scholar 

  59. L. Schneebeli, M. Kira, S.W. Koch, Phys. Rev. A 80, 033843 (2009)

    Article  ADS  Google Scholar 

  60. J.J. Wiersig et al., Nature, 460, 245 (2009)

    Article  ADS  Google Scholar 

  61. K. Cho, Reconstruction of Macroscopic Maxwell Equations. Springer Tracts in Modern Physics, vol. 237 (Springer, Berlin/Heidelberg, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klingshirn, C.F. (2012). Maxwell’s Equations, Photons and the Density of States. In: Semiconductor Optics. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28362-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28362-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28361-1

  • Online ISBN: 978-3-642-28362-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics