Skip to main content

Handling of Drugs in Children with Abnormal Renal Function-

  • Living reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Every pediatrician must be able to administer the correct dosage for a variety of drugs across a wide array of patients: from a prematurely born baby weighing only 500 g to a large adolescent whose weight may exceed 120 kg. As a result, knowledge concerning changes in drug disposition as a result of childhood development is extremely important. An exceptional outline of the many changes that occur during human development that may alter drug disposition was published by Kearns et al. [1]. The changes his team listed include (i) changes in the integumentary development; (ii) changes in the volume of distribution (newborns have the highest total body water volume); (iii) changes in gastrointestinal function, hydrochloric acid production, and bile acid excretion; (iv) changes in the metabolic capacity of key enzymes; and, of course, (v) the acquisition of renal function. The effect of these changes can be so profound that an infant may metabolize a drug ten times faster than an adult and may form completely different metabolites. A study conducted by our team recently demonstrated such a disparity in the way that sirolimus is metabolized, finding a half-life of 72 h in adults and a half-life as short as 7 h in young children [2]. Moreover, the metabolite patterns in both groups were diametrically different [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology – drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67. Epub 19 Sept 2003.

    Article  CAS  PubMed  Google Scholar 

  2. Filler G, Bendrick-Peart J, Christians U. Pharmacokinetics of mycophenolate mofetil and sirolimus in children. Ther Drug Monit. 2008;30(2):138–42.

    Article  CAS  PubMed  Google Scholar 

  3. Filler G, Bendrick-Peart J, Strom T, Zhang YL, Johnson G, Christians U. Characterization of sirolimus metabolites in pediatric solid organ transplant recipients. Pediatr Transplant. 2009;13(1):44–53.

    Article  CAS  PubMed  Google Scholar 

  4. Seyffart G. Seyffart’s directory of drug dosing in kidney disease. Oberhacing: Dustri Verlag Dr. Karl Feistle; 2011. 870 pp.

    Google Scholar 

  5. Seyffart G. Drugs in renal failure: dosing guidelines for frequently used drugs in end-stage renal disease and dialysis patients. Blood Purif. 1985;3(1–3):140–68. Epub 01 Jan 1985.

    Article  CAS  PubMed  Google Scholar 

  6. Matzke GR, Aronoff GR, Atkinson Jr AJ, Bennett WM, Decker BS, Eckardt KU, et al. Drug dosing consideration in patients with acute and chronic kidney disease – a clinical update from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2011;80(11):1122–37. Epub 16 Sept 2011.

    Article  CAS  PubMed  Google Scholar 

  7. Filler G, Yasin A, Medeiros M. Methods of assessing renal function. Pediatr Nephrol. 2014;29(2):183–92.

    Article  PubMed  Google Scholar 

  8. Karagiannis S, Goulas S, Kosmadakis G, Metaxaki P, Boletis JN, Mavrogiannis C. Renal transplant recipients have longer small bowel transit time than the general population. Nephrol Dial Transplant. 2007;22(6):1793–4. Epub 23 Feb 2007.

    Article  PubMed  Google Scholar 

  9. Lefebvre HP, Ferre JP, Watson AD, Brown CA, Serthelon JP, Laroute V, et al. Small bowel motility and colonic transit are altered in dogs with moderate renal failure. Am J Physiol Regul Integr Comp Physiol. 2001;281(1):R230–8. Epub 19 Jun 2001.

    CAS  PubMed  Google Scholar 

  10. Christians U. Transport proteins and intestinal metabolism: P-glycoprotein and cytochrome P4503A. Ther Drug Monit. 2004;26(2):104–6. Epub 02 July 2004.

    Article  CAS  PubMed  Google Scholar 

  11. Christians U, Schmitz V, Haschke M. Functional interactions between P-glycoprotein and CYP3A in drug metabolism. Expert Opin Drug Metab Toxicol. 2005;1(4):641–54. Epub 26 July 2006.

    Article  CAS  PubMed  Google Scholar 

  12. Glare PA, Walsh TD. Clinical pharmacokinetics of morphine. Ther Drug Monit. 1991;13(1):1–23. Epub 01 Jan 1991.

    Article  CAS  PubMed  Google Scholar 

  13. Lerner G, Kale AS, Warady BA, Jabs K, Bunchman TE, Heatherington A, et al. Pharmacokinetics of darbepoetin alfa in pediatric patients with chronic kidney disease. Pediatr Nephrol. 2002;17(11):933–7. Epub 15 Nov 2002.

    Article  PubMed  Google Scholar 

  14. Tonshoff B, David-Neto E, Ettenger R, Filler G, van Gelder T, Goebel J, et al. Pediatric aspects of therapeutic drug monitoring of mycophenolic acid in renal transplantation. Transplant Rev (Orlando). 2011;25(2):78–89. Epub 02 Apr 2011.

    Article  Google Scholar 

  15. Habersang R. Dosage. In: Shirkey HC, editor. Pediatric therapy. 6th ed. St. Louis: Mosby; 1980. p. 17–20.

    Google Scholar 

  16. El-Bishti M, Burke J, Gill D, Jones RW, Counahan R, Chantler C. Body composition in children on regular hemodialysis. Clin Nephrol. 1981;15(2):53–60. Epub 01 Feb 1981.

    CAS  PubMed  Google Scholar 

  17. Filler G, Payne RP, Orrbine E, Clifford T, Drukker A, McLaine PN. Changing trends in the referral patterns of pediatric nephrology patients. Pediatr Nephrol. 2005;20(5):603–8.

    Article  PubMed  Google Scholar 

  18. Filler G, Yasin A, Kesarwani P, Garg AX, Lindsay R, Sharma AP. Big mother or small baby: which predicts hypertension? J Clin Hypertens. 2011;13(1):35–41.

    Article  Google Scholar 

  19. Yasin A, Benidir A, Filler G. Are Canadian pediatric nephrology patients really overweight? Clin Nephrol. 2012;78(5):359–64.

    Article  PubMed  Google Scholar 

  20. Tett SE, Saint-Marcoux F, Staatz CE, Brunet M, Vinks AA, Miura M, et al. Mycophenolate, clinical pharmacokinetics, formulations, and methods for assessing drug exposure. Transplant Rev. 2011;25(2):47–57. Epub 31 Dec 2010.

    Article  Google Scholar 

  21. Filler G, Grygas R, Mai I, Stolpe HJ, Greiner C, Bauer S, et al. Pharmacokinetics of tacrolimus (FK 506) in children and adolescents with renal transplants. Nephrol Dial Transplant. 1997;12(8):1668–71.

    Article  CAS  PubMed  Google Scholar 

  22. Filler G, Bendrick-Peart J, Strom TC, Johnson GE, Christians U, editors. Characterization and quantification of sirolimus metabolites in children receiving concomitant tacrolimus, Pediatric transplant. Oxford: Blackwell; 2007.

    Google Scholar 

  23. Divakaran K, Hines RN, McCarver DG. Human hepatic UGT2B15 developmental expression. Toxicol Sci. 2014;141:292. Epub 02 July 2014.

    Article  CAS  PubMed  Google Scholar 

  24. Mooij MG, Schwarz UI, de Koning BA, Leeder JS, Gaedigk R, Samsom JN, et al. Ontogeny of human hepatic and intestinal transporter gene expression during childhood: age matters. Drug Metab Dispos. 2014;42(8):1268–74.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Maxwell GM. Principles of paediatric pharmacology. London/New York: Croom Helm/Oxford University Press; 1984. 407 pp.

    Google Scholar 

  26. Motohashi H, Inui K. Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J. 2013;15(2):581–8. Epub 26 Feb 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Burckhardt G. Drug transport by organic anion transporters (OATs). Pharmacol Ther. 2012;136(1):106–30. Epub 31 July 2012.

    Article  CAS  PubMed  Google Scholar 

  28. Yeung CK, Shen DD, Thummel KE, Himmelfarb J. Effects of chronic kidney disease and uremia on hepatic drug metabolism and transport. Kidney Int. 2014;85(3):522–8. Epub 18 Oct 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Feber J, Gaboury I, Ni A, Alos N, Arora S, Bell L, et al. Skeletal findings in children recently initiating glucocorticoids for the treatment of nephrotic syndrome. Osteoporos Int. 2012;23(2):751–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Filler G, Bökenkamp A, Hofmann W, Le Bricon T, Martínez-Brú C, Grubb A. Cystatin C as a marker of GFR – history, indications, and future research. Clin Biochem. 2005;38(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  31. Filler G, Huang S-HS, Yasin A. The usefulness of cystatin C and related formulae in pediatrics. Clin Chem Lab Med. 2012;50(12):2081–91.

    Article  CAS  PubMed  Google Scholar 

  32. Filler G, Lopes L, Harrold J, Bariciak E. Beta-trace protein may be a more suitable marker of neonatal renal function. Clin Nephrol. 2014;81(4):269–76.

    Article  CAS  PubMed  Google Scholar 

  33. Huseman D, Gellermann J, Vollmer I, Ohde I, Devaux S, Ehrich JH, et al. Long-term prognosis of hemolytic uremic syndrome and effective renal plasma flow. Pediatr Nephrol. 1999;13(8):672–7.

    Article  CAS  PubMed  Google Scholar 

  34. Huang S-HS, Sharma AP, Yasin A, Lindsay RM, Clark WF, Filler G. Hyperfiltration affects accuracy of creatinine eGFR measurement. Clin J Am Soc Nephrol. 2011;6(2):274–80.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Cafruny EJ. Renal tubular handling of drugs. Am J Med. 1977;62(4):490–6. Epub 01 Apr 1977.

    Article  CAS  PubMed  Google Scholar 

  36. Quale JM, O’Halloran JJ, DeVincenzo N, Barth RH. Removal of vancomycin by high-flux hemodialysis membranes. Antimicrob Agents Chemother. 1992;36(7):1424–6. Epub 01 July 1992.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Allegaert K, Anderson BJ, van den Anker JN, Vanhaesebrouck S, de Zegher F. Renal drug clearance in preterm neonates: relation to prenatal growth. Ther Drug Monit. 2007;29(3):284–91. Epub 29 May 2007.

    Article  CAS  PubMed  Google Scholar 

  38. van den Anker JN, Allegaert K. Pharmacokinetics of aminoglycosides in the newborn. Curr Pharm Des. 2012;18(21):3114–8. Epub 09 May 2012.

    Article  PubMed  Google Scholar 

  39. Filler G, Ehrich J. Mycophenolate mofetil for rescue therapy in acute renal transplant rejection in children should always be monitored by measurement of trough concentration. Nephrol Dial Transplant. 1997;12(2):374–5.

    Article  CAS  PubMed  Google Scholar 

  40. Filler G, Lathia A, LeBlanc C, Christians U. Unexpectedly high exposure to enteric-coated mycophenolate sodium upon once-daily dosing. Pediatr Nephrol. 2006;21(8):1206–8.

    Article  PubMed  Google Scholar 

  41. Richens A. Clinical pharmacokinetics of phenytoin. Clin Pharmacokinet. 1979;4(3):153–69.

    Article  CAS  PubMed  Google Scholar 

  42. Fernandez E, Perez R, Hernandez A, Tejada P, Arteta M, Ramos JT. Factors and mechanisms for pharmacokinetic differences between pediatric population and adults. Pharmaceutics. 2011;3(1):53–72. Epub 01 Jan 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kaye JL. Review of paediatric gastrointestinal physiology data relevant to oral drug delivery. Int J Clin Pharm. 2011;33(1):20–4. Epub 03 Mar 2011.

    Article  PubMed  Google Scholar 

  44. Tetelbaum M, Finkelstein Y, Nava-Ocampo AA, Koren G. Back to basics: understanding drugs in children: pharmacokinetic maturation. Pediatr Rev/Am Acad Pediatr. 2005;26(9):321–8. Epub 06 Sept 2005.

    Article  Google Scholar 

  45. Routledge PA. Pharmacokinetics in children. J Antimicrob Chemother. 1994;34(Suppl A):19–24. Epub 01 Aug 1994.

    Article  PubMed  Google Scholar 

  46. Ravelli AM, Ledermann SE, Bisset WM, Trompeter RS, Barratt TM, Milla PJ. Foregut motor function in chronic renal failure. Arch Dis Child. 1992;67(11):1343–7. Epub 01 Nov 1992.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Ravelli AM. Gastrointestinal function in chronic renal failure. Pediatr Nephrol. 1995;9(6):756–62. Epub 01 Dec 1995.

    Article  CAS  PubMed  Google Scholar 

  48. Filler GM. The challenges of assessing acute kidney injury in infants. Kidney Int. 2011;80(6):567–8.

    Article  PubMed  Google Scholar 

  49. Hinchliffe SA, Sargent PH, Howard CV, Chan YF, van Velzen D. Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Invest; J Tech Methods Pathol. 1991;64(6):777–84. Epub 01 Jun 1991.

    CAS  Google Scholar 

  50. Barker DJ. The fetal and infant origins of adult disease. BMJ. 1990;301(6761):1111. Epub 17 Nov 1990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Fall CH, Vijayakumar M, Barker DJ, Osmond C, Duggleby S. Weight in infancy and prevalence of coronary heart disease in adult life. BMJ. 1995;310(6971):17–9. Epub 07 Jan 1995.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Barker DJ. Maternal nutrition, fetal nutrition, and disease in later life. Nutrition. 1997;13(9):807–13. Epub 18 Sept 1997.

    Article  CAS  PubMed  Google Scholar 

  53. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35(7):595–601. Epub 01 July 1992.

    Article  CAS  PubMed  Google Scholar 

  54. Abitbol CL, Seeherunvong W, Galarza MG, Katsoufis C, Francoeur D, Defreitas M, et al. Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? J Pediatr. 2014;164(5):1026–31e2. Epub 13 Mar 2014.

    Article  PubMed  Google Scholar 

  55. Toth-Heyn P, Drukker A, Guignard JP. The stressed neonatal kidney: from pathophysiology to clinical management of neonatal vasomotor nephropathy. Pediatr Nephrol. 2000;14(3):227–39. Epub 07 Feb 2001.

    Article  CAS  PubMed  Google Scholar 

  56. Huisman-de Boer JJ, van den Anker JN, Vogel M, Goessens WH, Schoemaker RC, de Groot R. Amoxicillin pharmacokinetics in preterm infants with gestational ages of less than 32 weeks. Antimicrob Agents Chemother. 1995;39(2):431–4. Epub 01 Feb 1995.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. van den Anker JN, Schoemaker RC, Hop WC, van der Heijden BJ, Weber A, Sauer PJ, et al. Ceftazidime pharmacokinetics in preterm infants: effects of renal function and gestational age. Clin Pharmacol Ther. 1995;58(6):650–9. Epub 01 Dec 1995.

    Article  PubMed  Google Scholar 

  58. van den Anker JN, Schoemaker RC, van der Heijden BJ, Broerse HM, Neijens HJ, de Groot R. Once-daily versus twice-daily administration of ceftazidime in the preterm infant. Antimicrob Agents Chemother. 1995;39(9):2048–50. Epub 01 Sept 1995.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Munar MY, Singh H. Drug dosing adjustments in patients with chronic kidney disease. Am Fam Physician. 2007;75(10):1487–96.

    PubMed  Google Scholar 

  60. Verbeeck RK, Musuamba FT. Pharmacokinetics and dosage adjustment in patients with renal dysfunction. Eur J Clin Pharmacol. 2009;65(8):757–73.

    Article  CAS  PubMed  Google Scholar 

  61. Vlavonou R, Perreault MM, Barriere O, Shink E, Tremblay PO, Larouche R, et al. Pharmacokinetic characterization of baclofen in patients with chronic kidney disease: dose adjustment recommendations. J Clin Pharmacol. 2014;54:584–92 [epub ahead of print].

    Article  CAS  PubMed  Google Scholar 

  62. Osborne R, Joel S, Grebenik K, Trew D, Slevin M. The pharmacokinetics of morphine and morphine glucuronides in kidney failure. Clin Pharmacol Ther. 1993;54(2):158–67.

    Article  CAS  PubMed  Google Scholar 

  63. Osborne RJ, Joel SP, Slevin ML. Morphine intoxication in renal failure: the role of morphine-6-glucuronide. Br Med J (Clin Res Ed). 1986;292(6535):1548–9.

    Article  CAS  Google Scholar 

  64. Shimomura K, Kamata O, Ueki S, Ida S, Oguri K. Analgesic effect of morphine glucuronides. Tohoku J Exp Med. 1971;105(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  65. Dreisbach AW, Lertora JJ. The effect of chronic renal failure on drug metabolism and transport. Expert Opin Drug Metab Toxicol. 2008;4(8):1065–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Naud J, Nolin TD, Leblond FA, Pichette V. Current understanding of drug disposition in kidney disease. J Clin Pharmacol. 2012;52(1 Suppl):10S–22.

    Article  CAS  PubMed  Google Scholar 

  67. Nolin TD, Naud J, Leblond FA, Pichette V. Emerging evidence of the impact of kidney disease on drug metabolism and transport. Clin Pharmacol Ther. 2008;83(6):898–903.

    Article  CAS  PubMed  Google Scholar 

  68. Velenosi TJ, Urquhart BL. Pharmacokinetic considerations in chronic kidney disease and patients requiring dialysis. Expert Opin Drug Metab Toxicol. 2014;10(8):1131–43.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang Y, Zhang L, Abraham S, Apparaju S, Wu TC, Strong JM, et al. Assessment of the impact of renal impairment on systemic exposure of new molecular entities: evaluation of recent new drug applications. Clin Pharmacol Ther. 2009;85(3):305–11.

    Article  CAS  PubMed  Google Scholar 

  70. Sun H, Frassetto LA, Huang Y, Benet LZ. Hepatic clearance, but not gut availability, of erythromycin is altered in patients with end-stage renal disease. Clin Pharmacol Ther. 2010;87(4):465–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Nolin TD, Frye RF, Le P, Sadr H, Naud J, Leblond FA, et al. ESRD impairs nonrenal clearance of fexofenadine but not midazolam. J Am Soc Nephrol. 2009;20(10):2269–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. DeSoi CA, Sahm DF, Umans JG. Vancomycin elimination during high-flux hemodialysis: kinetic model and comparison of four membranes. Am J Kidney Dis. 1992;20(4):354–60.

    Article  CAS  PubMed  Google Scholar 

  73. Pallotta KE, Manley HJ. Vancomycin use in patients requiring hemodialysis: a literature review. Semin Dial. 2008;21(1):63–70.

    Article  PubMed  Google Scholar 

  74. Baillie GE, Mason NA. 2013 dialysis of drugs. Saline: Renal Pharmacy Consultants, LLC; 2013.

    Google Scholar 

  75. Steinman TI. Serum albumin: its significance in patients with ESRD. Semin Dial. 2000;13(6):404–8.

    Article  CAS  PubMed  Google Scholar 

  76. Vasson MP, Paul JL, Couderc R, Albuisson E, Bargnoux PJ, Baguet JC, et al. Serum alpha-1 acid glycoprotein in chronic renal failure and hemodialysis. Int J Artif Organs. 1991;14(2):92–6.

    CAS  PubMed  Google Scholar 

  77. Dasgupta A, Abu-Alfa A. Increased free phenytoin concentrations in predialysis serum compared to postdialysis serum in patients with uremia treated with hemodialysis. Role of uremic compounds. Am J Clin Pathol. 1992;98(1):19–25.

    CAS  PubMed  Google Scholar 

  78. Mabuchi H, Nakahashi H. A major inhibitor of phenytoin binding to serum protein in uremia. Nephron. 1988;48(4):310–4.

    Article  CAS  PubMed  Google Scholar 

  79. Sakai T, Yamasaki K, Sako T, Kragh-Hansen U, Suenaga A, Otagiri M. Interaction mechanism between indoxyl sulfate, a typical uremic toxin bound to site II, and ligands bound to site I of human serum albumin. Pharm Res. 2001;18(4):520–4.

    Article  CAS  PubMed  Google Scholar 

  80. Steele WH, Lawrence JR, Elliott HL, Whiting B. Alterations of phenytoin protein binding with in vivo haemodialysis in dialysis encephalopathy. Eur J Clin Pharmacol. 1979;15(1):69–71.

    Article  CAS  PubMed  Google Scholar 

  81. Vanholder R, Van Landschoot N, De Smet R, Schoots A, Ringoir S. Drug protein binding in chronic renal failure: evaluation of nine drugs. Kidney Int. 1988;33(5):996–1004.

    Article  CAS  PubMed  Google Scholar 

  82. Amin NB, Padhi ID, Touchette MA, Patel RV, Dunfee TP, Anandan JV. Characterization of gentamicin pharmacokinetics in patients hemodialyzed with high-flux polysulfone membranes. Am J Kidney Dis. 1999;34(2):222–7.

    Article  CAS  PubMed  Google Scholar 

  83. Bohler J, Reetze-Bonorden P, Keller E, Kramer A, Schollmeyer PJ. Rebound of plasma vancomycin levels after haemodialysis with highly permeable membranes. Eur J Clin Pharmacol. 1992;42(6):635–9.

    Article  CAS  PubMed  Google Scholar 

  84. Veltri MA, Neu AM, Fivush BA, Parekh RS, Furth SL. Drug dosing during intermittent hemodialysis and continuous renal replacement therapy: special considerations in pediatric patients. Paediatr Drugs. 2004;6(1):45–65. Epub 19 Feb 2004.

    Article  PubMed  Google Scholar 

  85. Goldstein SL, Somers MJ, Baum MA, Symons JM, Brophy PD, Blowey D, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int. 2005;67(2):653–8. Epub 28 Jan 2005.

    Article  PubMed  Google Scholar 

  86. Burkhardt O, Hafer C, Langhoff A, Kaever V, Kumar V, Welte T, et al. Pharmacokinetics of ertapenem in critically ill patients with acute renal failure undergoing extended daily dialysis. Nephrol Dial Transplant. 2009;24(1):267–71. Epub 30 Aug 2008.

    Article  CAS  PubMed  Google Scholar 

  87. Burkhardt O, Joukhadar C, Traunmuller F, Hadem J, Welte T, Kielstein JT. Elimination of daptomycin in a patient with acute renal failure undergoing extended daily dialysis. J Antimicrob Chemother. 2008;61(1):224–5. Epub 30 Oct 2007.

    Article  CAS  PubMed  Google Scholar 

  88. Khadzhynov D, Slowinski T, Lieker I, Spies C, Puhlmann B, Konig T, et al. Plasma pharmacokinetics of daptomycin in critically ill patients with renal failure and undergoing CVVHD. Int J Clin Pharmacol Ther. 2011;49(11):656–65. Epub 21 Oct 2011.

    Article  CAS  PubMed  Google Scholar 

  89. Thompson AJ. Drug dosing during continuous renal replacement therapies. J Pediatr Pharmacol Ther: JPPT. 2008;13(2):99–113. Epub 01 Apr 2008.

    PubMed Central  PubMed  Google Scholar 

  90. Churchwell MD, Mueller BA. Drug dosing during continuous renal replacement therapy. Semin Dial. 2009;22(2):185–8. Epub 12 May 2009.

    Article  PubMed  Google Scholar 

  91. Bennett WM. Drug prescribing in renal failure: dosing guidelines for adults and children. 5th ed. Philadelphia: American College of Physicians; 2007. 272 pp.

    Google Scholar 

  92. Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009;37(3):840–51; quiz 59. Epub 25 Feb 2009.

    Article  CAS  PubMed  Google Scholar 

  93. Schaefer F, Warady BA. Peritoneal dialysis in children with end-stage renal disease. Nat Rev Nephrol. 2011;7(11):659–68. Epub 29 Sept 2011.

    Article  PubMed  Google Scholar 

  94. Hirata S, Kadowaki D. Appropriate drug dosing in patients receiving peritoneal dialysis. Contrib Nephrol. 2012;177:30–7. Epub 23 May 2012.

    Article  PubMed  Google Scholar 

  95. Manley HJ, Bailie GR, Frye RF, McGoldrick MD. Intravenous vancomycin pharmacokinetics in automated peritoneal dialysis patients. Perit Dial Int. 2001;21(4):378–85. Epub 06 Oct 2001.

    CAS  PubMed  Google Scholar 

  96. Manley HJ, Bailie GR, Frye R, Hess LD, McGoldrick MD. Pharmacokinetics of intermittent intravenous cefazolin and tobramycin in patients treated with automated peritoneal dialysis. J Am Soc Nephrol. 2000;11(7):1310–6. Epub 23 Jun 2000.

    CAS  PubMed  Google Scholar 

  97. Warady BA, Bakkaloglu S, Newland J, Cantwell M, Verrina E, Neu A, et al. Consensus guidelines for the prevention and treatment of catheter-related infections and peritonitis in pediatric patients receiving peritoneal dialysis: 2012 update. Perit Dial Int. 2012;32 Suppl 2:S32–86. Epub 08 Aug 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Janice Sumpton, Pharmacist at Children’s Hospital, London Health Sciences Centre, for her extensive review of the drug tables. We also thank Ms. Marta Kobrzynski, research assistant to GF, for her expert editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Filler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Filler, G., Kirpalani, A., Urquhart, B.L. (2015). Handling of Drugs in Children with Abnormal Renal Function-. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_83-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_83-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics