Skip to main content

Epigenetics and the Environmental Regulation of Genomic Structure and Function: Implications for Health

  • Chapter
  • First Online:
Epigenetics, Brain and Behavior

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Abstract

There are numerous examples in the behavioral sciences of the enduring effects of early experience on neural and immune function. In this article we review the emerging evidence for epigenetics as a candidate mechanism for these effects. Epigenetics refers to functionally relevant modifications to the genome that do not involve a change in nucleotide sequence. Such modifications include chemical marks that regulate the transcription of the genome. There is now evidence that environmental events can directly modify the epigenetic state of the genome. Thus studies with rodent models suggest that, during both early development and in adult life, environmental signals activate intracellular pathways that directly remodel the “epigenome,” leading to changes in gene expression that modulate neural and immune function. These studies define a biological basis for the interplay between environmental signals and the genome in the regulation of individual differences in behavior, cognition, and physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:787–793

    PubMed  CAS  Google Scholar 

  • Abdolmaleky HM, Cheng KH, Russo A, Smith CL, Faraone SV, Wilcox M, Shafa R, Glatt SJ, Nguyen G, Ponte JF, Thiagalingam S, Tsuang MT (2005) Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 134B:60–66

    PubMed  Google Scholar 

  • Agarwal P, Raghavan A, Nandiwada SL, Curtsinger JM, Bohjanen PR, Mueller DL, Mescher MF (2009) Gene regulation and chromatin remodeling by IL-12 and type I IFN in programming for CD8 T cell effector function and memory. J Immunol 183:1695–1704

    PubMed  CAS  Google Scholar 

  • Akbarian S, Huang HS (2006) Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res Brain Res Rev 52:293–304

    Google Scholar 

  • Bale TL, Vale WW (2004) CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 44:525–557

    PubMed  CAS  Google Scholar 

  • Bateson P, Barker D, Clutton-Brock T, Deb D, D'Udine B, Foley RA, Gluckman P, Godfrey K, Kirkwood T, Lahr MM, McNamara J, Metcalfe NB, Monaghan P, Spencer HG, Sultan SE (2004) Developmental plasticity and human health. Nature 430:419–421

    PubMed  CAS  Google Scholar 

  • Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27

    PubMed  CAS  Google Scholar 

  • Bird AP (2007) Perceptions of epigenetics. Nature 447:396–398

    PubMed  CAS  Google Scholar 

  • Bousquet J, Jacot W, Yssel H, Vignola AM, Humbert M (2004) Epigenetic inheritance of fetal genes in allergic asthma. Allergy 59:138–147

    PubMed  CAS  Google Scholar 

  • Brandeis M, Frank D, Keshet I, Siegfried Z, Mendelsohn M, Nemes A, Temper V, Razin A, Cedar H (1994) Sp1 elements protect a CpG island from de novo methylation. Nature 371:435–438

    PubMed  CAS  Google Scholar 

  • Brooks WH, Le Dantec C, Pers JO, Youinou P, Renaudineau Y (2010) Epigenetics and autoimmunity. J Autoimmun 34:J207–J1219

    PubMed  CAS  Google Scholar 

  • Bruniquel D, Schwartz RH (2003) Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol 4:235–240

    PubMed  CAS  Google Scholar 

  • Burton CL, Chatterjee D, Chatterjee-Chakraborty M, Lovic V, Grella SL, Steiner M, Fleming AS (2007) Prenatal restraint stress and motherless rearing disrupts expression of plasticity markers and stress-induced corticosterone release in adult female Sprague–Dawley rats. Brain Res 1158:28–38

    PubMed  CAS  Google Scholar 

  • Caldji C, Tannenbaum B, Sharma S, Francis DD, Plotsky PM, Meaney MJ (1998) Maternal care during infancy regulates the development of neural systems mediating the expression of behavioral fearfulness in adulthood in the rat. Proc Natl Acad Sci U S A 95:5335–5340

    PubMed  CAS  Google Scholar 

  • Caldji C, Francis DD, Sharma S, Plotsky PM, Meaney MJ (2000) The effects of early rearing environment on the development of GABAA and central benzodiazepine receptor levels and novelty-induced fearfulness in the rat. Neuropsychopharmacology 22:219–229

    PubMed  CAS  Google Scholar 

  • Caldji C, Diorio J, Meaney MJ (2003) Variations in maternal care alter GABAA receptor subunit expression in brain regions associated with fear. Neuropsychopharmacology 28:150–159

    Google Scholar 

  • Cameron N, Parent C, Champagne FA, Fish E, Ozaki-Kuroda K, Meaney MJ (2005) The programming of individual differences in defensive responses and reproductive strategies in the rat through variations in maternal care. Neurosci Biobehav Rev 29:843–865

    PubMed  Google Scholar 

  • Cervoni N, & Szyf M (2001) Demethylase activity is directed by histone acetylation J Biol Chem, 276(44):40778–40787

    Google Scholar 

  • Champagne FA (2008) Epigenetic mechanisms and the transgenerational effects of maternal care. Front Neuroendocrinol 29:386–397

    PubMed  CAS  Google Scholar 

  • Champagne FA, Meaney MJ (2006) Stress during gestation alters postpartum maternal care and the development of the offspring in a rodent model. Biol Psychiatry 59:1227–1235

    PubMed  CAS  Google Scholar 

  • Champagne FA, Francis DD, Mar A, Meaney MJ (2003) Naturally-occurring variations in maternal care in the rat as a mediating influence for the effects of environment on the development of individual differences in stress reactivity. Physiol Behav 79:359–371

    PubMed  CAS  Google Scholar 

  • Champagne FA, Weaver ICG, Diorio J, Dymov S, Szyf M, Meaney MJ (2006) Maternal care regulates methylation of the estrogen receptor alpha 1b promoter and estrogen receptor alpha expression in the medial preoptic area of female offspring. Endocrinology 147:2909–2915

    PubMed  CAS  Google Scholar 

  • Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132:2393–2400

    Google Scholar 

  • Costa E, Davis JM, Dong E, Grayson DR, Guidotti A, Tremolizzo L, Veldic M (2004) A GABAergic cortical deficit dominates schizophrenia pathophysiology. Crit Rev Neurobiol 16:1–23

    PubMed  CAS  Google Scholar 

  • Cuddapah S, Barski A, Zhao K (2010) Epigenomics of T cell activation, differentiation, and memory. Curr Opin Immunol 22:341–347

    PubMed  CAS  Google Scholar 

  • Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    PubMed  CAS  Google Scholar 

  • Day JJ, Sweatt JD (2010) DNA methylation and memory formation. Nat Neurosci 13:1319–1323

    PubMed  CAS  Google Scholar 

  • Eastwood SL, Harrison PJ (2003) Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol Psychiatry 769:821–831

    Google Scholar 

  • Ebstein RP (2006) The molecular genetic architecture of human personality: beyond self-report questionnaires. Mol Psychiatry 11:427–445

    PubMed  CAS  Google Scholar 

  • Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455

    PubMed  CAS  Google Scholar 

  • Fan G, Martinowich K, Chin MH, He F, Fouse SD, Hutnick L, Hattori D, Ge W, Shen Y, Wu H, ten Hoeve J, Shuai K, Sun YE (2005) DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132:3345–3356

    PubMed  CAS  Google Scholar 

  • Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440

    PubMed  CAS  Google Scholar 

  • Fenoglio KA, Brunson KL, Avishai-Eliner S, Stone BA, Kapadia BJ, Baram TZ (2005) Enduring, handling-evoked enhancement of hippocampal memory function and glucocorticoid receptor expression involves activation of the corticotropin-releasing factor type 1 receptor. Endocrinology 146:4090–4096

    PubMed  CAS  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-SuñerD CJC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102:10604–10609

    PubMed  CAS  Google Scholar 

  • Francis DD, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across generations in maternal behavior and stress responses in the rat. Science 286:1155–1158

    PubMed  CAS  Google Scholar 

  • Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447:413–417

    PubMed  CAS  Google Scholar 

  • Garaud S, Le Dantec C, Jousse-Joulin S, Hanrotel-Saliou C, Saraux A, Mageed RA, Youinou P, Renaudineau Y (2009) IL-6 modulates CD5 expression in B cells from patients with lupus by regulating DNA methylation. J Immunol 182:5623–5632

    PubMed  CAS  Google Scholar 

  • Gluckman PD, Hanson MA (2004) Living with the past: evolution, development, and patterns of disease. Science 305:1733–1736

    PubMed  CAS  Google Scholar 

  • Gluckman PD, Hanson MA (2007) Developmental plasticity and human disease: research directions. J Intern Med 261:461–471

    PubMed  CAS  Google Scholar 

  • Gonzalez A, Lovic V, Ward GR, Wainwright PE, Fleming AS (2001) Intergenerational effects of complete maternal deprivation and replacement stimulation on maternal behavior and emotionality in female rats. Dev Psychobiol 38:11–32

    PubMed  CAS  Google Scholar 

  • Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A, Costa E (2005) Reelinpromoter hypermethylation in schizophrenia. Proc Natl Acad Sci U S A 102:9341–9346

    PubMed  CAS  Google Scholar 

  • Handel AE, Ebers GC, Ramagopalan SV (2010) Epigenetics: molecular mechanisms and implications for disease. Trends Mol Med 16:7–16

    PubMed  CAS  Google Scholar 

  • Harper LV (2005) Epigenetic inheritance and the intergenerational transfer of experience. Psychol Bull 131:340–360

    PubMed  Google Scholar 

  • Heim C, Newport DJ, Heit S, Graham YP, Wilcox M, Bonsall R, Miller AH, Nemeroff CB (2000) Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA 284:592–597

    PubMed  CAS  Google Scholar 

  • Hellstrom IC, Dhir SK, Diorio JC, & Meaney MJ (2012) Maternal licking regulates hippocampal glucocorticoid receptor transcription through a thyroid hormone-serotonin-NGFI-A signalling cascade. Philos Trans R Soc Lond B Biol Sci 367(1601):2495–2510

    PubMed  CAS  Google Scholar 

  • Hofer MA (2005) The psychobiology of early attachment. Clin Neurosci Res 4:291–300

    Google Scholar 

  • Holliday R (1989) DNA methylation and epigenetic mechanisms. Nat Rev Genet 8:253–262

    Google Scholar 

  • Holsboer F(2000) The stress hormone system is back on the map Curr Psychiatry Rep, 2(6):454–456

    Google Scholar 

  • Janson PC, & Winqvist O (2011). Epigenetics–the key to understand immune responses in health and disease. Am J Reprod Immunol, 66 Suppl 1:72–74

    PubMed  Google Scholar 

  • Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262

    PubMed  CAS  Google Scholar 

  • Jutapakdeegul N, Casalotti SO, Govitrapong P, Kotchabhakdi N (2003) Postnatal touch stimulation acutely alters corticosterone levels and glucocorticoid receptor gene expression in the neonatal rat. Dev Neurosci 25:26–33

    PubMed  CAS  Google Scholar 

  • Kendler KS (2001) Twin studies of psychiatric illness: an update. Arch Gen Psychiatry 58:1005–1014

    PubMed  CAS  Google Scholar 

  • Klose RJ, Bird AP (2007) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    Google Scholar 

  • Koob GF, Heinrichs SC, Menzaghi F, Pich EM, Britton KT (1994) Corticotropin-releasing factor, stress and behavior. Semin Neurosci 6:221–229

    CAS  Google Scholar 

  • Krukowski K, Eddy J, Kosik KL, Konley T, Janusek LW, Mathews HL (2011) Glucocorticoid dysregulation of natural killer cell function through epigenetic modification. Brain Behav Immun 25:239–249

    PubMed  CAS  Google Scholar 

  • Kundakovic M, Chen Y, Costa E, Grayson DR (2007) DNA methyltransferase inhibitors coordinately induce expression of the human reelin and glutamic acid decarboxylase 67 genes. Mol Pharmacol 71:644–653

    PubMed  CAS  Google Scholar 

  • Ladd-Acosta C, Pevsner J, Sabunciyan S, Yolken RH, Webster MJ, Dinkins T, Callinan PA, Fan JB, Potash JB, Feinberg AP (2007) DNA methylation signatures within the human brain. Am J Hum Genet 81:1304–1315

    PubMed  CAS  Google Scholar 

  • Laird PW (2005) Cancer epigenetics. Hum Mol Genet 14:R65–R76

    PubMed  CAS  Google Scholar 

  • Lal G, Bromberg JS (2009) Epigenetic mechanisms of regulation of Foxp3 expression. Blood 114:3727–3735

    PubMed  CAS  Google Scholar 

  • Levine S (1994) The ontogeny of the hypothalamic-pituitary-adrenal axis. The influence of maternal factors. Ann N Y Acad Sci 746:275–288

    PubMed  CAS  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324

    PubMed  CAS  Google Scholar 

  • Lincoln JA, Cook SD (2009) An overview of gene-epigenetic-environmental contributions to MS causation. J Neurol Sci 286:54–57

    PubMed  CAS  Google Scholar 

  • Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, Sharma S, Pearson D, Plotsky PM, Meaney MJ (1997) Maternal care, hippocampal glucocorticoidreceptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662

    PubMed  CAS  Google Scholar 

  • Liu D, Diorio J, Day JC, Francis DD, Mar A, Meaney MJ (2000) Maternal care, hippocampal synaptogenesis and cognitive development in the rat. Nat Neurosci 3:799–806

    PubMed  CAS  Google Scholar 

  • Liu CC, Kao AH, Hawkins DM, Manzi S, Sattar A, Wilson N, & Ahearn JM (2009) Lymphocyte-bound complement activation products as biomarkers for diagnosis of systemic lupus erythematosus. Clin Transl Sci, 2(4):300–308

    PubMed  CAS  Google Scholar 

  • Lu Q, Wu A, Richardson BC (2005) Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol 174:6212–6219

    PubMed  CAS  Google Scholar 

  • Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B (2007) Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 179:6352–6358

    PubMed  CAS  Google Scholar 

  • Lubin FD, Roth TL, Sweatt JD (2008) Epigenetic regulation of bdnf gene transcription in the consolidation of fear memory. J Neurosci 28:10576–10586

    PubMed  CAS  Google Scholar 

  • Martino DJ, Prescott SL (2010) Silent mysteries: epigenetic paradigms could hold the key to conquering the epidemic of allergy and immune disease. Allergy 65:7–15

    PubMed  CAS  Google Scholar 

  • Martino DJ, Tulic MK, Gordon L, Hodder M, Richman T, Metcalfe J, Prescott SL, Saffery R (2011) Evidence for age-related and individual-specific changes in DNA methylation profile of mononuclear cells during early immune development in humans. Epigenetics 6:1085–1094

    PubMed  CAS  Google Scholar 

  • Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003) DNAmethylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302:890–893

    PubMed  CAS  Google Scholar 

  • Mathews HL, Janusek LW (2011) Epigenetics and psychoneuroimmunology: mechanisms and models. Brain Behav Immun 25:25–39

    PubMed  Google Scholar 

  • McGirr A, Renaud J, Seguin M, Alda M, Turecki G (2008) Course of major depressive disorder and suicide outcome: a psychological autopsy study. J Clin Psychiatry 69:966–970

    PubMed  Google Scholar 

  • McGowan PO, Sasaki A, Dymov S, Turecki G, Szyf M, Meaney MJ (2009) Differential methylation of a neuron-enriched glucocorticoid receptor gene promoter in human hippocampus is associated with early child trauma and adult psychopathology. Nat Neurosci 12:342–348

    PubMed  CAS  Google Scholar 

  • Meaney MJ (2001) The development of individual differences in behavioral and endocrine responses to stress. Annu Rev Neurosci 24:1161–1192

    PubMed  CAS  Google Scholar 

  • Meaney MJ (2007) Social influences on sexual differentiation in mammals. Adv Genet 59:173–215

    PubMed  Google Scholar 

  • Meaney MJ (2010) Epigenetics and the biological definition of gene x environment interactions. Child Dev 81:41–79

    PubMed  Google Scholar 

  • Meaney MJ, Szyf M (2005) Maternal effects as a model for environmentally-dependent chromatin plasticity. Trends Neurosci 28:456–463

    PubMed  CAS  Google Scholar 

  • Meaney MJ, Diorio J, Donaldson L, Yau J, Chapman K, Seckl JR (2000) Handling alters the expression of messenger RNAs for AP-2, NGFI-A and NGFI-B in the hippocampus of neonatal rats. J Neurosci 20:3936–3945

    Google Scholar 

  • Menard J, Champagne D, Meaney MJ (2004) Maternal care alters behavioral and neural activity patterns in the defensive burying paradigm. Neuroscience 129:297–308

    PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 7:818–827

    PubMed  CAS  Google Scholar 

  • Mitchell JB, Rowe W, Boksa P, Meaney MJ (1990) Serotonin regulates type II corticosteroid receptor binding in hippocampal cell cultures. J Neurosci 10:1745–1752

    PubMed  CAS  Google Scholar 

  • Mitchell JB, Betito K, Rowe W, Boksa P, Meaney MJ (1992) Serotonergic regulation of type II corticosteroid receptor binding in cultured hippocampal cells: the role of serotonin-induced increases in cAMP levels. Neuroscience 48:631–639

    PubMed  CAS  Google Scholar 

  • Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407

    PubMed  CAS  Google Scholar 

  • Murayama A, Sakura K, Nakama M, Yasuzawa-Tanaka K, Fujita E, Tateishi Y, Wang Y, Ushijima T, Baba T, Shibuya K, Shibuya A, Kawabe Y, Yanagisawa J (2006) A specificCpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory. EMBO J 25:1081–1092

    PubMed  CAS  Google Scholar 

  • Neigh GN, Nemeroff CB (2006) Reduced glucocorticoid receptors: consequence or cause of depression? Trends Endocrinol Metab 17:124–125

    PubMed  CAS  Google Scholar 

  • Northrop JK, Wells AD, Shen H (2008) Cutting edge: chromatin remodeling as a molecular basis for the enhanced functionality of memory CD8 T cells. J Immunol 181:865–868

    PubMed  CAS  Google Scholar 

  • Parra M, Kasler H, McKinsey TA, Olson EN, Verdin E (2005) Protein kinase D1 phosphorylates HDAC7 and induces its nuclear export after T-cell receptor activation. J Biol Chem 280:13762–13770

    PubMed  CAS  Google Scholar 

  • Pascual M, Suzuki M, Isidoro-Garcia M, Padrón J, Turner T, Lorente F, Dávila I, Greally JM (2011) Epigenetic changes in B lymphocytes associated with house dust mite allergic asthma. Epigenetics 6:1131–1137

    PubMed  CAS  Google Scholar 

  • Plomin R, Rutter M (1998) Child development, molecular genetics, and what to do with genes once they are found. Child Dev 69:1223–1242

    PubMed  CAS  Google Scholar 

  • Plotsky PM, Cunningham ET Jr, Widmaier EP (1989) Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr Rev 10:437–458

    PubMed  CAS  Google Scholar 

  • Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210:604–610

    PubMed  CAS  Google Scholar 

  • Reiner SL (2005) Epigenetic control in the immune response. Hum Mol Genet 15:R41–R46

    Google Scholar 

  • Renaudineau Y, Garaud S, Le Dantec C, Alonso-Ramirez R, Daridon C, & Youinou P (2010) Autoreactive B cells and epigenetics Clin Rev Allergy Immunol 39:85–94

    CAS  Google Scholar 

  • Repetti RL, Taylor SE, Seeman TE (2002) Risky families: family social environments and the mental and physical health of offspring. Psychol Bull 128:330–366

    PubMed  Google Scholar 

  • Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M (1990) Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 33:1665–1673

    PubMed  CAS  Google Scholar 

  • Rossiter MC (1998) The role of environmental variation in parental effects expression. In: Fox CW (ed) Maternal effects as adaptations. Oxford University Press, London, pp 112–136

    Google Scholar 

  • Rutter M (2007) Gene-environment interdependence. Dev Sci 10:12–18

    PubMed  Google Scholar 

  • Schanberg SM, Evoniuk G, Kuhn CM (1984) Tactile and nutritional aspects of maternal care: specific regulators of neuroendocrine function and cellular development. Proc Soc Exp Biol Med 175:135–146

    PubMed  CAS  Google Scholar 

  • Schatzberg AF, Rothschild AJ, Langlais PJ, Bird ED, Cole JO (1985) A corticosteroid/dopamine hypothesis for psychotic depression and related states. J Psychiatr Res 19:57–64

    PubMed  CAS  Google Scholar 

  • Seckl JR, Holmes MC (2007) Mechanisms of disease: glucocorticoids, their placental metabolism and fetal “programming” of adult pathophysiology. Nat Clin Pract Endocrinol Metab 3:479–488

    PubMed  CAS  Google Scholar 

  • Segman RH, Shefi N, Goltser-Dubner T, Friedman N, Kaminski N, Shalev AY (2005) Peripheral blood mononuclear cell gene expression profiles identify emergent post-traumatic stress disorder among trauma survivors. Mol Psychiatry 10:500–513

    PubMed  CAS  Google Scholar 

  • Straub RE, Lipska BK, Egan MF, Goldberg TE, Kleinman JE (2007) Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression. Mol Psychiatry 12:854–869

    PubMed  CAS  Google Scholar 

  • Sweatt JD (2009) Experience-dependent epigenetic modifications in the central nervous system. Biol Psychiatry 65:191–197

    PubMed  Google Scholar 

  • Szyf M, Weaver IC, Champagne FA, Diorio J, Meaney MJ (2005) Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Front Neuroendocrinol 26:139–162

    PubMed  CAS  Google Scholar 

  • Toki S, Morinobu S, Imanaka A, Yamamoto S, Yamawaki S, Honma K (2007) Importance of early lighting conditions in maternal care by dam as well as anxiety and memory later in life of offspring. Eur J Neurosci 25:815–829

    PubMed  Google Scholar 

  • Trenkmann M, Brock M, Ospelt C, Gay S (2010) Epigenetics in rheumatoid arthritis. Clin Rev Allergy Immunol 39:10–19

    PubMed  CAS  Google Scholar 

  • Turner JD, Muller CP (2005) Structure of the glucocorticoid receptor (NR3C1) gene 5′untranslated region: identification and tissue distribution of multiple new human exon 1. J Mol Endocrinol 35:283–292

    PubMed  CAS  Google Scholar 

  • Veldic M, Caruncho HJ, Liu S, Davis J, Satta R, Grayson DR, Guidotti A, Costa E (2004) DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci U S A 101:348–353

    PubMed  CAS  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    PubMed  CAS  Google Scholar 

  • Waterland RA, Lin JR, Smith CA, Jirtle RL (2006) Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet 15:705–716

    PubMed  CAS  Google Scholar 

  • Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    PubMed  CAS  Google Scholar 

  • Weaver IC, Champagne FA, Brown SE, Dymov S, Sharma S, Meaney MJ, Szyf M (2005) Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 25:11045–11054

    PubMed  CAS  Google Scholar 

  • Weaver ICG, Meaney MJ, Szyf M (2006) Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci U S A 103:3480–3485

    PubMed  CAS  Google Scholar 

  • Weaver IC, D'Alessio AC, Brown SE, Hellstrom IC, Dymov S, Sharma S, Szyf M, Meaney MJ (2007) The transcription factor nerve growth factor-inducible protein amediates epigenetic programming: altering epigenetic marks by immediate-early genes. J Neurosci 27:1756–1768

    PubMed  CAS  Google Scholar 

  • Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M, Schübeler D (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39:457–466

    PubMed  CAS  Google Scholar 

  • Whitelaw NC, Whitelaw E (2006) How lifetimes shape epigenotype within and across generations. Hum Mol Genet 15:R131–R137

    PubMed  CAS  Google Scholar 

  • Wilson CB, Makar KW, Shnyreva M, Fitzpatrick DR (2005) DNA methylation and the expanding epigenetics of T cell lineage commitment. Semin Immunol 17:105–119

    PubMed  CAS  Google Scholar 

  • Wrona D (2006) Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J Neuroimmunol 172:38–58

    PubMed  CAS  Google Scholar 

  • Zhang T, Haws P, Wu Q (2004) Multiple variable first exons: a mechanism for cell- and tissue-specific gene regulation. Genome Res 14:79–89

    PubMed  CAS  Google Scholar 

  • Zhang TY, Bagot R, Parent C, Nesbitt C, Bredy TW, Caldji C, Fish E, Anisman H, Szyf M, Meaney MJ (2006) Maternal programming of defensive responses through sustained effects on gene expression. Biol Psychol 73:72–89

    PubMed  Google Scholar 

  • Zhang TY, Hellstrom I, Diorio J, Wei X-L, Meaney MJ (2010) Maternal regulation of hippocampal GAD1 expression is associated with transcriptional regulation through promoter methylation. J Neurosci 30:13130–13137

    PubMed  CAS  Google Scholar 

  • Zhao S, Long H, Lu Q (2010) Epigenetic perspectives in systemic lupus erythematosus: pathogenesis, biomarkers, and therapeutic potentials. Clin Rev Allergy Immunol 39:3–9

    PubMed  Google Scholar 

  • Zieker J, Zieker D, Jatzko A, Dietzsch J, Nieselt K, Schmitt A, Bertsch T, Fassbender K, Spanagel R, Northoff H, Gebicke-Haerter PJ (2007) Differential gene expression in peripheral blood of patients suffering from post-traumatic stress disorder. Mol Psychiatry 12:116–118

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carine I. Parent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parent, C.I., Zhang, TY., Meaney, M.J. (2012). Epigenetics and the Environmental Regulation of Genomic Structure and Function: Implications for Health. In: Sassone Corsi, P., Christen, Y. (eds) Epigenetics, Brain and Behavior. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27913-3_4

Download citation

Publish with us

Policies and ethics