Skip to main content

Genetic Basis of Nephrotic Syndrome

  • Living reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Steroid-resistant nephrotic syndrome (SRNS) is a leading cause of end-stage kidney disease in children. Recent findings from genomic studies suggests that 10–30% of all cases of SRNS are monogenic disease where mutation in a single gene is enough to cause disease. More than 60 single gene causes of SRNS have been reported and virtually all these genes localized to the podocyte the glomerular visceral epithelial cell of the kidney hence the term “podocytopathy.” The mechanisms by which the mutations in these genes will cause disease is not completely known; however, emerging data showed that some of these genetic defects can disrupt the podocyte F-actin cytoskeleton and the slit diaphragm (SD), signalling at the SD, and also unsettle metabolic activities that are vital for the normal function of the podocyte. Findings from genomic studies is also informing better classification of disease, thus rather than relying on taxonomy that depends on therapy response and nonspecific findings on biopsy, childhood nephrotic syndrome can now be stratified into monogenic NS and immune-based NS. A subset of the latter is readily identifiable as circulating factor disease. This clearly defined disease stratification has implications for approach to therapy and prognostication. Future challenges include developing platforms for the utilization of genetic information in clinical decision process and harnessing multi-omics data and other cutting edge molecular platforms to identify new and specific treatment modalities for nephrotic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S, et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2015;26:–1279, 89. https://doi.org/10.1681/ASN.2014050489. Epub 2014 Oct 27. PMID: 25349199; PMCID: PMC4446877

  2. Song X, Fang X, Tang X, Cao Q, Zhai Y, Chen J, et al. COQ8B nephropathy: early detection and optimal treatment. Mol Genet Genomic Med. 8:e1360. https://doi.org/10.1002/mgg3.1360.

  3. Lenkkeri U, Männikkö M, McCready P, Lamerdin J, Gribouval O, Niaudet PM, et al. Structure of the gene for congenital nephrotic syndrome of the finnish type (NPHS1) and characterization of mutations. Am J Hum Genet. 1999;64:51–61. https://doi.org/10.1086/302182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bouchireb K, Boyer O, Gribouval O, Nevo F, Huynh-Cong E, Morinière V, et al. NPHS2 mutations in steroid-resistant nephrotic syndrome: a mutation update and the associated phenotypic spectrum. Hum Mutat. 2014;35:178–86. https://doi.org/10.1002/humu.22485.

    Article  CAS  PubMed  Google Scholar 

  5. Lipska-Ziętkiewicz BS, Gellermann J, Boyer O, Gribouval O, Ziętkiewicz S, Kari JA, et al. PLoS One. 2017;12:e0180926. https://doi.org/10.1371/journal.pone.0180926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Korkmaz E, Lipska-Ziętkiewicz BS, Boyer O, Gribouval O, Fourrage C, Tabatabaei M, et al. ADCK4-associated Glomerulopathy causes adolescence-onset FSGS. J Am Soc Nephrol. 2016;27:63–8. https://doi.org/10.1681/ASN.2014121240.

    Article  CAS  PubMed  Google Scholar 

  7. Miyake N, Tsukaguchi H, Koshimizu E, Shono A, Matsunaga S, Shiina M, et al. Biallelic mutations in nuclear pore complex subunit NUP107 cause early-childhood-onset steroid-resistant Nephrotic syndrome. Am J Hum Genet. 2015;97:555–66. https://doi.org/10.1016/j.ajhg.2015.08.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wiggins RC. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 2007;71:1205–14. https://doi.org/10.1038/sj.ki.5002222.

    Article  CAS  PubMed  Google Scholar 

  9. Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol. 2005;16:2941–52. https://doi.org/10.1681/ASN.2005010055.

    Article  CAS  PubMed  Google Scholar 

  10. Yamada E. The fine structure of the renal glomerulus of the mouse. J Biophys Biochem Cytol. 1955;1:551–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karnovsky MJ, Ryan GB. Substructure of the glomerular slit diaphragm in freeze-fractured normal rat kidney. J Cell Biol. 1975;65:233–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grahammer F, Schell C, Huber TB. The podocyte slit diaphragm--from a thin grey line to a complex signalling hub. Nat Rev Nephrol. 2013;9:587–98. https://doi.org/10.1038/nrneph.2013.169.

    Article  CAS  PubMed  Google Scholar 

  13. Huber TB, Benzing T. The slit diaphragm: a signalling platform to regulate podocyte function. Curr Opin Nephrol Hypertens. 2005;14:211–6.

    Article  PubMed  Google Scholar 

  14. Kopp JB, Anders HJ, Susztak K, et al. Podocytopathies. Nat Rev Dis Primers. 2020;6:68.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tryggvason K, Patrakka J, Wartiovaara J. Hereditary proteinuria syndromes and mechanisms of proteinuria. N Engl J Med. 2006;354(13):1387–401.

    Article  CAS  PubMed  Google Scholar 

  16. Blaine J, Dylewski J. Regulation of the actin cytoskeleton in Podocytes. Cell. 2020;9:1700. https://doi.org/10.3390/cells9071700.

    Article  CAS  Google Scholar 

  17. Schwarz K, Simons M, Reiser J, Saleem MA, Faul C, Kriz W, et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J Clin Investig. 2001;108:1621–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perico L, Conti S, Benigni A, Remuzzi G. Podocyte-actin dynamics in health and disease. Nat Rev Nephrol. 2016;12:692–710.

    Article  CAS  PubMed  Google Scholar 

  19. Mulukala SKN, Irukuvajjula SS, Kumar K, et al. Structural features and oligomeric nature of human podocin domain. Biochem Biophys Rep. 2020;23:100774.

    PubMed  PubMed Central  Google Scholar 

  20. Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A, et al. Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci U S A. 2006;103:17079–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huber TB, Simons M, Hartleben B, Sernetz L, Schmidts M, Gundlach E, et al. Molecular basis of the functional podocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum Mol Genet. 2003;12:3397–405.

    Article  CAS  PubMed  Google Scholar 

  22. Huber TB, Kottgen M, Schilling B, Walz G, Benzing T. Interaction with podocin facilitates nephrin signaling. J Biol Chem. 2001;276:41543–6.

    Article  CAS  PubMed  Google Scholar 

  23. Huber TB, Schermer B, Benzing T. Podocin organizes ion channel-lipid supercomplexes: implications for mechanosensation at the slit diaphragm. Nephron Exp Nephrol. 2007;106:e27–31.

    Article  CAS  PubMed  Google Scholar 

  24. Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet. 2005;37:739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boute N, Gribouval O, Roselli S, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic. Nat Genet. 2000;24:349–54.

    Article  CAS  PubMed  Google Scholar 

  26. Hinkes B, Vlangos C, Heeringa S, Mucha B, Gbadegesin R, Liu J, et al. Specific podocin mutations correlate with age of onset in steroid-resistant nephrotic syndrome. J Am Soc Nephrol. 2008;19:365–71. https://doi.org/10.1681/ASN.2007040452.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, Hasselbacher K, et al. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics. 2007;119:e907–19. https://doi.org/10.1542/peds.2006-2164.

    Article  PubMed  Google Scholar 

  28. Asharam K, Bhimma R, David VA, et al. NPHS2 V260E is a frequent cause of steroid-resistant Nephrotic syndrome in black south African children. Kidney Int Rep. 2018;3:1354–62.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shih NY, Li J, Karpitskii V, et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science. 1999;286:312–5. https://doi.org/10.1126/science.286.5438.312.

    Article  CAS  PubMed  Google Scholar 

  30. Kim JM, Wu H, Green G, et al. CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science. 2003;300:1298–300.

    Article  CAS  PubMed  Google Scholar 

  31. Löwik MM, Groenen PJ, Pronk I, et al. Focal segmental glomerulosclerosis in a patient homozygous for a CD2AP mutation. Kidney Int. 2007;72:1198–203.

    Article  PubMed  CAS  Google Scholar 

  32. Takano T, Bareke E, Takeda N, et al. Recessive mutation in CD2AP causes focal segmental glomerulosclerosis in humans and mice. Kidney Int. 2019;95:57–61.

    Article  CAS  PubMed  Google Scholar 

  33. Tossidou I, Teng B, Worthmann K, et al. Tyrosine phosphorylation of CD2AP affects stability of the slit diaphragm complex. J Am Soc Nephrol. 2019;30:1220–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM. Rosenberg PB. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science. 2005;308:1801–4. https://doi.org/10.1126/science.1106215.

    Article  CAS  PubMed  Google Scholar 

  35. Farmer LK, Rollason R, Whitcomb DJ, Ni L, Goodli A, Lay AC, et al. TRPC6 binds to and activates Calpain, independent of its channel activity, and regulates Podocyte cytoskeleton, cell adhesion, and motility. J Am Soc Nephrol. 2019;30:1910–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hinkes B, Wiggins RC, Gbadegesin R, Vlangos CN, Seelow D, Nürnberg G, et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet. 2006;38:1397–405. https://doi.org/10.1038/ng1918.

    Article  CAS  PubMed  Google Scholar 

  37. Gbadegesin R, Hinkes BG, Hoskins BE, Vlangos CN, Heeringa SF, Liu J, et al. Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis (IDMS). Nephrol Dial Transplant. 2008;23:1291–7. https://doi.org/10.1093/ndt/gfm759.

    Article  CAS  PubMed  Google Scholar 

  38. Gilbert RD, Turner CL, Gibson J, et al. Mutations in phospholipase C epsilon 1 are not sufficient to cause diffuse mesangial sclerosis. Kidney Int. 2009;75:415–9.

    Article  CAS  PubMed  Google Scholar 

  39. Wing MR, Bourdon DM, Harden TK. PLC-epsilon: a shared effector protein in Ras-, rho-, and G alpha beta gamma-mediated signaling. Mol Interv. 2003;3:273–80.

    Article  CAS  PubMed  Google Scholar 

  40. Gee HY, Sadowski CE, Aggarwal PK, Porath JD, Yakulov TA, Schueler M, et al. FAT1 mutations cause a glomerulotubular nephropathy. Nat Commun. 2016;7:10822. https://doi.org/10.1038/ncomms10822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Solanki AK, Widmeier E, Arif E, et al. Mutations in KIRREL1, a slit diaphragm component, cause steroid-resistant nephrotic syndrome. Kidney Int. 2019;96:883–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ebarasi L, Ashraf S, Bierzynska A, et al. Defects of CRB2 cause steroid-resistant nephrotic syndrome. Am J Hum Genet. 2015;96:153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rinschen MM, Gödel M, Grahammer F, et al. A multi-layered quantitative in vivo expression atlas of the Podocyte unravels kidney disease candidate genes. Cell Rep. 2018;23:2495–508. https://doi.org/10.1016/j.celrep.2018.04.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seiler MW, Venkatachalam MA, Cotran RS. Glomerular epithelium: structural alterations induced by polycations. Science. 1975;189:390–3. https://doi.org/10.1126/science.1145209. PMID: 1145209

    Article  CAS  PubMed  Google Scholar 

  45. Endlich N, Endlich K. Stretch, tension and adhesion - adaptive mechanisms of the actin cytoskeleton in podocytes. Eur J Cell Biol. 2006;85:229–34. https://doi.org/10.1016/j.ejcb.2005.09.006. Epub 2005 Oct 18. PMID: 16546566

    Article  CAS  PubMed  Google Scholar 

  46. Chen J, Boyle S, Zhao M, Su W, Takahashi K, Davis L, et al. Differential expression of the intermediate filament protein nestin during renal development and its localization in adult podocytes. J Am Soc Nephrol. 2006;17:1283–91. https://doi.org/10.1681/ASN.2005101032.

    Article  CAS  PubMed  Google Scholar 

  47. Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 2007;17:428–37.

    Article  CAS  PubMed  Google Scholar 

  48. Reiser J, Kriz W, Kretzler M, Mundel P. The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol. 2000;11:1–8.

    Article  PubMed  Google Scholar 

  49. Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet. 2000;24:251–6.

    Article  CAS  PubMed  Google Scholar 

  50. Ichimura K, Kurihara H, Sakai T. Actin filament organization of foot processes in rat podocytes. J Histochem Cytochem. 2003;51:1589–600.

    Article  CAS  PubMed  Google Scholar 

  51. Weins A, Kenlan P, Herbert S, Le TC, Villegas I, Kaplan BS, et al. Mutational and biological analysis of alpha-actinin-4 in focal segmental glomerulosclerosis. J Am Soc Nephrol. 2005;16:3694–701.

    Article  CAS  PubMed  Google Scholar 

  52. Yao J, Le TC, Kos CH, Henderson JM, Allen PG, Denker BM, et al. Alpha-actinin-4-mediated FSGS: an inherited kidney disease caused by an aggregated and rapidly degraded cytoskeletal protein. PLoS Biol. 2004;e167:2.

    Google Scholar 

  53. Michaud JL, Lemieux LI, Dube M, Vanderhyden BC, Robertson SJ, Kennedy CR. Focal and segmental glomerulosclerosis in mice with podocyte-specific expression of mutant alpha-actinin-4. J Am Soc Nephrol. 2003;14:1200–11.

    Article  CAS  PubMed  Google Scholar 

  54. Michaud JL, Chaisson KM, Parks RJ, Kennedy CR. FSGS-associated alpha-actinin-4 (K256E) impairs cytoskeletal dynamics in podocytes. Kidney Int. 2006;70:1054–61.

    Article  CAS  PubMed  Google Scholar 

  55. Bartram MP, Habbig S, Pahmeyer C, Höhne M, Weber LT, Thiele H, et al. Three-layered proteomic characterization of a novel ACTN4 mutation unravels its pathogenic potential in FSGS. Hum Mol Genet. 2016;25:1152–64. https://doi.org/10.1093/hmg/ddv638.

    Article  CAS  PubMed  Google Scholar 

  56. Brown EJ, Schlöndorff JS, Becker DJ, Tsukaguchi H, Tonna SJ, Uscinski AL, et al. Higgs HN, Henderson JM, Pollak MR. mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet. 2010;42:72–6. https://doi.org/10.1038/ng.505.

    Article  CAS  PubMed  Google Scholar 

  57. Boyer O, Benoit G, Gribouval O, Nevo F, Tête MJ, Dantal J, et al. Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol. 2011;22:239–45. https://doi.org/10.1681/ASN.2010050518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gbadegesin RA, Lavin PJ, Hall G, Bartkowiak B, Homstad A, Jiang R, et al. Inverted formin 2 mutations with variable expression in patients with sporadic and hereditary focal and segmental glomerulosclerosis. Kidney Int. 2012;81:94–9. https://doi.org/10.1038/ki.2011.297. Epub 2011 Aug 24

    Article  CAS  PubMed  Google Scholar 

  59. Barua M, Brown EJ, Charoonratana VT, Genovese G, Sun H, Pollak MR. Mutations in the INF2 gene account for a significant proportion of familial but not sporadic focal and segmental glomerulosclerosis. Kidney Int. 2013;83:316–22. https://doi.org/10.1038/ki.2012.349.

    Article  CAS  PubMed  Google Scholar 

  60. Boyer O, Nevo F, Plaisier E, Funalot B, Gribouval O, Benoit G, et al. INF2 mutations in Charcot-Marie-tooth disease with glomerulopathy. N Engl J Med. 2011;365:2377–88. https://doi.org/10.1056/NEJMoa1109122.

    Article  CAS  PubMed  Google Scholar 

  61. Akilesh S, Suleiman H, Yu H, Stander MC, Lavin P, Gbadegesin R, et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J Clin Invest. 2011;121:4127–37. https://doi.org/10.1172/JCI46458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gupta IR, Baldwin C, Auguste D, Ha KC, El Andalousi J, Fahiminiya S, et al. ARHGDIA: a novel gene implicated in nephrotic syndrome. J Med Genet. 2013;50:330–8. https://doi.org/10.1136/jmedgenet-2012-101442.

    Article  CAS  PubMed  Google Scholar 

  63. Gee HY, Saisawat P, Ashraf S, Hurd TW, Vega-Warner V, Fang H, et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest. 2013;123:3243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Auguste D, Maier M, Baldwin C, Aoudjit L, Robins R, Gupta IR, Takano T. Disease-causing mutations of RhoGDIα induce Rac1 hyperactivation in podocytes. Small GTPases. 2016;7:107–21. https://doi.org/10.1080/21541248.2015.1113353. Epub 2016 Jan 4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mele C, Iatropoulos P, Donadelli R, Calabria A, Maranta R, Cassis P, et al. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N Engl J Med. 2011;365:295–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mao J, Wang D, Mataleena P, He B, Niu D, Katayama K, et al. Myo1e impairment results in actin reorganization, podocyte dysfunction, and proteinuria in zebrafish and cultured podocytes. PLoS One. 2013;8:e72750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Krendel M, Kim SV, Willinger T, Wang T, Kashgarian M, Flavell RA, et al. Disruption of myosin 1e promotes podocyte injury. J Am Soc Nephrol. 2009;20:86–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Friedrich C, Endlich N, Kriz W, Endlich K. Podocytes are sensitive to fluid shear stress in vitro. Am J Physiol Ren Physiol. 2006;291:F856–65. https://doi.org/10.1152/ajprenal.00196.2005. Epub 2006 May 9. PMID: 16684926

    Article  CAS  Google Scholar 

  69. Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 2007;17:428–37. https://doi.org/10.1016/j.tcb.2007.06.006.

    Article  CAS  PubMed  Google Scholar 

  70. Ben-Omran T, Fahiminiya S, Sorfazlian N, Almuriekhi M, Nawaz Z, Nadaf J, et al. J Med Genet. 2015;52:381–90.

    Article  CAS  PubMed  Google Scholar 

  71. Colin E, Huynh Cong E, Mollet G, Guichet A, Gribouval O, Arrondel C, et al. Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. Am J Hum Genet. 2014;95:637–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wilm B, Muñoz-Chapuli R. The role of WT1 in embryonic development and normal organ homeostasis. Methods Mol Biol. 2016;1467:23–39.

    Article  PubMed  Google Scholar 

  73. Lipska-Ziętkiewicz BS. WT1 Disorder. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 2020. 1993–2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK556455/.

    Google Scholar 

  74. Burghardt T, Kastner J, Suleiman H, Rivera-Milla E, Stepanova N, Lottaz C, et al. LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys. J Am Soc Nephrol. 2013;24:1830–48. https://doi.org/10.1681/ASN.2012080788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Boyer O, Woerner S, Yang F, Oakeley EJ, Linghu B, Gribouval O, et al. LMX1B mutations cause hereditary FSGS without extrarenal involvement. J Am Soc Nephrol. 2013;24:1216–22. https://doi.org/10.1681/ASN.2013020171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hall G, Lane B, Chryst-Ladd M, Wu G, Lin JJ, Qin X, et al. Dysregulation of WT1(-KTS) is associated with the kidney-specific effects of the LMX1B R246Q mutation. Sci Rep. 2017;7:39933. https://doi.org/10.1038/srep39933. PMID: 28059119; PMCID: PMC5216339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bhat KP, Betous R, Cortez D. High-affinity DNA-binding domains of replication protein A (RPA) direct SMARCAL1-dependent replication fork remodeling. J Biol Chem. 2015;290:4110–7.

    Article  CAS  PubMed  Google Scholar 

  78. Lipska-Ziętkiewicz BS, Gellermann J, Boyer O, Gribouval O, Ziętkiewicz S, Kari JA, et al. Low renal but high extrarenal phenotype variability in Schimke immuno-osseous dysplasia. PLoS One. 2017;12:e0180926. https://doi.org/10.1371/journal.pone.0180926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Braun DA, Rao J, Mollet G, Schapiro D, Daugeron MC, Tan W, et al. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat Genet. 2017;49:1529–38. https://doi.org/10.1038/ng.3933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Braun DA, Shril S, Sinha A, Schneider R, Tan W, Ashraf S, et al. Mutations in WDR4 as a new cause of Galloway-Mowat syndrome. Am J Med Genet. 2018;176:2460–5. https://doi.org/10.1002/ajmg.a.40489.

    Article  CAS  PubMed  Google Scholar 

  81. Sakuma S, D’Angelo MA. The roles of the nuclear pore complex in cellular dysfunction, aging and disease. Semin Cell Dev Biol. 2017;68:72–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Braun DA, Lovric S, Schapiro D, Schneider R, Marquez J, Asif M, et al. Mutations in multiple components of the nuclear pore complex cause nephrotic syndrome. J Clin Invest. 2018;128:4313–28. https://doi.org/10.1172/JCI98688.

    Article  PubMed  PubMed Central  Google Scholar 

  83. DiMauro S, Moraes CT. Mitochondrial encephalomyopathies. Arch Neurol. 1993;50:1197–208.

    Article  CAS  PubMed  Google Scholar 

  84. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–65.

    Article  CAS  PubMed  Google Scholar 

  85. Heeringa SF, Chernin G, Chaki M, Zhou W, Sloan AJ, Ji Z, et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest. 2011;121:2013–24. https://doi.org/10.1172/JCI45693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Emma F, Bertini E, Salviati L, Montini G. Renal involvement in mitochondrial cytopathies. Pediatr Nephrol. 2012;27:539–50.

    Article  PubMed  Google Scholar 

  87. Zenker M, Aigner T, Wendler O, Tralau T, Muntefering H, Fenski R, et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet. 2004;13:2625–32.

    Article  CAS  PubMed  Google Scholar 

  88. Pierson M, Cordier J, Hervouuet F, Rauber G. An unusual congenital and familial congenital Malformative combination involving the eye and kidney. J Genet Hum. 1963;12:184–213.

    CAS  PubMed  Google Scholar 

  89. Zenker M, Tralau T, Lennert T, Pitz S, Mark K, Madlon H, et al. Congenital nephrosis, mesangial sclerosis, and distinct eye abnormalities with microcoria: an autosomal recessive syndrome. Am J Med Genet. 2004;130:138–45.

    Article  Google Scholar 

  90. Hasselbacher K, Wiggins RC, Matejas V, Hinkes BG, Mucha B, Hoskins BE, et al. Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders. Kidney Int. 2006;70:1008–12.

    Article  CAS  PubMed  Google Scholar 

  91. Choi HJ, Lee BH, Kang JH, Jeong HJ, Moon KC, Ha IS, Yu YS, Matejas V, Zenker M, Choi Y, Cheong HI. Variable phenotype of Pierson syndrome. Pediatr Nephrol. 2008;23:995–1000. https://doi.org/10.1007/s00467-008-0748-7.

    Article  PubMed  Google Scholar 

  92. Kagan M, Cohen AH, Matejas V, Vlangos C, Zenker M. A milder variant of Pierson syndrome. Pediatr Nephrol. 2008;23:323–7.

    Article  PubMed  Google Scholar 

  93. Matejas V, Al-Gazali L, Amirlak I, Zenker M. A syndrome comprising childhood-onset glomerular kidney disease and ocular abnormalities with progressive loss of vision is caused by mutated LAMB2. Nephrol Dial Transplant. 2006;21:3283–6.

    Article  CAS  PubMed  Google Scholar 

  94. Matejas V, Hinkes B, Alkandari F, Al-Gazali L, Annexstad E, Aytac MB, et al. Mutations in the human laminin beta2 (LAMB2) gene and the associated phenotypic spectrum. Hum Mutat. 2010;31:992–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sasaki T, Fassler R, Hohenester E. Laminin: the crux of basement membrane assembly. J Cell Biol. 2004;164:959–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP. The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat Genet. 1995;10:400–6.

    Article  CAS  PubMed  Google Scholar 

  97. Jarad G, Cunningham J, Shaw AS, Miner JH. Proteinuria precedes podocyte abnormalities inLamb2−/− mice, implicating the glomerular basement membrane as an albumin barrier. J Clin Invest. 2006;116:2272–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Suh JH, Jarad G, VanDeVoorde RG, Miner JH. Forced expression of laminin beta1 in podocytes prevents nephrotic syndrome in mice lacking laminin beta2, a model for Pierson syndrome. Proc Natl Acad Sci U S A. 2011;108:15348–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fine JD, Johnson LB, Weiner M, Stein A, Cash S, DeLeoz J, et al. Inherited epidermolysis bullosa and the risk of death from renal disease: experience of the National Epidermolysis Bullosa Registry. Am J Kidney Dis. 2004;44:651–60.

    Article  PubMed  Google Scholar 

  100. Sams WM Jr, Smith JG Jr. Epidermolysis bullosa Acquisita, dermal elastosis, amyloidosis. Arch Dermatol. 1964;90:137–42.

    Article  PubMed  Google Scholar 

  101. Kaneko K, Kakuta M, Ohtomo Y, Shimizu T, Yamashiro Y, Ogawa H, et al. Renal amyloidosis in recessive dystrophic epidermolysis bullosa. Dermatology. 2000;200:209–12.

    Article  CAS  PubMed  Google Scholar 

  102. Kambham N, Tanji N, Seigle RL, Markowitz GS, Pulkkinen L, Uitto J, et al. Congenital focal segmental glomerulosclerosis associated with beta4 integrin mutation and epidermolysis bullosa. Am J Kidney Dis. 2000;36:190–6.

    Article  CAS  PubMed  Google Scholar 

  103. Hata D, Miyazaki M, Seto S, Kadota E, Muso E, Takasu K, et al. Nephrotic syndrome and aberrant expression of laminin isoforms in glomerular basement membranes for an infant with Herlitz junctional epidermolysis bullosa. Pediatrics. 2005;116:e601–7.

    Article  PubMed  Google Scholar 

  104. Has C, Sparta G, Kiritsi D, Weibel L, Moeller A, Vega-Warner V, et al. Integrin alpha3 mutations with kidney, lung, and skin disease. N Engl J Med. 2012;366:1508–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nicolaou N, Margadant C, Kevelam SH, Lilien MR, Oosterveld MJ, Kreft M, et al. Gain of glycosylation in integrin alpha3 causes lung disease and nephrotic syndrome. J Clin Invest. 2012;122:4375–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K, Jones RC, et al. Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development. 1996;122:3537–47.

    Article  CAS  PubMed  Google Scholar 

  107. Karamatic Crew V, Burton N, Kagan A, Green CA, Levene C, Flinter F, et al. CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood. 2004;104:2217–23.

    Article  PubMed  CAS  Google Scholar 

  108. Sterk LM, Geuijen CA, van den Berg JG, Claessen N, Weening JJ, Sonnenberg A. Association of the tetraspanin CD151 with the laminin-binding integrins alpha3beta1, alpha6beta1, alpha6beta4 and alpha7beta1 in cells in culture and in vivo. J Cell Sci 2002 ;115:1161–1173.

    Google Scholar 

  109. Yauch RL, Berditchevski F, Harler MB, Reichner J, Hemler ME. Highly stoichiometric, stable, and specific association of integrin alpha3beta1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell. 1998;9:2751–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yauch RL, Kazarov AR, Desai B, Lee RT, Hemler ME. Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151. J Biol Chem. 2000;275:9230–8.

    Article  CAS  PubMed  Google Scholar 

  111. Nishiuchi R, Takagi J, Hayashi M, Ido H, Yagi Y, Sanzen N, et al. Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4 integrins. Matrix Biol. 2006;25:189–97.

    Article  CAS  PubMed  Google Scholar 

  112. Baleato RM, Guthrie PL, Gubler MC, Ashman LK, Roselli S. Deletion of CD151 results in a strain-dependent glomerular disease due to severe alterations of the glomerular basement membrane. Am J Pathol. 2008;173:927–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sachs N, Kreft M, van den Bergh Weerman MA, Beynon AJ, Peters TA, Weening JJ, et al. Kidney failure in mice lacking the tetraspanin CD151. J Cell Biol. 2006;175:33–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Malone AF, Phelan PJ, Hall G, Cetincelik U, Homstad A, Alonso AS, et al. Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int. 2014 Dec;86:1253–9. https://doi.org/10.1038/ki.2014.305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xie J, Wu X, Ren H, et al. COL4A3 mutations cause focal segmental glomerulosclerosis. J Mol Cell Biol. 2014;6:498–505.

    Article  CAS  PubMed  Google Scholar 

  116. Gast C, Pengelly RJ, Lyon M, et al. Collagen (COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2016;31:961–70.

    Article  CAS  PubMed  Google Scholar 

  117. Gharavi AG. Genetic testing for kidney disease of unknown etiology. Kidney Int. 2020;98:590–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Borza CM, Borza DB, Pedchenko V, Saleem MA, Mathieson PW, Sado Y, et al. Human podocytes adhere to the KRGDS motif of the alpha3alpha4alpha5 collagen IV network. J Am Soc Nephrol 2008;19:677–84. https://doi.org/10.1681/ASN.2007070793.

  119. Huynh Cong E, Bizet AA, Boyer O, Woerner S, Gribouval O, Filhol E, et al. A homozygous missense mutation in the ciliary gene TTC21B causes familial FSGS. J Am Soc Nephrol. 2014;25:2435–43. https://doi.org/10.1681/ASN.2013101126.

    Article  CAS  PubMed  Google Scholar 

  120. Solanki AK, Arif E, Morinelli T, Wilson RC, Hardiman G, Deng P, et al. A novel CLCN5 mutation associated with focal segmental Glomerulosclerosis and Podocyte injury. Kidney Int Rep. 2018;3:1443–53.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Barua M, Stellacci E, Stella L, et al. Mutations in PAX2 associate with adult-onset FSGS. J Am Soc Nephrol. 2014;25:1942–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vivante A, Chacham OS, Shril S, et al. Dominant PAX2 mutations may cause steroid-resistant nephrotic syndrome and FSGS in children. Pediatr Nephrol. 2019;34:1607–13.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Varner JD, Matory A, Gbadegesin RA. Genetic basis of health disparity in childhood Nephrotic syndrome. Am J Kidney Dis. 2018;72:S22–5.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Genovese G, Friedman DJ, Ross MD, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010;329:841–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Freedman BI, Limou S, Ma L, Kopp JB. APOL1-associated nephropathy: A key contributor to racial disparities in CKD. Am J Kidney Dis. 2018;72:S8–S16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Friedman DJ, Pollak MR. APOL1 and kidney disease: from genetics to biology. Annu Rev Physiol. 2020;82:323–42.

    Article  CAS  PubMed  Google Scholar 

  127. Adeyemo A, Esezobor C, Solarin A, Abeyagunawardena A, Kari JA, El Desoky S, et al. HLA-DQA1 and APOL1 as risk loci for childhood-onset steroid-sensitive and steroid-resistant Nephrotic syndrome. Am J Kidney Dis. 2018;71:399–406. https://doi.org/10.1053/j.ajkd.2017.10.013.

    Article  CAS  PubMed  Google Scholar 

  128. Ng DK, Robertson CC, Woroniecki RP, et al. APOL1-associated glomerular disease among African-American children: a collaboration of the chronic kidney disease in children (CKiD) and Nephrotic syndrome study network (NEPTUNE) cohorts. Nephrol Dial Transplant. 2017;32:983–90.

    PubMed  Google Scholar 

  129. Ekulu PM, Nkoy AB, Adebayo OC, et al. A focus on the association of Apol1 with kidney disease in children. Pediatr Nephrol. 2020; https://doi.org/10.1007/s00467-020-04553-z.

  130. Ekulu PM, Nkoy AB, Betukumesu DK, et al. APOL1 risk genotypes are associated with early kidney damage in children in sub-Saharan Africa. Kidney Int Rep. 2019;4:930–8.

    Article  PubMed  PubMed Central  Google Scholar 

  131. O'Toole JF, Bruggeman LA, Madhavan S, Sedor JR. The cell biology of APOL1. Semin Nephrol. 2017;37:538–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Beckerman P, Bi-Karchin J, Park AS, et al. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat Med. 2017;23:429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Olabisi OA, Zhang JY, VerPlank L, et al. APOL1 kidney disease risk variants cause cytotoxicity by depleting cellular potassium and inducing stress-activated protein kinases. Proc Natl Acad Sci U S A. 2016;113:830–7.

    Article  CAS  PubMed  Google Scholar 

  134. A Shah SS, Lannon H, Dias L, Zhang JY, Alper SL, Pollak MR, Friedman DJ. APOL1 kidney risk variants induce cell death via mitochondrial translocation and opening of the mitochondrial permeability transition pore. J Am Soc Nephrol. 2019;30:2355–68.

    Article  Google Scholar 

  135. Okamoto K, Rausch JW, Wakashin H, et al. APOL1 risk allele RNA contributes to renal toxicity by activating protein kinase R. Commun Biol. 2018;1:188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Datta S, Kataria R, Zhang JY, et al. Kidney disease-associated APOL1 variants have dose-dependent, dominant toxic gain-of-function. J Am Soc Nephrol. 2020;31:2083–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Aghajan M, Booten SL, Althage M, et al. Antisense oligonucleotide treatment ameliorates IFN-γ-induced proteinuria in APOL1-transgenic mice. JCI Insight. 2019;4:e126124.

    Article  PubMed Central  Google Scholar 

  138. Gbadegesin RA, Adeyemo A, Webb NJ, Greenbaum LA, Abeyagunawardena A, Thalgahagoda S, et al. HLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J Am Soc Nephrol. 2015;26:1701–10. https://doi.org/10.1681/ASN.2014030247.

    Article  CAS  PubMed  Google Scholar 

  139. Debiec H, Dossier C, Letouzé E, Gillies CE, Vivarelli M, Putler RK, et al. Transethnic, genome-wide analysis reveals immune-related risk alleles and phenotypic correlates in Pediatric steroid-sensitive Nephrotic syndrome. J Am Soc Nephrol. 2018;29:2000–13. https://doi.org/10.1681/ASN.2017111185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jia X, Horinouchi T, Hitomi Y, et al. Strong association of the HLA-DR/DQ locus with childhood steroid-sensitive Nephrotic syndrome in the Japanese population. J Am Soc Nephrol. 2018;29:2189–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dufek S, Cheshire C, Levine AP, Trompeter RS, Issler N, Stubbs M, et al. Genetic identification of two novel loci associated with steroid-sensitive Nephrotic syndrome. J Am Soc Nephrol. 2019;30:1375–84. https://doi.org/10.1681/ASN.2018101054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jia X, Yamamura T, Gbadegesin R, McNulty MT, Song K, Nagano C, et al. Common risk variants in NPHS1 and TNFSF15 are associated with childhood steroid-sensitive nephrotic syndrome. Kidney Int. 2020;98:1308–22. https://doi.org/10.1016/j.kint.2020.05.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bierzynska A, McCarthy HJ, Soderquest K, Sen ES, Colby E, Ding WY, et al. Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int. 2017;91:937–47. https://doi.org/10.1016/j.kint.2016.10.013.

    Article  PubMed  Google Scholar 

  144. Kemper MJ, Lemke A. Treatment of genetic forms of Nephrotic syndrome. Front Pediatr. 2018;6:72. https://doi.org/10.3389/fped.2018.00072.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Trautmann A, Lipska-Ziętkiewicz BS, Schaefer F. Exploring the clinical and genetic Spectrum of steroid resistant Nephrotic syndrome: the PodoNet registry. Front Pediatr. 2018;6:200. https://doi.org/10.3389/fped.2018.00200.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ding WY, Koziell A, McCarthy HJ, Bierzynska A, Bhagavatula MK, Dudley JA, et al. Initial steroid sensitivity in children with steroid-resistant nephrotic syndrome predicts post-transplant recurrence. J Am Soc Nephrol. 2014;25:1342–8. https://doi.org/10.1681/ASN.2013080852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pelletier JH, Kumar KR, Engen R, Bensimhon A, Varner JD, Rheault MN, et al. Recurrence of nephrotic syndrome following kidney transplantation is associated with initial native kidney biopsy findings. Pediatr Nephrol. 2018;33:1773–80. https://doi.org/10.1007/s00467-018-3994-3.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Udler MS, McCarthy MI, Florez JC, Mahajan A. Genetic risk scores for diabetes diagnosis and precision medicine. Endocr Rev. 2019;40:1500–20. https://doi.org/10.1210/er.2019-00088.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ding WY, Beresford MW, Saleem MA, Ramanan AV. Big data and stratified medicine: what does it mean for children? Arch Dis Child. 2019;104:389–94. https://doi.org/10.1136/archdischild-2018-315125.

    Article  PubMed  Google Scholar 

  150. McCarthy HJ, Bierzynska A, Wherlock M, Ognjanovic M, Kerecuk L, Hegde S, et al. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2013;8:637–48. https://doi.org/10.2215/CJN.07200712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. ACMG laboratory quality assurance committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24. https://doi.org/10.1038/gim.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Matthijs G, Souche E, Alders M, Corveleyn A, Eck S, Feenstra I, et al. European Society of Human Genetics. Guidelines for diagnostic next-generation sequencing. Eur J Hum Genet. 2016;24:2–5. https://doi.org/10.1038/ejhg.2015.226.

    Article  CAS  PubMed  Google Scholar 

  153. Smith K, Martindale J, Wallis Y, Bown N, Leo N, Creswell L, et al. General genetic laboratory reporting recommendations. Birmingham: Association for Clinical Genetic. Science. 2015;

    Google Scholar 

  154. Sen ES, Dean P, Yarram-Smith L, Bierzynska A, Woodward G, Buxton C, et al. Clinical genetic testing using a custom-designed steroid-resistant nephrotic syndrome gene panel: analysis and recommendations. J Med Genet. 2017;54:795–804. https://doi.org/10.1136/jmedgenet-2017-104811.

    Article  CAS  PubMed  Google Scholar 

  155. Trautmann A, Vivarelli M, Samuel S, Gipson D, Sinha A, Schaefer F, et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2020;35:1529–61. https://doi.org/10.1007/s00467-020-04519-1.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Gribouval O, Boyer O, Hummel A, Dantal J, Martinez F, Sberro-Soussan R, et al. Identification of genetic causes for sporadic steroid-resistant nephrotic syndrome in adults. Kidney Int. 2018;94:1013–22. https://doi.org/10.1016/j.kint.2018.07.024.

    Article  CAS  PubMed  Google Scholar 

  157. Yao T, Udwan K, John R, Rana A, Haghighi A, Xu L, et al. Integration of genetic testing and pathology for the diagnosis of adults with FSGS. Clin J Am Soc Nephrol. 2019;14:213–23. https://doi.org/10.2215/CJN.08750718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Greka A, Mundel P. Balancing calcium signals through TRPC5 and TRPC6 in podocytes. J Am Soc Nephrol. 2011;22:1969–80. https://doi.org/10.1681/ASN.2011040370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhou Y, Castonguay P, Sidhom EH, Clark AR, Dvela-Levitt M, Kim S, et al. A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science. 2017;358:1332–6. https://doi.org/10.1126/science.aal4178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasheed Gbadegesin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gbadegesin, R., Saleem, M., Lipska-Ziętkiewicz, B.S., Boyer, O. (2021). Genetic Basis of Nephrotic Syndrome. In: Emma, F., Goldstein, S., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_90-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_90-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27843-3

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics