Skip to main content

Proteostasis and the aging pathways

  • Chapter
  • First Online:
Protein Quality Control in Neurodegenerative Diseases

Abstract

Aging is defined as the continuous accumulation of changes in an organism over time, arising intrinsically as well as through interaction with the environment. Some of these changes are harmful to the maintenance of homeostasis and render an individual more susceptible to diseases and disorders. Eventually, accumulation of enough of these changes negatively impacts an organism’s ability to respond to stresses and sets in motion a cascade of events that eventually ends in death. Aging is a universal condition that affects all life; however, different organisms age at remarkably different rates. This observation suggests that aging is not simply a stochastic response but instead has a powerful element of genetic mechanism. In seeking to understand why we age, there is potential for discovering strategies that might delay this inevitable process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An JH, Blackwell TK (2003) SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17:1882–1893

    Article  PubMed  CAS  Google Scholar 

  • Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging disease. Ann Rev Biochem 80:1089–1115

    Article  PubMed  CAS  Google Scholar 

  • Bartke A (2008) Insulin and aging. Cell Cycle 7:3338–3343

    Article  PubMed  CAS  Google Scholar 

  • Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci USA 106:14914–14919

    Article  PubMed  CAS  Google Scholar 

  • Bishop NA, Guarente L (2007a) Genetic links between diet lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 8:835–844

    Article  PubMed  CAS  Google Scholar 

  • Bishop NA, Guarente L (2007b) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447:545–549

    Article  PubMed  CAS  Google Scholar 

  • Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 28:6926–6937

    Article  Google Scholar 

  • Bratic I, Hench J, Henriksson J, Antebi A, Burglin TR, Trifunovic A (2009) Mitochondrial DNA level but not active replicase is essential for Caenorhabditis elegans development. Nucl Acids Res 37:1817–1828

    Article  PubMed  CAS  Google Scholar 

  • Brignull HR, Moore FE, Tang SJ, Morimoto RI (2006) Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. J Neurosci 26:7597–7606

    Article  PubMed  CAS  Google Scholar 

  • Cahill CM, Tzivion G, Nasrin N, Ogg S, Dore J, Ruvkun G, Alexer-Bridges M (2001) Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding function via 14-3-3-dependent 14-3-3-independent pathways. J Biol Chem 276:13402–13410

    Article  PubMed  CAS  Google Scholar 

  • Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones the heat shock response in longevity and aging – a mini-review. Gerontology 55:550–558

    Article  PubMed  CAS  Google Scholar 

  • Carrano AC, Liu Z, Dillin A, Hunter T (2009) A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature 460:396–399

    PubMed  CAS  Google Scholar 

  • Chan DC (2006) Mitochondria: dynamic organelles in disease, aging and development. Cell 125:1241–1252

    Article  PubMed  CAS  Google Scholar 

  • Chiang WC, Ching TT, Lee HC, Mousigian C, Hsu AL (2012) HSF-1 regulators DDL-1/2 link insulin-like signaling to heat-shock responses and modulation of longevity. Cell 148:322–334

    Article  PubMed  CAS  Google Scholar 

  • Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313:1604–1610

    Article  PubMed  CAS  Google Scholar 

  • Cohen E, Paulsson JF, Blinder P, Burstyn-Cohen T, Du D, Estepa G, Adame A, Pham HM, Holzenberger M, Kelly JW, Masliah E, Dillin A (2009) Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 139:1157–1169

    Article  PubMed  CAS  Google Scholar 

  • Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204

    Article  PubMed  CAS  Google Scholar 

  • Cui H, Kong Y, Zhang H (2012) Oxidative stress mitochondrial dysfunction and aging. J Signal Transduct. doi:10.1155/2012/646354

    Google Scholar 

  • Dillin A, Cohen E (2011) Ageing protein aggregation-mediated disorders: from invertebrates to mammals. Philos Trans R Soc Lond B Biol Sci 366:94–98

    Article  PubMed  CAS  Google Scholar 

  • Dillin A, Crawford DK, Kenyon C (2002a) Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298:830–834

    Article  PubMed  CAS  Google Scholar 

  • Dillin A, Hsu A-L, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002b) Rates of behavior aging specified by mitochondrial function during development. Science 298:2398–2401

    Article  PubMed  CAS  Google Scholar 

  • Durieux J, Wolff S, Dillin A (2011) The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144:79–91

    Article  PubMed  CAS  Google Scholar 

  • Elchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson Roberts L, Van Remmen H, Epstein CJ, Huang TT (2005) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24:367–380

    Article  PubMed  CAS  Google Scholar 

  • Feng J, BussiËre F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1:633–644

    Article  PubMed  CAS  Google Scholar 

  • Ferguson AA, Springer MG, Fisher AL (2010) skn-1-Dependent and -independent regulation of aip-1 expression following metabolic stress in Caenorhabditis elegans. Mol Cell Biol 30:2651–2667

    Article  PubMed  CAS  Google Scholar 

  • Finkel T (2000) Redox-dependent signal transduction. FEBS Lett 476:52–54

    Article  PubMed  CAS  Google Scholar 

  • Florez-McClure ML, Hohsfield LA, Fonte G, Bealor MT, Link CD (2007) Decreased insulin-receptor signaling promotes the autophagic degradation of beta-amyloid peptide in C. elegans. Autophagy 3:569–580

    PubMed  CAS  Google Scholar 

  • Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161:1101–1112

    PubMed  CAS  Google Scholar 

  • Hansen M, Chra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4:e24

    Article  PubMed  Google Scholar 

  • Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    PubMed  CAS  Google Scholar 

  • Hassan WM, Merin DA, Fonte V, Link CD (2009) AIP-1 ameliorates beta-amyloid peptide toxicity in a Caenorhabditis elegans Alzheimer’s disease model. Hum Mol Genet 18:2739–2747

    Article  PubMed  CAS  Google Scholar 

  • Hertweck M, Gobel C, Baumeister R (2004) C elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell 6:577–588

    Article  PubMed  CAS  Google Scholar 

  • Holloszy JO, Fontana L (2007) Caloric restriction in humans. Exp Gerontol 42:709–712

    Article  PubMed  CAS  Google Scholar 

  • Horner MA, Quintin S, Domeier ME, Kimble J, Labouesse M, Mango SE (1998) pha-4 an HNF-3 homolog specifies pharyngeal organ identity in Caenorhabditis elegans. Genes Dev 12:1947–1952

    Article  PubMed  CAS  Google Scholar 

  • Houthoofd K, Vanfleteren JR (2006) The longevity effect of dietary restriction in Caenorhabditis elegans. Exp Gerontol 41:1026–1031

    Article  PubMed  CAS  Google Scholar 

  • Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, Vanfleteren JR (2002) No reduction of metabolic rate in food restricted Caenorhabditis elegans. Exp Gerontol 37:1359–1369

    Article  PubMed  Google Scholar 

  • Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR (2003) Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol 38:947–954

    Article  PubMed  CAS  Google Scholar 

  • Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145

    Article  PubMed  CAS  Google Scholar 

  • Imai J, Maruya M, Yashiroda H, Yahara I, Tanaka K (2003) The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. Embo J 22:3557–3567

    Article  PubMed  CAS  Google Scholar 

  • Jung T, Bader N, Grune T (2007) Oxidized proteins: intracellular distribution and recognition by the proteasome. Arch Biochem Biophys 462:231–237

    Article  PubMed  CAS  Google Scholar 

  • Kahn NW, Rea SL, Moyle S, Kell A, Johnson TE (2008) Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans. Biochem J 409:205–213

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Ambasta RK, Veereshwarayya V, Rosen KM, Kosik KS, Band H, Mestril R, Patterson C, Querfurth HW (2007) CHIP and HSPs interact with beta-APP in a proteasome-dependent manner and influence Abeta metabolism. Hum Mol Genet 16:848–864

    Article  PubMed  CAS  Google Scholar 

  • Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95:13091–13096

    Article  PubMed  CAS  Google Scholar 

  • Lanneau D, Wettstein G, Bonniaud P, Garrido C (2010) Heat shock proteins: cell protection through protein triage. Sci World J 10:1543–1552

    Article  CAS  Google Scholar 

  • Lee SS, Lee RYN, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2002) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33:40–48

    Article  PubMed  Google Scholar 

  • Li J, Tewari M, Vidal M, Lee SS (2007) The 14-3-3 protein FTT-2 regulates DAF-16 in Caenorhabditis elegans. Dev Biol 301:82–91

    Article  PubMed  CAS  Google Scholar 

  • Li J, Ebata A, Dong Y, Rizki G, Iwata T, Lee SS (2008) Caenorhabditis elegans HCF-1 functions in longevity maintenance as a DAF-16 regulator. PLoS Biol 6:e233

    Article  PubMed  Google Scholar 

  • Li W, Yang Q, Mao Z (2011a) Chaperone-mediated autophagy: machinery regulation biological consequences. Cell Mol Life Sci 68:749–763

    Article  PubMed  CAS  Google Scholar 

  • Li X, Matilainen O, Jin C, Glover-Cutter KM, Holmberg CI, Blackwell TK (2011b) Specific SKN-1/Nrf stress responses to perturbations in translation elongation proteasome activity. PLoS Genet 7:e1002119

    Article  PubMed  CAS  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  PubMed  CAS  Google Scholar 

  • Lu Q, Yang P, Huang X, Hu W, Guo B, Wu F, Lin L, Kovacs AL, Yu L, Zhang H (2011) The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev Cell 21:343–357

    Article  PubMed  CAS  Google Scholar 

  • Mair W, Dillin A (2008) Aging and survival: the genetics of life span extension by dietary restriction. Ann Rev Biochem 77:727–754

    Article  PubMed  CAS  Google Scholar 

  • Mary J, Vougier S, Picot CR, Perichon M, Petropoulos I, Friguet B (2004) Enzymatic reactions involved in the repair of oxidized proteins. Exp Gerontol 39:1117–1123

    Article  PubMed  CAS  Google Scholar 

  • McElwee JJ, Schuster E, Blanc E, Thomas JH, Gems D (2004) Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J Biol Chem 279:44533–44543

    Article  PubMed  CAS  Google Scholar 

  • Menzies FM, Moreau K, Rubinsztein DC (2011) Protein misfolding disorders and macroautophagy. Curr Opin Cell Biol 23:190–197

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  PubMed  CAS  Google Scholar 

  • Morley JF, Morimoto RI (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15:657–664

    Article  PubMed  CAS  Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382:536–539

    Article  PubMed  CAS  Google Scholar 

  • Mun JY, Lee TH, Kim JH, Yoo BH, Bahk YY, Koo HS, Han SS (2010) Caenorhabditis elegans mitofilin homologs control the morphology of mitochondrial cristae influence reproduction physiology. J Cell Physiol 224:748–756

    Article  PubMed  CAS  Google Scholar 

  • Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–283

    Article  PubMed  CAS  Google Scholar 

  • Nystrom T (2005) Role of oxidative carbonylation in protein quality control senescence. EMBO J 24:1311–1317

    Article  PubMed  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Forkheadtranscription factor DAF-16 transduces insulin-like metabolic longevitysignals in C elegans. Nature 389:995

    Google Scholar 

  • Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C elegans. Nature 447:550–555

    Article  PubMed  CAS  Google Scholar 

  • Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498

    Article  PubMed  CAS  Google Scholar 

  • Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G (1999) A PDK1 homolog is necessary sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 13:1438–1452

    Article  PubMed  CAS  Google Scholar 

  • Park SK, Tedesco PM, Johnson TE (2009) Oxidative stress longevity in Caenorhabditis elegans as mediated by SKN-1. Aging Cell 8:258–269

    Article  PubMed  CAS  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annual review of biochemistry 70:503–533

    Article  PubMed  CAS  Google Scholar 

  • Pickart CM, Cohen RE (2004) Proteasomes their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5:177–187

    Article  PubMed  CAS  Google Scholar 

  • Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease regulates amyloid beta accumulation in mice. J Clin Invest 118:2190–2199

    PubMed  CAS  Google Scholar 

  • Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S et al (2010) Regulation of mammalian autophagy in physiology pathophysiology. Physiol Rev 90:1383–1435

    Article  PubMed  CAS  Google Scholar 

  • Rezzi S, Martin FP, Shanmuganayagam D, Colman RJ, Nicholson JK, Weindruch R (2009) Metabolic shifts due to long-term caloric restriction revealed in nonhuman primates. Exp Gerontol 44:356–362

    Article  PubMed  CAS  Google Scholar 

  • Riederer BM, Leuba G, Vernay A, Riederer IM (2011) The role of the ubiquitin proteasome system in Alzheimer’s disease. Exp Biol Med (Maywood) 236:268–276

    Article  CAS  Google Scholar 

  • Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy aging. Cell 146:682–695

    Article  PubMed  CAS  Google Scholar 

  • Scheffner M, Nuber U, Huibregtse JM (1995) Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373:81–83

    Article  PubMed  CAS  Google Scholar 

  • Staub O, Rotin D (2006) Role of ubiquitylation in cellular membrane transport. Physiol Rev 86:669–707

    Article  PubMed  CAS  Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med (Berl) 81:678–699

    Article  CAS  Google Scholar 

  • Steinkraus KA, Smith ED, Davis C, Carr D, Pendergrass WR, Sutphin GL, Kennedy BK, Kaeberlein M (2008) Dietary restriction suppresses proteotoxicity enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans. Aging Cell 7:394–404

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Ohsumi Y (2007) Molecular machinery of autophagosome formation in yeast Saccharomyces cerevisiae. FEBS Lett 581:2156–2161

    Article  PubMed  CAS  Google Scholar 

  • Suzuki YJ, Carini M, Butterfield DA (2010) Protein carbonylation. Antioxid Redox Signal 12:323–325

    Article  PubMed  CAS  Google Scholar 

  • Taylor RC, Dillin A (2011) Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol 3. doi:10.1101/cshperspect.a004440

    Google Scholar 

  • Tullet JMA, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132:1025–1038

    Article  PubMed  CAS  Google Scholar 

  • Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11:777–788

    Article  PubMed  CAS  Google Scholar 

  • Volovik Y, Maman M, Dubnikov T, Bejerano-Sagie M, Joyce D, Kapernick EA, Cohen E, Dillin A (2012) Temporal requirements of heat shock factor-1 for longevity assurance. Aging Cell 11:491–499

    Article  PubMed  CAS  Google Scholar 

  • Walker GA, Lithgow GJ (2003) Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2:131–139

    Article  PubMed  CAS  Google Scholar 

  • Weindruch R, Naylor PH, Goldstein AL, Walford RL (1988) Influences of aging and dietary restriction on serum thymosin alpha 1 levels in mice. J Gerontol 43:B40–42

    Article  PubMed  CAS  Google Scholar 

  • Wolff S, Dillin A (2006) The trifecta of aging in Caenorhabditis elegans. Exp Gerontol 41:894–903

    Article  PubMed  Google Scholar 

  • Wolff S, Ma H, Burch D, Maciel GA, Hunter T, Dillin A (2006) SMK-1, an essential regulator of DAF-16-mediated longevity. Cell 124:1039–1053

    Article  PubMed  CAS  Google Scholar 

  • Wong E, Cuervo AM (2010) Integration of clearance mechanisms: the proteasome autophagy. Cold Spring Harb Perspect Biol 2:a006734

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama K, Fukumoto K, Murakami T, Harada S, Hosono R, Wadhwa R, Mitsui Y, Ohkuma S (2002) Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS Lett 516:53–57

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Dillin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nicastro, I., Dillin, A. (2013). Proteostasis and the aging pathways. In: Morimoto, R., Christen, Y. (eds) Protein Quality Control in Neurodegenerative Diseases. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27928-7_3

Download citation

Publish with us

Policies and ethics