Skip to main content

Clinical Aspects of Genetic Forms of Nephrotic Syndrome

  • Living reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Steroid-resistant nephrotic syndrome (SRNS) is a paradigmatic disease to illustrate the major clinical consequences that can arise from genetic testing. Patients with pathogenic variants should be spared inefficient and potentially toxic immunosuppressive therapy; although a partial reduction of proteinuria has been reported with calcineurin inhibitors and/or renin-angiotensin-aldosterone inhibitors in a small number of cases. A better understanding of disease mechanisms may help identifying targeted therapeutic agents, and guide specific management of extra-renal features. Moreover, these patients have a very low risk of recurrence after kidney transplantation. Finally, such diagnosis is crucial for genetic counseling with respect to family planning but also to assess the suitability of relatives as organ donors. Next-generation sequencing approaches are increasingly used as the first step of genetic analyses. Causative pathogenic variants are identified in approximately 30% of children with SRNS and at least 66% in congenital and infantile cases. Among these genes, NPHS1 and NPHS2 are by far the two main autosomal recessive genes implicated in SRNS, while INF2 is the leading cause of autosomal dominant SRNS. Most novel gene variants are rare and involve few families. Moreover, NGS has revealed causative variants in unexpected genes such as ciliary or tubular genes and has widened the phenotypes associated with SRNS. More complex inheritance involving susceptibility variants, oligogenism or interallelic influence of variants have also been described as a cause of SRNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kestila M, et al. Positionally cloned gene for a novel glomerular protein – nephrin – is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1:575–82.

    Article  CAS  PubMed  Google Scholar 

  2. Boute N, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet. 2000;24:349–54.

    Article  CAS  PubMed  Google Scholar 

  3. Kaplan JM, et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet. 2000;24:251–6.

    Article  CAS  PubMed  Google Scholar 

  4. Hinkes B, et al. Specific podocin mutations correlate with age of onset in steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2008;19:365–71.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Philippe A, et al. Nephrin mutations can cause childhood-onset steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2008;19:1871–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sadowski CE, et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2015;26:1279–89.

    Article  CAS  PubMed  Google Scholar 

  7. Trautmann A, et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2020;35:1529–61.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lovric S, et al. Rapid detection of monogenic causes of childhood-onset steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2014;9:1109–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bullich G, et al. Targeted next-generation sequencing in steroid-resistant nephrotic syndrome: mutations in multiple glomerular genes may influence disease severity. Eur J Hum Genet. 2015;23:1192–9.

    Article  CAS  PubMed  Google Scholar 

  10. McCarthy HJ, et al. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2013;8:637–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hinkes BG, et al. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics. 2007;119:e907–19.

    Article  PubMed  Google Scholar 

  12. Caridi G, et al. Broadening the spectrum of diseases related to podocin mutations. J Am Soc Nephrol. 2003;14:1278–86.

    Article  CAS  PubMed  Google Scholar 

  13. Weber S, et al. NPHS2 mutation analysis shows genetic heterogeneity of steroid-resistant nephrotic syndrome and low post-transplant recurrence. Kidney Int. 2004;66:571–9.

    Article  CAS  PubMed  Google Scholar 

  14. Ruf RG, et al. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J Am Soc Nephrol. 2004;15:722–32.

    Article  PubMed  Google Scholar 

  15. Trautmann A, et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort. Clin J Am Soc Nephrol. 2015;10:592–600.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bouchireb K, et al. NPHS2 mutations in steroid-resistant nephrotic syndrome: a mutation update and the associated phenotypic spectrum. Hum Mutat. 2014;35:178–86.

    Article  CAS  PubMed  Google Scholar 

  17. Machuca E, et al. Genotype-phenotype correlations in non-Finnish congenital nephrotic syndrome. J Am Soc Nephrol. 2010;21:1209–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frishberg Y, et al. The heart of children with steroid-resistant nephrotic syndrome: is it all podocin? J Am Soc Nephrol. 2006;17:227–31.

    Article  CAS  PubMed  Google Scholar 

  19. Caridi G, et al. Lack of cardiac anomalies in children with NPHS2 mutations. Nephrol Dial Transplant. 2007;22:1477–9.

    Article  PubMed  Google Scholar 

  20. Roselli S, Moutkine I, Gribouval O, Benmerah A, Antignac C. Plasma membrane targeting of podocin through the classical exocytic pathway: effect of NPHS2 mutations. Traffic. 2004;5:37–44.

    Article  CAS  PubMed  Google Scholar 

  21. Nishibori Y, et al. Disease-causing missense mutations in NPHS2 gene alter normal nephrin trafficking to the plasma membrane. Kidney Int. 2004;66:1755–65.

    Article  CAS  PubMed  Google Scholar 

  22. Huber TB, et al. Molecular basis of the functional podocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum Mol Genet. 2003;12:3397–405.

    Article  CAS  PubMed  Google Scholar 

  23. Ohashi T, Uchida K, Uchida S, Sasaki S, Nihei H. Intracellular mislocalization of mutant podocin and correction by chemical chaperones. Histochem Cell Biol. 2003;119:257–64.

    Article  CAS  PubMed  Google Scholar 

  24. Koziell A, et al. Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration. Hum Mol Genet. 2002;11:379–88.

    Article  CAS  PubMed  Google Scholar 

  25. Pereira AC, et al. NPHS2 R229Q functional variant is associated with microalbuminuria in the general population. Kidney Int. 2004;65:1026–30.

    Article  CAS  PubMed  Google Scholar 

  26. Tsukaguchi H, et al. NPHS2 mutations in late-onset focal segmental glomerulosclerosis: R229Q is a common disease-associated allele. J Clin Invest. 2002;110:1659–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Machuca E, et al. Clinical and epidemiological assessment of steroid-resistant nephrotic syndrome associated with the NPHS2 R229Q variant. Kidney Int. 2009;75:727–35.

    Article  CAS  PubMed  Google Scholar 

  28. Berdeli A, et al. NPHS2 (podicin) mutations in Turkish children with idiopathic nephrotic syndrome. Pediatr Nephrol. 2007;22:2031–40.

    Article  PubMed  Google Scholar 

  29. Karle SM, et al. Novel mutations in NPHS2 detected in both familial and sporadic steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2002;13:388–93.

    Article  CAS  PubMed  Google Scholar 

  30. Lipska BS, et al. Genetic screening in adolescents with steroid-resistant nephrotic syndrome. Kidney Int. 2013;84:206–13.

    Article  CAS  PubMed  Google Scholar 

  31. Gribouval O, et al. Identification of genetic causes for sporadic steroid-resistant nephrotic syndrome in adults. Kidney Int. 2018;94:1013–22.

    Article  CAS  PubMed  Google Scholar 

  32. Tory K, et al. Mutation-dependent recessive inheritance of NPHS2-associated steroid-resistant nephrotic syndrome. Nat Genet. 2014;46:299–304.

    Article  CAS  PubMed  Google Scholar 

  33. Straner P, et al. C-terminal oligomerization of podocin mediates interallelic interactions. Biochim Biophys Acta Mol basis Dis. 2018;1864:2448–57.

    Article  CAS  PubMed  Google Scholar 

  34. Rood IM, Deegens JK, Wetzels JF. Genetic causes of focal segmental glomerulosclerosis: implications for clinical practice. Nephrol Dial Transplant. 2012;27:882–90.

    Article  CAS  PubMed  Google Scholar 

  35. Santín S, et al. Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis. Kidney Int. 2009;76:1268–76.

    Article  PubMed  CAS  Google Scholar 

  36. Hinkes B, et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet. 2006;38:1397–405.

    Article  CAS  PubMed  Google Scholar 

  37. Gbadegesin R, et al. Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis (IDMS). Nephrol Dial Transplant. 2008;23:1291–7.

    Article  CAS  PubMed  Google Scholar 

  38. Boyer O, et al. Mutational analysis of the PLCE1 gene in steroid resistant nephrotic syndrome. J Med Genet. 2010;47:445–52.

    Article  CAS  PubMed  Google Scholar 

  39. Mele C, et al. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N Engl J Med. 2011;365:295–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ozaltin F, et al. Disruption of PTPRO causes childhood-onset nephrotic syndrome. Am J Hum Genet. 2011;89:139–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ebarasi L, et al. Defects of CRB2 cause steroid-resistant nephrotic syndrome. Am J Hum Genet. 2015;96:153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Slavotinek A, et al. CRB2 mutations produce a phenotype resembling congenital nephrosis, Finnish type, with cerebral ventriculomegaly and raised alpha-fetoprotein. Am J Hum Genet. 2015;96:162–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim JM, et al. CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science. 2003;300:1298–300.

    Article  CAS  PubMed  Google Scholar 

  44. Takano T, et al. Recessive mutation in CD2AP causes focal segmental glomerulosclerosis in humans and mice. Kidney Int. 2019;95:57–61.

    Article  CAS  PubMed  Google Scholar 

  45. Löwik MM, et al. Focal segmental glomerulosclerosis in a patient homozygous for a CD2AP mutation. Kidney Int. 2007;72:1198–203.

    Article  PubMed  CAS  Google Scholar 

  46. Brown EJ, et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet. 2010;42:72–6.

    Article  CAS  PubMed  Google Scholar 

  47. Boyer O, et al. Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol. 2011;22:239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barua M, et al. Mutations in the INF2 gene account for a significant proportion of familial but not sporadic focal and segmental glomerulosclerosis. Kidney Int. 2013;83:316–22.

    Article  CAS  PubMed  Google Scholar 

  49. Gbadegesin RA, et al. Inverted formin 2 mutations with variable expression in patients with sporadic and hereditary focal and segmental glomerulosclerosis. Kidney Int. 2012;81:94–9.

    Article  CAS  PubMed  Google Scholar 

  50. Boyer O, et al. INF2 mutations in Charcot-Marie-Tooth disease with glomerulopathy. N Engl J Med. 2011;365:2377–88.

    Article  CAS  PubMed  Google Scholar 

  51. Büscher AK, et al. Mutations in INF2 may be associated with renal histology other than focal segmental glomerulosclerosis. Pediatr Nephrol. 2018;33:433–7.

    Article  PubMed  Google Scholar 

  52. Challis RC, et al. Thrombotic microangiopathy in inverted formin 2-mediated renal disease. J Am Soc Nephrol. 2017;28:1084–91.

    Article  CAS  PubMed  Google Scholar 

  53. Winn MP, et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science. 2005;308:1801–4.

    Article  CAS  PubMed  Google Scholar 

  54. Heeringa SF, et al. A novel TRPC6 mutation that causes childhood FSGS. PLoS One. 2009;4:e7771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Santin S, et al. TRPC6 mutational analysis in a large cohort of patients with focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2009;24:3089–96.

    Article  CAS  PubMed  Google Scholar 

  56. Reiser J, et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet. 2005;37:739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gigante M, et al. TRPC6 mutations in children with steroid-resistant nephrotic syndrome and atypical phenotype. Clin J Am Soc Nephrol. 2011;6:1626–34.

    Article  CAS  PubMed  Google Scholar 

  58. Lion M, et al. Mutation de TRPC6: a rare cause of steroid-resistant nephrotic syndrome in children. Pediatr Nephrol. 2012;27:1702.

    Google Scholar 

  59. Wang M, et al. Two children with novel TRPC6 spontaneous missense mutations and atypical phenotype: a case report and literature review. Front Pediatr. 2020;8:269.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nagano C, et al. Comprehensive genetic diagnosis of Japanese patients with severe proteinuria. Sci Rep. 2020;10:270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lipska BS, et al. Genotype-phenotype associations in WT1 glomerulopathy. Kidney Int. 2014;85:1169–78.

    Article  CAS  PubMed  Google Scholar 

  62. Lipska-Ziętkiewicz BS. WT1 disorder. In: Adam MP et al., editors. GeneReviews®. Seattle: University of Washington; 1993–2020.

    Google Scholar 

  63. Chernin G, et al. Genotype/phenotype correlation in nephrotic syndrome caused by WT1 mutations. Clin J Am Soc Nephrol. 2010;5:1655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lipska-Ziętkiewicz BS, et al. Genetic aspects of congenital nephrotic syndrome: a consensus statement from the ERKNet-ESPN inherited glomerulopathy working group. Eur J Hum Genet. 2020; https://doi.org/10.1038/s41431-020-0642-8.

  65. Lehnhardt A, et al. Clinical and molecular characterization of patients with heterozygous mutations in Wilms tumor suppressor gene 1. Clin J Am Soc Nephrol. 2015;10:825–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boyer O, Dorval G, Servais A. Hereditary podocytopathies in adults: the next generation. Kidney Dis (Basel). 2017;3:50–6.

    Article  Google Scholar 

  67. Mathis BJ, et al. A locus for inherited focal segmental glomerulosclerosis maps to chromosome 19q13. Kidney Int. 1998;53:282–6.

    Article  CAS  PubMed  Google Scholar 

  68. Pollak MR, Alexander MP, Henderson JM. A case of familial kidney disease. Clin J Am Soc Nephrol. 2007;2:1367–74.

    Article  CAS  PubMed  Google Scholar 

  69. Choi HJ, et al. Familial focal segmental glomerulosclerosis associated with an ACTN4 mutation and paternal germline mosaicism. Am J Kidney Dis. 2008;51:834–8.

    Article  CAS  PubMed  Google Scholar 

  70. Henderson JM, Alexander MP, Pollak MR. Patients with ACTN4 mutations demonstrate distinctive features of glomerular injury. J Am Soc Nephrol. 2009;20:961–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Akilesh S, et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J Clin Invest. 2011;121:4127–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gbadegesin RA, et al. Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. J Am Soc Nephrol. 2014;25:1991–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dorval G, et al. TBC1D8B loss-of-function mutations lead to x-linked nephrotic syndrome via defective trafficking pathways. Am J Hum Genet. 2019;104:348–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Drash A, Sherman F, Hartmann WH, Blizzard RM. A syndrome of pseudohermaphroditism, Wilms’ tumor, hypertension, and degenerative renal disease. J Pediatr. 1970;76:585–93.

    Article  CAS  PubMed  Google Scholar 

  75. Roca N, et al. Long-term outcome in a case series of Denys-Drash syndrome. Clin Kidney J. 2019;12:836–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Frasier SD, Bashore RA, Mosier HD. Gonadoblastoma associated with pure gonadal dysgenesis in monozygous twins. J Pediatr. 1964;64:740–5.

    Article  CAS  PubMed  Google Scholar 

  77. Niaudet P, Gubler M-C. WT1 and glomerular diseases. Pediatr Nephrol. 2006;21:1653–60.

    Article  PubMed  Google Scholar 

  78. Ahn YH, et al. Genotype-phenotype analysis of pediatric patients with WT1 glomerulopathy. Pediatr Nephrol. 2017;32:81–9.

    Article  PubMed  Google Scholar 

  79. Sinha A, et al. Frasier syndrome: early gonadoblastoma and cyclosporine responsiveness. Pediatr Nephrol. 2010;25:2171–4.

    Article  PubMed  Google Scholar 

  80. Melo KFS, et al. An unusual phenotype of Frasier syndrome due to IVS9 +4C>T mutation in the WT1 gene: predominantly male ambiguous genitalia and absence of gonadal dysgenesis. J Clin Endocrinol Metab. 2002;87:2500–5.

    Article  CAS  PubMed  Google Scholar 

  81. Zenker M, et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet. 2004;13:2625–32.

    Article  CAS  PubMed  Google Scholar 

  82. Pierson M, Cordier J, Hervouuet F, Rauber G. An unusual congenital and familial congenital malformative combination involving the eye and kidney. J Genet Hum. 1963;12:184–213.

    CAS  PubMed  Google Scholar 

  83. Choi HJ, et al. Variable phenotype of Pierson syndrome. Pediatr Nephrol. 2008;23:995–1000.

    Article  PubMed  Google Scholar 

  84. Zemrani B, et al. A novel LAMB2 gene mutation associated with a severe phenotype in a neonate with Pierson syndrome. Eur J Med Res. 2016;21:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hasselbacher K, et al. Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders. Kidney Int. 2006;70:1008–12.

    Article  CAS  PubMed  Google Scholar 

  86. Matejas V, et al. Mutations in the human laminin beta2 (LAMB2) gene and the associated phenotypic spectrum. Hum Mutat. 2010;31:992–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tahoun M, et al. Mutations in LAMB2 are associated with albuminuria and optic nerve hypoplasia with hypopituitarism. J Clin Endocrinol Metab. 2020;105:595.

    Article  Google Scholar 

  88. Bredrup C, et al. Ophthalmological aspects of Pierson syndrome. Am J Ophthalmol. 2008;146:602–11.

    Article  PubMed  Google Scholar 

  89. Mohney BG, et al. A novel mutation of LAMB2 in a multigenerational mennonite family reveals a new phenotypic variant of Pierson syndrome. Ophthalmology. 2011;118:1137–44.

    Article  PubMed  Google Scholar 

  90. Wühl E, et al. Neurodevelopmental deficits in Pierson (microcoria-congenital nephrosis) syndrome. Am J Med Genet A. 2007;143:311–9.

    Article  PubMed  CAS  Google Scholar 

  91. Galloway WH, Mowat AP. Congenital microcephaly with hiatus hernia and nephrotic syndrome in two sibs. J Med Genet. 1968;5:319–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Colin E, et al. Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. Am J Hum Genet. 2014;95:637–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Steiss JO, Gross S, Neubauer BA, Hahn A. Late-onset nephrotic syndrome and severe cerebellar atrophy in Galloway-Mowat syndrome. Neuropediatrics. 2005;36:332–5.

    Article  CAS  PubMed  Google Scholar 

  94. Sartelet H, et al. Collapsing glomerulopathy in Galloway-Mowat syndrome: a case report and review of the literature. Pathol Res Pract. 2008;204:401–6.

    Article  PubMed  Google Scholar 

  95. Vodopiutz J, et al. WDR73 mutations cause infantile neurodegeneration and variable glomerular kidney disease. Hum Mutat. 2015;36:1021–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rosti RO, et al. Homozygous mutation in NUP107 leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway-Mowat syndrome. J Med Genet. 2017;54:399–403.

    Article  CAS  PubMed  Google Scholar 

  97. Ben-Omran T, et al. Nonsense mutation in the WDR73 gene is associated with Galloway-Mowat syndrome. J Med Genet. 2015;52:381–90.

    Article  CAS  PubMed  Google Scholar 

  98. Braun D, et al. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat Genet. 2017;49:1529–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Arrondel C, et al. Defects in t(6)A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. Nat Commun. 2019;10:3967.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Braun DA, et al. Mutations in WDR4 as a new cause of Galloway-Mowat syndrome: mutations in WDR4 as a new cause of Galloway-Mowat syndrome. Am J Med Genet A. 2018;176:2460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gee HY, et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest. 2013;123:3243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gee HY, et al. KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J Clin Invest. 2015;125:2375–84.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Skre H. Genetic and clinical aspects of Charcot-Marie-Tooth’s disease. Clin Genet. 1974;6:98–118.

    Article  CAS  PubMed  Google Scholar 

  104. Schimke RN, Horton WA, King CR, Martin NL. Chondroitin-6-sulfate mucopoly-saccharidosis in conjunction with lymphopenia, defective cellular immunity and the nephrotic syndrome. Birth Defects Orig Artic Ser. 1974;10:258–66.

    CAS  PubMed  Google Scholar 

  105. Boerkoel CF, et al. Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat Genet. 2002;30:215–20.

    Article  CAS  PubMed  Google Scholar 

  106. Lipska-Ziętkiewicz B, et al. Low renal but high extrarenal phenotype variability in Schimke immuno-osseous dysplasia. PLoS One. 2017;12:e0180926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Baradaran-Heravi A, et al. Bone marrow transplantation in Schimke immuno-osseous dysplasia. Am J Med Genet A. 2013;161A:2609–13.

    PubMed  Google Scholar 

  108. Zuber J, et al. Donor-targeted serotherapy as a rescue therapy for steroid-resistant acute GVHD after HLA-mismatched kidney transplantation. Am J Transplant. 2020;20:2243–53.

    Article  CAS  PubMed  Google Scholar 

  109. Hawkins CF, Smith OE. Renal dysplasia in a family with multiple hereditary abnormalities including iliac horns. Lancet. 1950;1:803–8.

    Article  CAS  PubMed  Google Scholar 

  110. Dreyer SD, et al. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet. 1998;19:47–50.

    Article  CAS  PubMed  Google Scholar 

  111. Boyer O, et al. LMX1B mutations cause hereditary FSGS without extrarenal involvement. J Am Soc Nephrol. 2013;24:1216–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Has C, et al. Integrin α3 mutations with kidney, lung, and skin disease. N Engl J Med. 2012;366:1508–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Prasad R, et al. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome. J Clin Invest. 2017;127:942–53.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lovric S, et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J Clin Invest. 2017;127:912–28.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Najafian B, et al. Accumulation of globotriaosylceramide in podocytes in fabry nephropathy is associated with progressive podocyte loss. J Am Soc Nephrol. 2020;31:865–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bonten EJ, et al. Novel mutations in lysosomal neuraminidase identify functional domains and determine clinical severity in sialidosis. Hum Mol Genet. 2000;9:2715–25.

    Article  CAS  PubMed  Google Scholar 

  117. Maroofian R, et al. Parental whole-exome sequencing enables sialidosis type ii diagnosis due to an NEU1 missense mutation as an underlying cause of nephrotic syndrome in the child. Kidney Int Rep. 2018;3:1454–63.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Chen W, et al. Histological studies of renal biopsy in a boy with nephrosialidosis. Ultrastruct Pathol. 2011;35:168–71.

    Article  PubMed  Google Scholar 

  119. Berkovic SF, et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet. 2008;82:673–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Reczek D, et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell. 2007;131:770–83.

    Article  CAS  PubMed  Google Scholar 

  121. Badhwar A, et al. Action myoclonus-renal failure syndrome: characterization of a unique cerebro-renal disorder. Brain. 2004;127:2173–82.

    Article  PubMed  Google Scholar 

  122. National Cancer Institute. https://www.cancer.gov/publications/dictionaries/genetics-dictionary/def/phenocopy. Accessed 9/7/2020.

  123. Malone AF, et al. Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int. 2014;86:1253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Barua M, et al. Mutations in PAX2 associate with adult-onset FSGS. J Am Soc Nephrol. 2014;25:1942–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Huynh Cong E, et al. A homozygous missense mutation in the ciliary gene TTC21B causes familial FSGS. J Am Soc Nephrol. 2014;25:2435–43.

    Article  PubMed  CAS  Google Scholar 

  126. Ovunc B, et al. Exome sequencing reveals cubilin mutation as a single-gene cause of proteinuria. J Am Soc Nephrol. 2011;22:1815–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bedin M, et al. Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function. J Clin Invest. 2019; https://doi.org/10.1172/JCI129937.

  128. Warejko JK, et al. Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2018;13:53–62.

    Article  CAS  PubMed  Google Scholar 

  129. Landini S, et al. Reverse phenotyping after whole-exome sequencing in steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2020;15:89–100.

    Article  CAS  PubMed  Google Scholar 

  130. Genovese G, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010;329:841–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kopp JB, et al. Clinical features and histology of apolipoprotein L1-associated nephropathy in the FSGS clinical trial. J Am Soc Nephrol. 2015;26:1443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Adeyemo A, et al. HLA-DQA1 and APOL1 as risk loci for childhood-onset steroid-sensitive and steroid-resistant nephrotic syndrome. Am J Kidney Dis. 2018;71:399–406.

    Article  CAS  PubMed  Google Scholar 

  133. Kopp JB, et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 2011;22:2129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gribouval O, et al. APOL1 risk genotype in European steroid-resistant nephrotic syndrome and/or focal segmental glomerulosclerosis patients of different African ancestries. Nephrol Dial Transplant. 2018; https://doi.org/10.1093/ndt/gfy176.

  135. Ekulu PM, et al. A focus on the association of Apol1 with kidney disease in children. Pediatr Nephrol. 2020; https://doi.org/10.1007/s00467-020-04553-z.

  136. Löwik M, et al. Bigenic heterozygosity and the development of steroid-resistant focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2008;23:3146–51.

    Article  PubMed  CAS  Google Scholar 

  137. Voskarides K, et al. Evidence that NPHS2-R229Q predisposes to proteinuria and renal failure in familial hematuria. Pediatr Nephrol. 2012;27:675–9.

    Article  PubMed  Google Scholar 

  138. Goncalves S, et al. A homozygous KAT2B variant modulates the clinical phenotype of ADD3 deficiency in humans and flies. PLoS Genet. 2018;14:e1007386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Gee HY, et al. Mutations in EMP2 cause childhood-onset nephrotic syndrome. Am J Hum Genet. 2014;94:884–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Karp AM, Gbadegesin RA. Genetics of childhood steroid-sensitive nephrotic syndrome. Pediatr Nephrol. 2017;32:1481–8.

    Article  PubMed  Google Scholar 

  141. Lane BM, Cason R, Esezobor CI, Gbadegesin RA. Genetics of childhood steroid sensitive nephrotic syndrome: an update. Front Pediatr. 2019;7:8.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Gbadegesin RA, et al. HLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J Am Soc Nephrol. 2015;26:1701–10.

    Article  CAS  PubMed  Google Scholar 

  143. Jia X, et al. Common risk variants in NPHS1 and TNFSF15 are associated with childhood steroid-sensitive nephrotic syndrome. Kidney Int. 2020;98:1308–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jia X, et al. Strong association of the HLA-DR/DQ locus with childhood steroid-sensitive nephrotic syndrome in the Japanese population. J Am Soc Nephrol. 2018;29:2189–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dufek S, et al. Genetic identification of two novel loci associated with steroid-sensitive nephrotic syndrome. J Am Soc Nephrol. 2019;30:1375–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Debiec H, et al. Transethnic, genome-wide analysis reveals immune-related risk alleles and phenotypic correlates in pediatric steroid-sensitive nephrotic syndrome. J Am Soc Nephrol. 2018;29:2000–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kari JA, Sinnott P, Khan H, Trompeter RS, Snodgrass GJ. Familial steroid-responsive nephrotic syndrome and HLA antigens in Bengali children. Pediatr Nephrol. 2001;16:346–9.

    Article  CAS  PubMed  Google Scholar 

  148. Landau D, et al. Familial steroid-sensitive nephrotic syndrome in Southern Israel: clinical and genetic observations. Pediatr Nephrol. 2007;22:661–9.

    Article  PubMed  Google Scholar 

  149. Moncrieff MW, et al. The familial nephrotic syndrome. II. A clinicopathological study. Clin Nephrol. 1973;1:220–9.

    CAS  PubMed  Google Scholar 

  150. Motoyama O, Sugawara H, Hatano M, Fujisawa T, Iitaka K. Steroid-sensitive nephrotic syndrome in two families. Clin Exp Nephrol. 2009;13:170–3.

    Article  PubMed  Google Scholar 

  151. Xia Y, et al. Familial steroid-sensitive idiopathic nephrotic syndrome: seven cases from three families in China. Clinics (Sao Paulo). 2013;68:628–31.

    Article  Google Scholar 

  152. Dorval G, et al. Clinical and genetic heterogeneity in familial steroid-sensitive nephrotic syndrome. Pediatr Nephrol. 2018;33:473–83.

    Article  PubMed  Google Scholar 

  153. Park E, et al. Familial IPEX syndrome: different glomerulopathy in two siblings. Pediatr Int. 2015;57:e59–61.

    Article  CAS  PubMed  Google Scholar 

  154. Lahdenkari A-T, Kestilä M, Holmberg C, Koskimies O, Jalanko H. Nephrin gene (NPHS1) in patients with minimal change nephrotic syndrome (MCNS). Kidney Int. 2004;65:1856–63.

    Article  CAS  PubMed  Google Scholar 

  155. Roberts ISD, Gleadle JM. Familial nephropathy and multiple exostoses with exostosin-1 (EXT1) gene mutation. J Am Soc Nephrol. 2008;19:450–3.

    Article  CAS  PubMed  Google Scholar 

  156. Kitamura A, et al. A familial childhood-onset relapsing nephrotic syndrome. Kidney Int. 2007;71:946–51.

    Article  CAS  PubMed  Google Scholar 

  157. Faul C, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med. 2008;14:931–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Li X, et al. Cyclosporine A protects podocytes via stabilization of cofilin-1 expression in the unphosphorylated state. Exp Biol Med (Maywood). 2014;239:922–36.

    Article  CAS  Google Scholar 

  159. Xing C-Y, et al. Direct effects of dexamethasone on human podocytes. Kidney Int. 2006;70:1038–45.

    Article  CAS  PubMed  Google Scholar 

  160. Ashraf S, et al. Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nat Commun. 2018;9:1960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Buscher AK, et al. Rapid response to cyclosporin A and favorable renal outcome in nongenetic versus genetic steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2016;11:245–53.

    Article  PubMed  CAS  Google Scholar 

  162. Bensimhon AR, Williams AE, Gbadegesin RA. Treatment of steroid-resistant nephrotic syndrome in the genomic era. Pediatr Nephrol. 2019;34:2279–93.

    Article  PubMed  Google Scholar 

  163. Hall G, Gbadegesin RA. Translating genetic findings in hereditary nephrotic syndrome: the missing loops. Am J Physiol Renal Physiol. 2015;309:F24–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Montini G, Malaventura C, Salviati L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med. 2008;358:2849–50.

    Article  CAS  PubMed  Google Scholar 

  165. Ashraf S, et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest. 2013;123:5179–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Vivante A, Hildebrandt F. Exploring the genetic basis of early-onset chronic kidney disease. Nat Rev Nephrol. 2016;12:133–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gupta IR, et al. ARHGDIA: a novel gene implicated in nephrotic syndrome. J Med Genet. 2013;50:330–8.

    Article  CAS  PubMed  Google Scholar 

  168. Hölttä T, et al. Good long-term renal graft survival and low incidence of cardiac pathology in adults after short dialysis period and renal transplantation in early childhood – a cohort study. Transpl Int. 2020;33:89–97.

    Article  PubMed  CAS  Google Scholar 

  169. Holtta T, et al. Timing of renal replacement therapy does not influence survival and growth in children with congenital nephrotic syndrome caused by mutations in NPHS1: data from the ESPN/ERA-EDTA Registry. Pediatr Nephrol. 2016;31:2317–25.

    Article  PubMed  Google Scholar 

  170. Gross O, Weber M, Fries JWU, Müller G-A. Living donor kidney transplantation from relatives with mild urinary abnormalities in Alport syndrome: long-term risk, benefit and outcome. Nephrol Dial Transplant. 2009;24:1626–30.

    Article  PubMed  Google Scholar 

  171. Ding WY, et al. Initial steroid sensitivity in children with steroid-resistant nephrotic syndrome predicts post-transplant recurrence. J Am Soc Nephrol. 2014;25:1342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bierzynska A, Saleem MA. Deriving and understanding the risk of post-transplant recurrence of nephrotic syndrome in the light of current molecular and genetic advances. Pediatr Nephrol. 2018;33:2027–35.

    Article  PubMed  Google Scholar 

  173. Morello W, et al. Post-transplant recurrence of steroid resistant nephrotic syndrome in children: the Italian experience. J Nephrol. 2020;33:849–57.

    Article  CAS  PubMed  Google Scholar 

  174. Patrakka J, et al. Recurrence of nephrotic syndrome in kidney grafts of patients with congenital nephrotic syndrome of the Finnish type: role of nephrin. Transplantation. 2002;73:394–403.

    Article  PubMed  Google Scholar 

  175. Battelino N, Arnol M, Kandus A, Ponikvar R, Novljan G. Post-transplant recurrence of focal segmental glomerulosclerosis in a child with heterozygous mutations in NPHS1 and NPHS2. Ther Apher Dial. 2016;20:312–7.

    Article  CAS  PubMed  Google Scholar 

  176. Holmberg C, Jalanko H. Congenital nephrotic syndrome and recurrence of proteinuria after renal transplantation. Pediatr Nephrol. 2014;29:2309–17.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Srivastava T, et al. Recurrence of proteinuria following renal transplantation in congenital nephrotic syndrome of the Finnish type. Pediatr Nephrol. 2006;21:711–8.

    Article  PubMed  Google Scholar 

  178. Ghiggeri GM, et al. Posttransplant recurrence of proteinuria in a case of focal segmental glomerulosclerosis associated with WT1 mutation. Am J Transplant. 2006;6:2208–11.

    Article  CAS  PubMed  Google Scholar 

  179. Seeman T, Vondrak K. First report of recurrent nephrotic syndrome after kidney transplantation in a patient with NUP93 gene mutations: a case report. Transplant Proc. 2018;50:3954–6.

    Article  CAS  PubMed  Google Scholar 

  180. Bertelli R, et al. Recurrence of focal segmental glomerulosclerosis after renal transplantation in patients with mutations of podocin. Am J Kidney Dis. 2003;41:1314–21.

    Article  CAS  PubMed  Google Scholar 

  181. Becker-Cohen R, et al. Recurrent nephrotic syndrome in homozygous truncating NPHS2 mutation is not due to anti-podocin antibodies. Am J Transplant. 2007;7:256–60.

    Article  CAS  PubMed  Google Scholar 

  182. Rossanti R, et al. Molecular assay for an intronic variant in NUP93 that causes steroid resistant nephrotic syndrome. J Hum Genet. 2019;64:673–9.

    Article  CAS  PubMed  Google Scholar 

  183. Bierzynska A, et al. MAGI2 mutations cause congenital nephrotic syndrome. J Am Soc Nephrol. 2017;28:1614–21.

    Article  CAS  PubMed  Google Scholar 

  184. Braun DA, et al. Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet. 2016;48:457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Jeanpierre C, et al. Identification of constitutional WT1 mutations, in patients with isolated diffuse mesangial sclerosis, and analysis of genotype/phenotype correlations by use of a computerized mutation database. Am J Hum Genet. 1998;62:824–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Goto Y, Nonaka I, Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990;348(6302):651–3.

    Google Scholar 

  187. Quinzii C, Naini A, Salviati L, Trevisson E, Navas P, Dimauro S, et al. A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet. 2006;78(2):345–9.

    Google Scholar 

  188. Lopez LC, Schuelke M, Quinzii CM, Kanki T, Rodenburg RJ, Naini A, et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet. 2006;79(6):1125–9.

    Google Scholar 

  189. Heeringa SF, Chernin G, Chaki M, Zhou W, Sloan AJ, Ji Z, et al. COQ6 mutations in human patients producae nephrotic syndrome with sensorineural deafness. J Clin Invest. 2011;121(5):2013–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivia Boyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boyer, O., Gbadegesin, R., Waters, A. (2021). Clinical Aspects of Genetic Forms of Nephrotic Syndrome. In: Emma, F., Goldstein, S., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_91-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_91-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27843-3

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics