Skip to main content

Raman Microscopy : A Versatile Approach to Bio-Imaging

  • Chapter
  • First Online:
Raman Imaging

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 168))

Abstract

Raman microscopy has become established as a key probe technique in biology and biomedicine. In combination with imaging and mapping it has been employed in the investigation of a diverse array of problems ranging from ex vivo and in vivo single cell studies to elucidation of the often complex, interacting structures which constitute human and animal tissues. This chapter emphasises the unique attributes of Raman microscopy as a bioimaging technique, including its non-invasive, spectral multiplexing ability, allied with high spatial resolution and underpinned by a range of multivariate data processing methods. A number of illustrative examples have been selected for discussion from the fields of molecular biology, ophthalmology, respiratory medicine as well as some non-medical examples. Recent advances and pointers to future activity in the uses of Raman microscopy as a structurally and functionally informative bioimaging technique are briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    though there are fortunate exceptions [45] where, even with near-UV or visible excitation of biological samples, interference in the Raman scattering due to fluorescence does not arise.

References

  1. M. Delhaye, P. Dhamelincourt, Raman microprobe and microscope with laser excitation. J. Raman Spectrosc. 3, 33–43 (1975)

    Article  ADS  Google Scholar 

  2. E.B. Hanlon, R. Manoharan, T.W. Koo, K.E. Shafer, J.T. Motz, M. Fitzmaurice, J.R. Kramer, I. Itzkan, R.R. Dasari, M.S. Feld, Prospects for in vivo Raman spectroscopy. Phys. Med. Biol. 45, R1–R59 (2000)

    Article  ADS  Google Scholar 

  3. N. Stone, P. Matousek, Advanced transmission Raman spectroscopy: A promising tool for breast disease diagnosis. Cancer Res. 68, 4424–4430 (2008)

    Article  Google Scholar 

  4. J.R. Beattie, J.V. Glenn, M.E. Boulton, A.W. Stitt, J.J. McGarvey, Effect of signal intensity normalization on the multivariate analysis of spectral data in complex ‘real-world’ datasets. J. Raman Spectrosc. 40, 429–435 (2009)

    Article  ADS  Google Scholar 

  5. D. Clark, S. Sasic, Chemical images: technical approaches and issues. Cytom. Part A. 69A, 815–824 (2006)

    Article  Google Scholar 

  6. C. Gendrin, Y. Roggo, C. Collet, Pharmaceutical applications of vibrational chemical imaging and chemometrics: A review. J. Pharm. Biomed. Anal. 48, 533–553 (2008)

    Article  Google Scholar 

  7. A. Jirasek, G. Schulze, M.M.L. Yu, W. Blades, R.F.B. Turner, Accuracy and precision of manual baseline determination. Appl. Spectrosc. 58, 1488–1499 (2004)

    Article  ADS  Google Scholar 

  8. B. Lavine, J. Workman, Chemometrics. Anal. Chem. 80, 4519–4531 (2008)

    Article  Google Scholar 

  9. C.A. Lieber, A. Mahadevan-Jansen, Automated method for subtraction of fluorescence from biological Raman spectra. Appl. Spectrosc. 57, 1363–1367 (2003)

    Article  ADS  Google Scholar 

  10. G. Schulze, A. Jirasek, M.M.L. Yu, A. Lim, R.F.B. Turner, M.W. Blades, Investigation of selected baseline removal techniques as candidates for automated implementation. Appl. Spectrosc. 59, 545–574 (2005)

    Article  ADS  Google Scholar 

  11. S. Bykov, I. Lednev, A. Ianoul, A. Mikhonin, C. Munro, S.A. Asher, Steady-state and transient ultraviolet resonance Raman spectrometer for the 193–270 nm spectral region. Appl. Spectrosc. 59, 1541–1552 (2005)

    Article  ADS  Google Scholar 

  12. Z. Huang, A. McWilliams, H. Lui, S. Lam, H. Zeng, Optical diagnosis of lung cancer using near-infrared Raman spectroscopy. In proceeding of SPIE: The International Society for Optical Engineering, 2004

    Google Scholar 

  13. P. Matousek, M. Towrie, A. Stanley, A.W. Parker, Efficient rejection of fluorescence from Raman spectra using picosecond Kerr gating. Appl. Spectrosc. 53, 1485–1489 (1999)

    Article  ADS  Google Scholar 

  14. S.E.J. Bell, E.S.O. Bourguignon, A. Dennis, Analysis of luminescent samples using subtracted shifted Raman spectroscopy. Analyst 123, 1729–1734 (1998)

    Article  ADS  Google Scholar 

  15. N.J. Cherepy, A.P. Shreve, L.J. Moore, S. Franzen, S.G. Boxer, R.A. Mathies, Near-infrared resonance Raman spectroscopy of the special pair and the accessory bacteriochlorophylls in photosynthetic reaction centers. J. Phys. Chem. 98, 6023–6029 (1994)

    Article  Google Scholar 

  16. J. Barbillat, Raman Imaging, in Raman Microscopy: Developments and Applications, ed. by G. Turrell, J. Corset, (Academic Press, London, 1996), pp. 175–196

    Google Scholar 

  17. S. Schlucker, M.D. Schaeberle, S.W. Huffman, I.W. Levin, Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies. Anal. Chem. 75, 4312–4318 (2003)

    Article  Google Scholar 

  18. C. Krafft, T. Knetschke, R.H.W. Funk, R. Salzer, Studies on stress-induced changes at the subcellular level by Raman microspectroscopic mapping. Anal. Chem. 78, 4424–4429 (2006)

    Article  Google Scholar 

  19. A.S. Haka, K.E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R.R. Dasari, M.S. Feld, Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy. Cancer Res. 62, 5375–5380 (2002)

    Google Scholar 

  20. A.S. Haka, K.E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R.R. Dasari, M.S. Feld, Diagnosing breast cancer by using Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 102, 12371–12376 (2005)

    Article  ADS  Google Scholar 

  21. A.S. Haka, Z. Volynskaya, J.A. Gardecki, J. Nazemi, J. Lyons, D. Hicks, M. Fitzmaurice, R.R. Dasari, J.P. Crowe, M.S. Feld, In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy. Cancer Res. 66, 3317–3322 (2006)

    Article  Google Scholar 

  22. J. Kneipp, T. Bakker Schut, M. Kliffen, M. Menke-Pluijmers, G.J. Puppels, Characterization of breast duct epithelia: a Raman spectroscopic study. Vib. Spectrosc. 32, 67–74 (2003)

    Google Scholar 

  23. K.E. Shafer-Peltier, A.S Haka, M. Fitzmaurice, J. Crowe, J. Myles, R.R. Dasari, M.S. Feld, Chemical basis for breast cancer diagnosis using Raman spectroscopy. Lasers Surg. Med. 3(Suppl 14), 2 (2002)

    Google Scholar 

  24. K.E. Shafer-Peltier, A.S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R.R. Dasari, M.S. Feld, Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo. J. Raman Spectrosc. 33, 552–563 (2002)

    Article  ADS  Google Scholar 

  25. N. Stone, R. Baker, K. Rogers, A.W. Parker, P. Matousek, Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer. Analyst. 132, 899–905 (2007)

    Article  ADS  Google Scholar 

  26. H.J. van Manen, C. Otto, Hybrid confocal Raman fluorescence microscopy on single cells using semiconductor quantum dots. Nano Lett. 7, 1631–1636 (2007)

    Article  ADS  Google Scholar 

  27. N. Amharref, A. Bejebbar, S. Dukie, L. Venteo, L. Schneider, M. Pluot, M. Manfait, Discriminating healthy from tumor and necrosis tissue in rat brain tissue samples by Raman spectral imaging. Biochimica Et Biophys. Acta-Biomembr. 1768, 2605–2615 (2007)

    Article  Google Scholar 

  28. S. Koljenovic, L.P. Choo-Smith, T.C.B. Schut, J.M. Kros, H.J. van den Berge, G.J. Puppels, Discriminating vital tumor from necrotic tissue in human glioblastoma tissue samples by Raman spectroscopy. Lab. Invest. 82, 1265–1277 (2002)

    Google Scholar 

  29. Z. Liu, X. Li, S.M. Tabakman, K. Jiang, S. Fan, H. Dai, Multiplexed multicolor Raman imaging of Live cells with isotopically modified single walled carbon nanotubes. J. Am. Chem. Soc. 130, 13540–13541 (2008)

    Article  Google Scholar 

  30. H.P. Buschman, G. Deinum, J.T. Motz, M. Fitzmaurice, J.R. Kramer, A. van der Laarse, A.V. Bruschke, M.S. Feld, Raman microspectroscopy of human coronary atherosclerosis: Biochemical assessment of cellular and extracellular morphologic structures in situ. Cardiovasc. Pathol. 10, 69–82 (2001)

    Article  Google Scholar 

  31. H.P. Buschman, J.T. Motz, G. Deinum, T.J. Romer, M. Fitzmaurice, J.R. Kramer, A. van der Laarse, A.V. Bruschke, M.S. Feld, Diagnosis of human coronary atherosclerosis by morphology-based Raman spectroscopy. Cardiovasc. Pathol. 10, 59–68 (2001)

    Article  Google Scholar 

  32. K.E. Shafer-Peltier, A.S. Haka, J.T. Motz, M. Fitzmaurice, R.R. Dasari, M.S. Feld, Model-based biological Raman spectral imaging. J. Cell. Biochem. Suppl 39, 125–137 (2002)

    Google Scholar 

  33. S.W.E. van de Poll, T.J. Romer, O.L. Volger, D.J.M. Delsing, T.C.B. Schut, H.M.G. Princen, L.M. Havekes, J.W. Jukema, A. van der Laarse, G.J. Puppels, Raman spectroscopic evaluation of the effects of diet and lipid-lowering therapy on atherosclerotic plaque development in mice. Arter. Thromb. Vasc. Biol. 21, 1630–1635 (2001)

    Article  Google Scholar 

  34. H.W. Wang, T.T. Le, J.X. Cheng, Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope. Opt. Commun. 281, 1813–1822 (2008)

    Article  ADS  Google Scholar 

  35. B. De Jong, T. Bakker Schut, J. Coppens, K. Wolffenbuttel, D. Kok, G.J. Puppels, Raman spectroscopic detection of changes in molecular composition of bladder muscle tissue caused by outlet obstruction. Vib. Spectrosc. 32, 57–65 (2003)

    Google Scholar 

  36. B. De Jong, T. Bakker Schut, K. Wolffenbuttel, J. Nijman, D. Kok, G.J. Puppels, Identification of bladder wall layers by Raman spectroscopy. J. Urol. 168, 1771–1778 (2002)

    Google Scholar 

  37. B.R. Wood, S.J. Langford, B.M. Cooke, F.K. Glenister, J. Lim, D. McNaughton, Raman imaging of hemozoin within the food vacuole of plasmodium falciparum trophozoites. Febs Lett. 554, 247–252 (2003)

    Article  Google Scholar 

  38. J.R. Goodwin, L.M. Hafner, P.M. Fredericks, Raman spectroscopic study of the heterogeneity of microcolonies of a pigmented bacterium. J. Raman Spectrosc. 37, 932–936 (2006)

    Article  ADS  Google Scholar 

  39. C. Sandt, T. Smith-Palmer, J. Pink, L. Brennan, D. Pink, Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ. J. Appl. Microbiol. 103, 1808–1820 (2007)

    Article  Google Scholar 

  40. M. Baranska, H. Schulz, Spatial tissue distribution of polyacetylenes in carrot root. Analyst 130, 855–859 (2005)

    Article  ADS  Google Scholar 

  41. M. Baranska, H. Schulz, P. Rosch, M.A. Strehle, J. Popp, Identification of secondary metabolites in medicinal and spice plants by NIR-FT-Raman microspectroscopic mapping. Analyst 129, 926–930 (2004)

    Google Scholar 

  42. J.R. Beattie, S.J. Bell, A.M. Fearon, B.W. Moss, Variation in fatty acid profile of porcine adipose tissue measured by Raman spectroscopy, in International Workshop on Muscle Spectroscopy, Matforsk, Oslo, 27–28 Sept 2007

    Google Scholar 

  43. J.R. Beattie, C. Maguire, S. Gilchrist, L.J. Barrett, C.E. Cross, F. Possmayer, M. Ennis, J.S. Elborn, W.J. Curry, J.J. McGarvey, B.C. Schock, The use of Raman microscopy to determine and localize vitamin E in biological samples. Faseb J. 21, 766–776 (2007)

    Article  Google Scholar 

  44. S. Koljenovic, T.C.B. Schut, J.P. van Meerbeeck, A. Maat, S.A. Burgers, P.E. Zondervan, J.M. Kros, G.J. Puppels, Raman microspectroscopic mapping studies of human bronchial tissue. J. Biomed. Opt. 9, 1187–1197 (2004)

    Article  ADS  Google Scholar 

  45. H.J. van Manen, Y.M. Kraan, D. Roos, C. Otto, Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proc. Natl. Acad. Sci. U. S. A. 102, 10159–10164 (2005)

    Article  Google Scholar 

  46. C. Matthaus, T. Chernenko, J.A. Newmark, C.M. Warner, M. Diem, Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy. Biophys. J. 93, 668–673 (2007)

    Article  ADS  Google Scholar 

  47. N. Uzunbajakava, A. Lenferink, Y. Kraan, E. Volokhina, G. Vrensen, J. Greve, C. Otto, Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophys. J. 84, 3968–3981 (2003)

    Article  Google Scholar 

  48. Y.S. Huang, T. Karashima, M. Yamamoto, H. Hamaguchi, Molecular-level investigation of the structure, transformation, and bioactivity of single living fission yeast cells by time- and space-resolved Raman spectroscopy. Biochem. 44, 10009–10019 (2005)

    Article  Google Scholar 

  49. Y.S. Huang, T. Nakatsuka, H. Hamaguchi, Behaviors of the “Raman spectroscopic signature of life” in single living fission yeast cells under different nutrient, stress, and atmospheric conditions. Appl. Spectrosc. 61, 1290–1294 (2007)

    Article  ADS  Google Scholar 

  50. A. Taleb, J. Diamond, J.J. McGarvey, J.R. Beattie, C. Toland, P.W. Hamilton, Raman microscopy for the chemometric analysis of tumor cells. J. Phys. Chem. B. 110, 19625–19631 (2006)

    Article  Google Scholar 

  51. H.J. van Manen, Y.M. Kraan, D. Roos, C. Otto, Intracellular chemical imaging of heme-containing enzymes involved in innate immunity using resonance Raman microscopy. J. Phys. Chem. B. 108, 18762–18771 (2004)

    Article  Google Scholar 

  52. H.J. van Manen, N. Uzunbajakava, R. van Bruggen, D. Roos, C. Otto, Resonance Raman imaging of the NADPH oxidase subunit cytochrome b(558) in single neutrophilic granulocytes. J. Am. Chem. Soc. 125, 12112–12113 (2003)

    Article  Google Scholar 

  53. J.R. Beattie, S. Brockbank, J.J. McGarvey, W.J. Curry, Effect of excitation wavelength on the Raman spectroscopy of the porcine photoreceptor layer from the area centralis. Mol. Vis. 11, 825–832 (2005)

    Google Scholar 

  54. J.R. Beattie, S. Brockbank, J.J. McGarvey, W.J. Curry, Raman microscopy of porcine inner retinal layers from the area centralis. Mol. Vis. 13, 1106–1113 (2007)

    Google Scholar 

  55. S. Finnegan, Proteomic and raman analysis of the developing wild type and retinal dysplasia and degeneration chick retina. Ph.D. in Faculty of Medicine, Health and Life Sciences. Queen’s University Belfast, 2008

    Google Scholar 

  56. J.F. Brennan, T.J. Romer, R.S. Lees, A.M. Tercyak, J.R. Kramer, M.S. Feld, Determination of human coronary artery composition by Raman spectroscopy. Circulation 96, 99–105 (1997)

    Article  Google Scholar 

  57. T.J. Romer, J.F. Brennan, M. Fitzmaurice, M.L. Feldstein, G. Deinum, J.L. Myles, J.R. Kramer, R.S. Lees, M.S. Feld, Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy. Circulation 97, 878–885 (1998)

    Article  Google Scholar 

  58. C. Krafft, D. Codrich, G. Pelizzo, V. Sergo, Raman and FTIR imaging of lung tissue: Methodology for control samples. Vib. Spectrosc. 46, 141–149 (2008)

    Article  Google Scholar 

  59. C. Krafft, D. Codrich, G. Pelizzo, V. Sergo, Raman mapping and FTIR imaging of lung tissue: congenital cystic adenomatoid malformation. Analyst 133, 361–371 (2008)

    Article  ADS  Google Scholar 

  60. J.R. Beattie, S.E.J. Bell, C. Borgaard, A. Fearon, B.W. Moss, Prediction of adipose tissue composition using Raman spectroscopy: Average properties and individual fatty acids. Lipids 41, 287–294 (2006)

    Article  Google Scholar 

  61. J.R. Beattie, S.E.J. Bell, C. Borgaard, A.M. Fearon, B.W. Moss, Multivariate prediction of clarified butter composition using Raman spectroscopy. Lipids 39, 897–906 (2004)

    Article  Google Scholar 

  62. J.R. Beattie, S.E.J. Bell, C. Borggaard, A.M. Fearon, B.W. Moss, Classification of adipose tissue species using raman spectroscopy. Lipids 42, 679–685 (2007)

    Article  Google Scholar 

  63. W.W. Christie, D. McEwan Jenkinson, J.H. Moore, Variation in lipid composition through the skin and subcutaneous adipose tissue of pigs. J. Sci. Food Agric. 23, 1125–1129 (1972)

    Article  Google Scholar 

  64. N. Uzunbajakava, C. Otto, Combined Raman and continuous-wave-excited two-photon fluorescence cell imaging. Opt. Lett. 28, 2073–2075 (2003)

    Article  ADS  Google Scholar 

  65. D. Graham, R. Goodacre, Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy. Chem. Soc. Rev. 37, 883–884 (2008)

    Article  Google Scholar 

  66. C.W. Freudiger, W. Min, B.G. Saar, S. Lu, G.R. Holtom, C. He, J.C. Tsai, J.X. Kang, X.S. Xie, Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857 (2008)

    Google Scholar 

  67. S. Srinivasan, M. Schulmerich, J.H. Cole, K.A. Dooley, J.M. Kreider, B.W. Pogue, M.D. Morris, S.A. Goldstein, Image-guided Raman spectroscopic recovery of canine cortical bone contrast in situ. Opt. Express 16, 12190–12200 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to gratefully acknowledge the many contributions from collaborators and colleagues to the QUB-based studies included in this chapter. Vital financial support has been provided over several years from the UK Biotechnology and Biological Sciences Research Council, the Medical Research Council, Research and Development Office of NI Health Service and the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. McGarvey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McGarvey, J.J., Renwick Beattie, J. (2012). Raman Microscopy : A Versatile Approach to Bio-Imaging. In: Zoubir, A. (eds) Raman Imaging. Springer Series in Optical Sciences, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28252-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28252-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28251-5

  • Online ISBN: 978-3-642-28252-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics