Skip to main content

Endocrine and Growth Abnormalities in Children with Chronic Renal Disease

  • Living reference work entry
  • First Online:
Pediatric Nephrology
  • 356 Accesses

Abstract

Uremia interferes with metabolism and regulation of hormones by various mechanisms. Disturbed endocrine function may arise either from inappropriate circulating hormone concentrations or from altered hormone action at the target tissue level. Both conditions may be present in the uremic state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Emmanouel DS, Lindheimer MD, Katz AI. Pathogenesis of endocrine abnormalities in uremia. Endocr Rev. 1980;1:28–44.

    CAS  PubMed  Google Scholar 

  2. Rabkin R, Unterhalter SA, Duckworth WC. Effect of prolonged uremia on insulin metabolism by isolated liver and muscle. Kidney Int. 1979;16:433–9.

    CAS  PubMed  Google Scholar 

  3. Hruska KA, Korkor A, Martin K, Slatopolsky E. Peripheral metabolism of intact parathyroid hormone. J Clin Invest. 1981;67:885–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Powell DR, Lee PDK, Chang D, Liu F, Hintz RL. Antiserum developed for the E peptide region of insulin-like growth factor IA prohormone recognizes a serum protein by both immunoblot and radioimmunoassay. J Clin Endocrinol Metab. 1987;65:868–75.

    CAS  PubMed  Google Scholar 

  5. Zilker TR, Rebel C, Kopp KF, Wahl K, Ermler R, Heinzel G, et al. Kinetics of biosynthetic human proinsulin in patients with terminal renal insufficiency. Horm Metab Res. 1988;18(Suppl):43–8.

    CAS  Google Scholar 

  6. Lim VS, Fang VS, Katz AI, Refetoff S. Thyroid dysfunction in chronic renal failure. J Clin Invest. 1977;60:522–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Kishore BK, Arakawa M, Geiyo F. Altered glycosylation and sialisation of serum proteins and lipid bound sialic acids in chronic renal failure. Postgrad Med J. 1983;59:551–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Schaefer F, Seidel C, Mitchell R, Schärer K, Robertson WR, Cooperative Study on Pubertal Development In Chronic Renal Failure. Pulsatile immunoreactive and bioactive luteinizing hormone secretion in pubertal patients with chronic renal failure. Pediatr Nephrol. 1991;5:566–71.

    CAS  PubMed  Google Scholar 

  9. Blum WF, Ranke MB, Kietzmann K, Tönshoff B, Mehls O. Excess of IGF-binding proteins in chronic renal failure: evidence for relative GH resistance and inhibition of somatomedin activity. In: Drop SLS, Hintz RL, editors. Insulin-like growth factor binding proteins. Amsterdam: Elsevier; 1989. p. 93–9.

    Google Scholar 

  10. Lee PD, Hintz RL, Sperry JB, Baxter RC, Powell DR. IGF binding proteins in growth-retarded children with chronic renal failure. Pediatr Res. 1989;26:308–15.

    CAS  PubMed  Google Scholar 

  11. Smith D, Defronzo RA. Insulin resistance in uremia mediated by postbinding defects. Kidney Int. 1982;22:54–62.

    CAS  PubMed  Google Scholar 

  12. Schaefer F, Chen Y, Tsao T, Nouri P, Rabkin R. Impaired JAK-STAT signal transduction contributes to growth hormone resistance in chronic uremia. J Clin Invest. 2001;108:467–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Schärer K, Chantler C, Brunner FP, Gurland HJ, Jacobs C, Selwood NH, et al. Combined report on regular dialysis and transplantation of children in Europe, 1975. Proc Eur Dial Transplant Assoc. 1976;13:3–103.

    Google Scholar 

  14. Rizzoni G, Broyer M, Brunner FP, et al. Combined report on regular hemodialysis and transplantation in Europe, 1985. Proc EDTA. 1986;23:55–83.

    Google Scholar 

  15. Schärer K, Study on Pubertal Development in Chronic Renal Failure. Growth and development of children with chronic renal failure. Acta Paediatr Scand Suppl. 1990;366:90–2.

    PubMed  Google Scholar 

  16. Ehrich JHH, Rizzoni G, Brunner FP, et al. Combined report on regular dialysis and transplantation in Europe, 1989. Nephrol Dial Transplant. 1991;6(Suppl):37–47.

    PubMed  Google Scholar 

  17. Schaefer F, Seidel C, Binding A, Gasser T, Largo RH, Prader A, et al. Pubertal growth in chronic renal failure. Pediatr Res. 1990;28:5–10.

    CAS  PubMed  Google Scholar 

  18. Burke BA, Lindgren B, Wick M, Holley K, Manivel C. Testicular germ cell loss in children with renal failure. Pediatr Pathol. 1989;9:433–44.

    CAS  PubMed  Google Scholar 

  19. Schaefer F, Walther U, Ruder H, et al. Reduced spermaturia in adolescent and young adult patients after renal transplantation. Nephrol Dial Transplant. 1991;6:840.

    Google Scholar 

  20. Palmer BF. Sexual dysfunction in uremia. J Am Soc Nephrol. 1999;10:1381–8.

    CAS  PubMed  Google Scholar 

  21. Hou S. Pregnancy in chronic renal insufficiency and end-stage renal disease. Am J Kidney Dis. 1999;33:235–52.

    CAS  PubMed  Google Scholar 

  22. Chan WS, Okun N, Kjellstrand CM. Pregnancy in chronic dialysis: a review and analysis of the literature. Int J Artif Organs. 1998;21:259–68.

    CAS  PubMed  Google Scholar 

  23. Nakabayashi M, Adachi T, Itoh S, Kobayashi M, Mishina J, Nishida H. Perinatal and infant outcome of pregnant patients undergoing chronic hemodialysis. Nephron. 1999;82:27–31.

    CAS  PubMed  Google Scholar 

  24. Handelsman DJ. Hypothalamic-pituitary gonadal dysfunction in renal failure, dialysis and renal transplantation. Endocr Rev. 1985;6:151–82.

    CAS  PubMed  Google Scholar 

  25. Corvol B, Bertagna X, Bedrossian J. Increased steroid metabolic clearance rate in anephric patients. Acta Endocrinol (Copenh). 1974;75:756–61.

    CAS  Google Scholar 

  26. Stewart-Bentley M, Gans D, Horton R. Regulation of gonadal function in uremia. Metabolism. 1974;23:1065–72.

    CAS  PubMed  Google Scholar 

  27. Oertel PJ, Lichtwald K, Häfner S, Rauh W, Schönberg D, Schärer K. Hypothalamo-pituitary-gonadal axis in children with chronic renal failure. Kidney Int. 1983;24 Suppl 15:34–9.

    Google Scholar 

  28. Forest MG. Physiological changes in circulating androgens. In: Androgens in childhood pediatric and adolescent endocrinology. Basel: Karger; 1989. p. 104–29.

    Google Scholar 

  29. Ferraris J, Saenger P, Levine L, New M, Pang S, Saxena BB, et al. Delayed puberty in males with chronic renal failure. Kidney Int. 1980;18:344–50.

    CAS  PubMed  Google Scholar 

  30. Schärer K, Schaefer F, Bornemann R, Haack P, Vecsei P, Cooperative Study on Pubertal Development In Chronic Renal Failure. Adrenal androgens in plasma of boys with chronic renal failure. Pediatr Nephrol. 1992;6:C179 (Abstract).

    Google Scholar 

  31. Schärer K, Broyer M, Vecsei P, Roger M, Arnold-Schwender E, Usberti J. Damage to testicular function in chronic renal failure of children. Proc Eur Dial Transplant Assoc. 1980;17:725–9.

    PubMed  Google Scholar 

  32. Belgorosky A, Ferraris JR, Ramirez JA, Jasper H, Rivarola MA. Serum sex hormone-binding globulin and serum nonsex hormone- binding globulin-bound testosterone fractions in prepubertal boys with chronic renal failure. J Clin Endocrinol Metab. 1991;73:107–10.

    CAS  PubMed  Google Scholar 

  33. Schaefer F, Hamill G, Stanhope R, Preece MA, Schärer K, Cooperative Study on Pubertal Development In Chronic Renal Failure. Pulsatile growth hormone secretion in peripubertal patients with chronic renal failure. J Pediatr. 1991;119:568–77.

    CAS  PubMed  Google Scholar 

  34. Gupta D, Bundschu HD. Testosterone and its binding in the plasma of male subjects with chronic renal failure. Clin Chim Acta. 1972;36:479–86.

    CAS  PubMed  Google Scholar 

  35. Van Kammen E, Thijssen JHH, Schwarz F. Sex hormones in male patients with chronic renal failure. I. The production of testosterone and androstenedione. Clin Endocrinol. 1978;8:7–12.

    Google Scholar 

  36. Kreusser W, Spiegelberg U, Sis J, Wagner D, Ritz E. Hypergonadotroper hypogonadismus bei Niereninsuffizienz – eine Folge gestörter cAMP-Bildung. Verh Dtsch Ges Inn Med. 1978;84:1446–8.

    PubMed  Google Scholar 

  37. Dunkel L, Raivio T, Laine J, Holmberg C. Circulating luteinizing hormone receptor inhibitor(s) in boys with chronic renal failure. Kidney Int. 1997;51:777–84.

    CAS  PubMed  Google Scholar 

  38. Mitchell R, Schaefer F, Morris ID, Schärer K, Sun JG, Robertson WR. Elevated serum immunoreactive inhibin levels in pubertal boys with chronic renal failure. Clin Endocrinol. 1993;39:27–33.

    CAS  Google Scholar 

  39. Lim VS, Henriquez C, Sievertsen G, Frohman LA. Ovarian function in chronic renal failure: evidence suggesting hypothalamic anovulation. Ann Intern Med. 1980;93:21–7.

    CAS  PubMed  Google Scholar 

  40. Ferraris JR, Domene HM, Escobar ME, Caletti MG, Ramirez JA, Rivarola MA. Hormonal profile in pubertal females with chronic renal failure: before and under haemodialysis and after renal transplantation. Acta Endocrinol (Copenh). 1987;115:289–96.

    CAS  Google Scholar 

  41. Schärer K, Schaefer F, Trott M, Kassmann K, Gilli G, Gerhard I, et al. Pubertal development in children with chronic renal failure. In: Schärer K, editor. Growth and endocrine changes in children and adolescents with chronic renal failure pediatric and adolescent endocrinology. Basel: Karger; 1989. p. 151–68.

    Google Scholar 

  42. Swamy AP, Woolf PD, Cestero RVM. Hypothalamic-pituitary-ovarian axis in uremic women. J Lab Clin Med. 1979;93:1066–72.

    CAS  PubMed  Google Scholar 

  43. Blackman MR, Weintraub BD, Kourides IA, Solano JT, Santner T, Rosen SW. Discordant elevation of the common alpha-subunit of the glycoprotein hormones compared to b-subunits in serum of uremic patients. J Clin Endocrinol Metab. 1981;53:39–48.

    CAS  PubMed  Google Scholar 

  44. Holdsworth S, Atkins RC, de Kretser DM. The pituitary-testicular axis in men with chronic renal failure. N Engl J Med. 1977;296:1245–9.

    CAS  PubMed  Google Scholar 

  45. Corley KP, Valk TW, Kelch RP, Marshall JC. Estimation of GnRH pulse amplitude during pubertal development. Pediatr Res. 1981;15:157–62.

    CAS  PubMed  Google Scholar 

  46. Veldhuis JD, Carlson ML, Johnson ML. The pituitary gland secretes in bursts: appraising the nature of glandular secretory impulses by simultaneous multiple-parameter deconvolution of plasma hormone concentrations. Proc Natl Acad Sci U S A. 1987;84:7686–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Schaefer F, Veldhuis JD, Robertson WR, Dunger D, Schärer K. Immunoreactive and bioactive luteinizing hormone in pubertal patients with chronic renal failure. Cooperative Study Group on Pubertal Development in Chronic Renal Failure. Kidney Int. 1994;45:1465–76.

    CAS  PubMed  Google Scholar 

  48. Schaefer F, Daschner M, Veldhuis JD, Oh J, Qadri F, Schärer K. In vivo alterations in the gonadotropin-releasing hormone pulse generator and the secretion and clearance of luteinizing hormone in the castrate uremic rat. Neuroendocrinology. 1994;59:285–96.

    CAS  PubMed  Google Scholar 

  49. Dong Q, Handelsman DJ. Regulation of pulsatile luteinizing hormone secretion in experimental uremia. Endocrinology. 1991;128:1218–22.

    CAS  PubMed  Google Scholar 

  50. Talbot JA, Rodger RSC, Robertson WR. Pulsatile bioactive luteinising hormone secretion in men with chronic renal failure and following renal transplantation. Nephron. 1990;56:66–72.

    CAS  PubMed  Google Scholar 

  51. Wibullaksanakul S, Handelsman DJ. Regulation of hypothalamic gonadotropin-releasing hormone secretion in experimental uremia: in vitro studies. Neuroendocrinology. 1991;54:353–8.

    CAS  PubMed  Google Scholar 

  52. Daschner M, Philippin B, Nguyen T, Wiesner RJ, Walz C, Sandow J, et al. Circulating inhibitor of gonadotropin releasing hormone secretion from hypothalamic neurons in uremia. Kidney Int. 2002;62:1582–90.

    CAS  PubMed  Google Scholar 

  53. Schaefer F, Vogel M, Kerkhoff G, Woitzik J, Daschner M, Mehls O. Experimental uremia affects hypothalamic amino acid neurotransmitter milieu. J Am Soc Nephrol. 2001;12:1218–27.

    CAS  PubMed  Google Scholar 

  54. Robertson WR, Lambert A, Loveridge N. The role of modern bioassays in clinical endocrinology. Clin Endocrinol (Oxf). 1987;27:259–78.

    CAS  Google Scholar 

  55. Celani MF, Montanini V, Baraghini GF, Carani C, Cioni K, Resentini M, et al. Biological and immunological profiles of serum luteinizing hormone (LH) during male sexual maturation. Acta Med Auxol. 1983;15:195–204.

    Google Scholar 

  56. Schaefer F, Mitchell R, Schärer K, Robertson WR. Gonadotrophin secretion in pubertal children on dialysis or after renal transplantation. J Endocrinol. 1989;121(Suppl):230.

    Google Scholar 

  57. Giusti M, Perfumo F, Verrina E, Cavallero D, Piaggio G, Gusmano R, et al. Biological activity of luteinizing hormone in uremic children: spontaneous nocturnal secretion and changes after administration of exogenous pulsatile luteinizing hormone releasing hormone. Pediatr Nephrol. 1991;5:559–65.

    CAS  PubMed  Google Scholar 

  58. Mitchell R, Bauerfeld C, Schaefer F, Schärer K, Robertson WR. Less acidic forms of luteinizing hormone are associated with lower testosterone secretion in men on hemodialysis treatment. Clin Endocrinol. 1994;41:65–73.

    CAS  Google Scholar 

  59. Gomez F, de la Cueva R, Wauters J-P, Lemarchand-Beraud T. Endocrine abnormalities in patients undergoing long-term hemodialysis – the role of prolactin. Am J Med. 1980;68:522–30.

    CAS  PubMed  Google Scholar 

  60. Sievertsen GDLVSNC. Metabolic clearance and secretion rates of human prolactin in normal subjects and in patients with chronic renal failure rate. J Clin Endocrinol Metab. 1980;50:846–52.

    CAS  PubMed  Google Scholar 

  61. Winters SJ, Troen P. Altered pulsatile secretion of luteinising hormone in hypogonadal men with hyperprolactinemia. Clin Endocrinol. 1984;21:257–63.

    CAS  Google Scholar 

  62. Schmitz O. Absence of diurnal plasma prolactin rhythm in diabetic and non- diabetic uremic patients. Acta Endocrinol (Copenh). 1984;105:173–8.

    CAS  Google Scholar 

  63. Biasioli S, Mazzali A, Foroni R, D’Andrea G, Feriani M, Chiaramonte S, et al. Chronobiological variations of prolactin (PRL) in chronic renal failure (CRF). Clin Nephrol. 1988;30:86–92.

    CAS  PubMed  Google Scholar 

  64. Czernichow P, Dauzet MC, Broyer M, Rappaport R. Abnormal TSH, PRL and GH response to TSH releasing factor in chronic renal failure. J Clin Endocrinol Metab. 1976;43:630–7.

    CAS  PubMed  Google Scholar 

  65. Ramirez G, O’Neill WM, Bloomer HA. Abnormalities in the regulation of prolactin in patients with chronic renal failure. J Clin Endocrinol Metab. 1977;45:658–61.

    CAS  PubMed  Google Scholar 

  66. Bommer J, Ritz E, del Pozo E, Bommer G. Improved sexual function in male haemodialysis patients on bromocriptine. Lancet. 1979;2:496–7.

    CAS  PubMed  Google Scholar 

  67. Ruilope L, Garcia-Robles R, Paya C, De-Villa LF, Miranda B, Morales JM, et al. Influence of lisuride, a dopaminergic agonist, on the sexual function of male patients with chronic renal failure. Am J Kidney Dis. 1985;5:182–5.

    CAS  PubMed  Google Scholar 

  68. Verbeelen D, Vanhaelst L, van Steirteghem AC, Sennesael J. Effect of 1,25-dihydroxyvitamin D3 on plasma prolactin in patients with renal failure on regular dialysis treatment. J Endocrinol Invest. 1983;6:359–62.

    CAS  PubMed  Google Scholar 

  69. Schaefer RM, Kokot F, Kuerner B, Zech M, Heidland A. Normalization of serum prolactin levels in hemodialysis patients on recombinant human erythropoietin. Int J Artif Organs. 1989;12:445–9.

    CAS  PubMed  Google Scholar 

  70. Ramirez G, O’Neill WM, Bloomer A, Jubiz W. Abnormalities in the regulation of growth hormone in chronic renal failure. Arch Intern Med. 1978;138:267–71.

    CAS  PubMed  Google Scholar 

  71. Davidson MB, Fisher MB, Dabir-Vaziri N, Schaffer M. Effect of protein intake and dialysis on the abnormal growth hormone, glucose, and insulin homeostasis in uremia. Metabolism. 1976;25:455–64.

    CAS  PubMed  Google Scholar 

  72. Johnson V, Maack T. Renal extraction, filtration, absorption, and catabolism of growth hormone. Am J Physiol. 1977;233:F185–96.

    CAS  PubMed  Google Scholar 

  73. Haffner D, Schaefer F, Girard J, Ritz E, Mehls O. Metabolic clearance of recombinant human growth hormone in health and chronic renal failure. J Clin Invest. 1994;93:1163–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Schaefer F, Baumann G, Haffner D, Faunt LM, Johnson ML, Mercado M, et al. Multifactorial control of the elimination kinetics of unbound (free) growth hormone (GH) in the human: regulation by age, adiposity, renal function, and steady state concentrations of GH in plasma. J Clin Endocrinol Metab. 1996;81:22–31.

    CAS  PubMed  Google Scholar 

  75. Tönshoff B, Veldhuis JD, Heinrich U, Mehls O. Deconvolution analysis of spontaneous nocturnal growth hormone secretion in prepubertal children with chronic renal failure. Pediatr Res. 1995;37:86–93.

    PubMed  Google Scholar 

  76. Veldhuis JD, Iranmanesh A, Wilkowski MJ, Samojlik E. Neuroendocrine alterations in the somatotropic and lactotropic axes in uremic men. Eur J Endocrinol. 1994;131:489–98.

    CAS  PubMed  Google Scholar 

  77. Schaefer F, Veldhuis J, Stanhope R, Jones J, Schärer K, Cooperative Study on Pubertal Development in Chronic Renal Failure. Alterations in growth hormone secretion and clearance in peripubertal boys with chronic renal failure and after renal transplantation. J Clin Endocrinol Metab. 1994;78:1298–306.

    CAS  PubMed  Google Scholar 

  78. Challa A, Krieg RJ Jr RJ, Thabet MA, Veldhuis JD, Chan JC. Metabolic acidosis inhibits growth hormone secretion in rats: mechanism of growth retardation. Am J Physiol. 1993;265:E547–53.

    CAS  PubMed  Google Scholar 

  79. Bessarione D, Perfumo F, Giusti M, Ginevri F, Mazzocchi G, Gusmano R, et al. Growth hormone response to growth hormone-releasing hormone in normal and uraemic children: comparison with hypoglycemia following insulin administration. Acta Endocrinol (Copenh). 1987;114:5–11.

    CAS  Google Scholar 

  80. Giordano C, De Santo NG, Carella C, Mioli V, Bazzato G, Amato G, et al. TSH response to TRH in hemodialysis and CAPD patients. Int J Artif Organs. 1984;7:7–10.

    CAS  PubMed  Google Scholar 

  81. Alvestrand A, Mujagic M, Wajngot A, Efendic S. Glucose intolerance in uremic patients: the relative contributions of impaired beta-cell function and insulin resistance. Clin Nephrol. 1989;31:175–83.

    CAS  PubMed  Google Scholar 

  82. Marumo F, Sakai T, Sato S. Response of insulin, glucagon and growth hormone to arginine infusion in patients with chronic renal failure. Nephron. 1979;24:81–4.

    CAS  PubMed  Google Scholar 

  83. Rodger RSC, Dewar JH, Turner SJ, Watson MJ, Ward MK. Anterior pituitary dysfunction in patients with chronic renal failure treated by hemodialysis or continuous ambulatory peritoneal dialysis. Nephron. 1986;43:169–72.

    CAS  PubMed  Google Scholar 

  84. Duntas L, Wolf CF, Keck FS, Rosenthal J. Tyrotropin-releasing hormone: pharmacokinetic and pharmacodynamic properties in chronic renal failure. Clin Nephrol. 1992;38:214–18.

    CAS  PubMed  Google Scholar 

  85. Chan W, Valerie KC, Chan JCM. Expression of insulin-like growth factor-1 in uremic rats: growth hormone resistance and nutritional intake. Kidney Int. 1993;43:790–5.

    CAS  PubMed  Google Scholar 

  86. Tönshoff B, Eden S, Weiser E, Carlsson B, Robinson ICAF, Blum WF, et al. Reduced hepatic growth hormone (GH) receptor gene expression and increase in plasma GH binding protein in experimental uremia. Kidney Int. 1994;45:1085–92.

    PubMed  Google Scholar 

  87. Villares SM, Goujon L, Maniar S, Delehaye-Zervas MC, Martini JF, Kleinknecht C, et al. Reduced food intake is the main cause of low growth hormone receptor expression in uremic rats. Mol Cell Endocrinol. 1994;106:51–6.

    CAS  PubMed  Google Scholar 

  88. Martínez V, Balbín M, Ordónez FA, Rodríguez J, García E, Medina A, et al. Hepatic expression of growth hormone receptor/binding protein and insulin-like growth factor I genes in uremic rats. Influence of nutritional deficit. Growth Horm IGF Res. 1999;9:61–8.

    PubMed  Google Scholar 

  89. Edmondson SR, Baker NL, Oh J, Kovacs GT, Werther GA, Mehls O. Growth hormone receptor abundance in tibial growth plates of uremic rats: GH/IGF-I treatment. Kidney Int. 2000;58:62–70.

    CAS  PubMed  Google Scholar 

  90. Baumann G, Shaw MA, Amburn K. Regulation of plasma growth hormone-binding proteins in health and disease. Metabolism. 1989;38:683–9.

    CAS  PubMed  Google Scholar 

  91. Postel-Vinay MC, Tar A, Crosnier H, Broyer M, Rappaport R, Tönshoff B, et al. Plasma growth-hormone binding is low in uremic children. Pediatr Nephrol. 1991;5:545–7.

    CAS  PubMed  Google Scholar 

  92. Tönshoff B, Cronin MJ, Reichert M. Reduced concentration of serum growth hormone (GH)-binding protein in children with chronic renal failure: correlation with GH insensitivity. J Clin Endocrinol Metab. 1997;82:1007–13.

    PubMed  Google Scholar 

  93. Powell DR, Liu F, Baker BK, Hintz RL, Lee PD, Durham SK, et al. Modulation of growth factors by growth hormone in children with chronic renal failure. The Southwest Pediatric Nephrology Study Group. Kidney Int. 1997;51:1970–9.

    CAS  PubMed  Google Scholar 

  94. Sun DF, Zheng Z, Tummala P, Oh J, Schaefer F, Rabkin R. Chronic uremia attenuates growth hormone-induced signal transduction in skeletal muscle. J Am Soc Nephrol. 2004;15:2630–6.

    CAS  PubMed  Google Scholar 

  95. Zheng Z, Sun DF, Tummala P, Rabkin R. Cardiac resistance to growth hormone in uremia. Kidney Int. 2005;67:858–66.

    CAS  PubMed  Google Scholar 

  96. Troib A, Landau D, Kachko L, Rabkin R, Segev Y. Epiphyseal growth plate growth hormone receptor signaling is decreased in chronic kidney disease-related growth retardation. Kidney Int. 2013;84:940–9.

    CAS  PubMed  Google Scholar 

  97. Chen Y, Biada J, Sood S, Rabkin R. Uremia attenuates growth hormone-stimulated insulin-like growth factor-1 expression, a process worsened by inflammation. Kidney Int. 2010;78:89–95.

    CAS  PubMed  Google Scholar 

  98. Ding H, Gao XL, Hirschberg R, Vadgama JV, Kopple JD. Impaired actions of insulin-like growth factor 1 on protein synthesis and degradation in skeletal muscle of rats with chronic renal failure. Evidence for a postreceptor defect. J Clin Invest. 1996;97:1064–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Phillips LS, Kopple JD. Circulating somatomedin activity and sulfate levels in adults with normal and impaired kidney function. Metabolism. 1981;30:1091–5.

    CAS  PubMed  Google Scholar 

  100. Fouque D. Insulin-like growth factor 1 resistance in chronic renal failure. Miner Electrolyte Metab. 1995;22:133–7.

    Google Scholar 

  101. Fouque D, Peng SC, Kopple JD. Impaired metabolic response to recombinant insulin-like growth factor-1 in dialysis patients. Kidney Int. 1995;47:876–83.

    CAS  PubMed  Google Scholar 

  102. Tönshoff B, Blum WF, Wingen AM, Mehls O. Serum insulin-like growth factors (IGFs) and IGF binding proteins 1,2 and 3 in children with chronic renal failure: relationship to height and glomerular filtration rate. J Clin Endocrinol Metab. 1995;80:2684–91.

    PubMed  Google Scholar 

  103. Frystyk J, Ivarsen P, Skjaerbaek C, Flyvbjerg A, Pedersen EB, Orskov H. Serum-free insulin-like growth factor I correlates with clearance in patients with chronic renal failure. Kidney Int. 1999;56:2076–84.

    CAS  PubMed  Google Scholar 

  104. Phillips LS, Fusco AC, Unterman TG, del Greco F. Somatomedin inhibitor in uremia. J Clin Endocrinol Metab. 1984;59:764–72.

    CAS  PubMed  Google Scholar 

  105. Powell DR, Liu F, Baker B, Hintz RL, Durham SK, Brewer ED, et al. Insulin-like growth factor-binding protein-6 levels are elevated in serum of children with chronic renal failure: a report of the Southwest Pediatric Nephrology Study Group. J Clin Endocrinol Metab. 1997;82:2978–84.

    CAS  PubMed  Google Scholar 

  106. Powell DR, Durham SK, Brewer ED, Frane JW, Watkins SL, Hogg RJ, et al. Effects of chronic renal failure and growth hormone on serum levels of insulin-like growth factor-binding protein-4 (IGFBP-4) and IGFBP-5 in children: a report of the Southwest Pediatric Nephrology Study Group. J Clin Endocrinol Metab. 1999;84:596–601.

    CAS  PubMed  Google Scholar 

  107. Powell DR, Liu F, Baker BK, Hintz RL, Kale A, Suwanichkul A, et al. Effect of chronic renal failure and growth hormone therapy on the insulin-like growth factors and their binding proteins. Pediatr Nephrol. 2000;14:579–83.

    CAS  PubMed  Google Scholar 

  108. Ulinski T, Mohan S, Kiepe D, Blum WF, Wingen A-M, Mehls O, et al. Serum insulin-like growth factor binding protein (IGFBP)-4 and IGFBP-5 in children with chronic renal failure: relationship to growth and glomerular filtration rate. Pediatr Nephrol. 2000;14:589–97.

    CAS  PubMed  Google Scholar 

  109. Liu F, Powell DR, Hintz RL. Characterization of insulin-like growth factor-binding proteins in human serum from patients with chronic renal failure. J Clin Endocrinol Metab. 1989;70:620–8.

    Google Scholar 

  110. Lee D-Y, Park S-K, Yorgin PD, Cohen P, Oh Y, Rosenfeld RG. Alteration in insulin-like growth factor-binding proteins (IGFBPs) and IGFBP-3 protease activity in serum and urine from acute and chronic renal failure. J Clin Endocrinol Metab. 1994;79:1376–82.

    CAS  PubMed  Google Scholar 

  111. Büscher AK, Büscher R, Pridzun L, Langkamp M, Wachendorfer N, Hoyer PF, Ranke MB, Hauffa BP. Functional and total IGFBP3 for the assessment of disorders of the GH/IGF1 axis in children with chronic kidney disease, GH deficiency, or short stature after SGA status at birth. Eur J Endocrinol. 2012;166:923–31.

    PubMed  Google Scholar 

  112. Kiepe D, Ulinski T, Powell DR, Durham SK, Mehls O, Tönshoff B. Differential effects of IGFBP-1, -2, -3, and -6 on cultured growth plate chondrocytes. Kidney Int. 2002;62:1591–600.

    CAS  PubMed  Google Scholar 

  113. Blum WF, Ranke MB, Kietzmann K, Tönshoff B, Mehls O. GH resistance and inhibition of somatomedin activity by excess of insulin-like growth factor binding protein in uremia. Pediatr Nephrol. 1991;5:539–44.

    CAS  PubMed  Google Scholar 

  114. Tönshoff B, Powell DR, Zhao D, Durham SK, Coleman ME, Domene HM, et al. Decreased hepatic insulin-like growth factor (IGF)-I and increased IGF binding protein-1 and -2 gene expression in experimental uremia. Endocrinology. 1997;138:938–46.

    PubMed  Google Scholar 

  115. Powell D, Liu F, Baker B, Hintz R, Lee P, Durham S, et al. Modulation of growth factors by growth hormone in children with chronic renal failure. Kidney Int. 1997;51:1970–9.

    CAS  PubMed  Google Scholar 

  116. Tsao T, Fervenza FC, Friedlaender M, Chen Y, Rabkin R. Effect of prolonged uremia on insulin-like growth factor-I receptor autophosphorylation and tyrosine kinase activity in kidney and muscle. Exp Nephrol. 2002;10:285–92.

    CAS  PubMed  Google Scholar 

  117. Blum WF. Insulin-like growth factors (IGF) and IGF-binding proteins in chronic renal failure: evidence for reduced secretion of IGF. Acta Paediatr Scand. 1991;379(Suppl):24–31.

    CAS  Google Scholar 

  118. Pennisi AJ, Costin G, Phillips LS, Malekzadeh MM, Uittenbogaart C, Ettenger RB, et al. Somatomedin and growth hormone studies. Am J Dis Child. 1979;133:950–4.

    CAS  PubMed  Google Scholar 

  119. Wehrenberg WB, Janowski BA, Piering AW. Glucocorticoids: potent inhibitors and stimulators of growth hormone secretion. Endocrinology. 1990;126:3200–3.

    CAS  PubMed  Google Scholar 

  120. Luo J, Murphy LJ. Dexamethasone inhibits growth hormone induction of insulin-like growth factor-I (IGF-I) messenger ribonucleic acid (mRNA) in hypophysectomized rats and reduces IGF-I mRNA abundance in the intact rat. Endocrinology. 1989;125:165–71.

    CAS  PubMed  Google Scholar 

  121. Gabrielsson BG, Carmignac DF, Flavell DM, Robinson ICAF. Steroid regulation of growth hormone (GH) receptor and GH binding protein messenger ribonucleic acids in the rat. Endocrinology. 1995;133:2445–52.

    Google Scholar 

  122. Tönshoff B, Haffner D, Mehls O, Dietz M, Ruder H, Blum WF, et al. Efficacy and safety of growth hormone treatment in short children with renal allografts: three year experience. Kidney Int. 1993;44:199–207.

    PubMed  Google Scholar 

  123. Rees L, Greene SA, Adlard P, Jones J, Haycock GB, Rigden SP, et al. Growth and endocrine function after renal transplantation. Arch Dis Child. 1988;63:1326–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. van Dop C, Jabs KL, Donohue PA, Bock GH, Fivush BA, Harmon WE. Accelerated growth rates in children treated with growth hormone after renal transplantation. J Pediatr. 1992;120:244–50.

    PubMed  Google Scholar 

  125. Unterman TG, Phillips LS. Glucocorticoid effects on somatomedins and somatomedin inhibitors. J Clin Endocrinol Metab. 1985;61:618–26.

    CAS  PubMed  Google Scholar 

  126. Bang P, Degerblad M, Thoren M, Schwander J, Blum W, Hall K. Insulin like growth factor (IGF) I and II and IGF binding protein (IGFBP) 1, 2 and 3 in serum from patients with Cushing’s syndrome. Acta Endocrinol. 1993;128:397–404.

    CAS  PubMed  Google Scholar 

  127. Silbermann M, Maor G. Mechanisms of glucocorticoid-induced growth retardation: impairment of cartilage mineralization. Acta Anat. 1978;101:140–9.

    CAS  PubMed  Google Scholar 

  128. Jux C, Leiber K, Hügel U, Blum W, Ohlsson C, Klaus G, et al. Dexamethasone inhibits growth hormone (GH)-stimulated growth by suppression of local insulin-like growth factor (IGF)-I production and expression of GH- and IGF-I receptor in cultured rat chondrocytes. Endocrinology. 1998;139:3296–305.

    CAS  PubMed  Google Scholar 

  129. Kaptein EM, Quion-Verde H, Chooljian CJ, Tang WW, Friedman PE, Rodriquez HJ, et al. The thyroid in end-stage renal disease. Medicine (Baltimore). 1988;67:187–97.

    CAS  Google Scholar 

  130. Hegedus L, Andersen JR, Poulsen LR, Perrild H, Holm B, Gundtoft E, et al. Thyroid gland volume and serum concentrations of thyroid hormones in chronic renal failure. Nephron. 1985;40:171–4.

    CAS  PubMed  Google Scholar 

  131. Burke JR, El-Bishti MM, Maisey MN, Chantler C. Hypothyroidism in children with cystinosis. Arch Dis Child. 1978;53:947–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. McLean RH, Kennedy TL, Psoulpour M, Ratzan SK, Siegel NJ, Kauschansky A, et al. Hypothyroidism in the congenital nephrotic syndrome. J Pediatr. 1982;101:72–5.

    CAS  PubMed  Google Scholar 

  133. Koutras DA, Marketos SG, Rigopoulos GA, Malamos B. Iodine metabolism in chronic renal insufficiency. Nephron. 1972;9:55–65.

    CAS  PubMed  Google Scholar 

  134. Schaefer F, Ritz E. Endocrine disorders in chronic renal failure. In: Cameron JS, Davison AM, Grünfeld J-P, Kerr DNS, Ritz E, editors. Oxford textbook of clinical nephrology. Oxford: Oxford University Press; 1992. p. 1317–29.

    Google Scholar 

  135. Kaptein EM, Feinstein EI, Nicoloff JT, Massry SG. Serum reverse triiodothyronine and thyroxine kinetics in patients with chronic renal failure. J Clin Endocrinol Metab. 1983;57:181–9.

    CAS  PubMed  Google Scholar 

  136. Kaptein EM, Kaptein JS, Chang EI, Egodage PM, Nicoloff JT, Massry SG. Thyroxine transfer and distribution in critical nonthyroidal illnesses, chronic renal failure, and chronic ethanol abuse. J Clin Endocrinol Metabol. 1987;65:606–16.

    CAS  Google Scholar 

  137. Faber J, Heaf J, Kirkegaard C, Lumholtz IB, Siersbaek-Nielsen K, Kolendorf K, et al. Simultaneous turnover studies of thyroxine, 3,5,3′- and 3,3′,5′- triiodothyronine, 3,5-, 3,3′, and 3′,5′-diiodothyronine, and 3′- monoiodothyronine in chronic renal failure. J Clin Endocrinol Metabol. 1983;56:211–17.

    CAS  Google Scholar 

  138. Spector DA, Davis PJ, Helderman H, Bell B, Utiger RD. Thyroid function and metabolic state in chronic renal failure. Ann Intern Med. 1976;85:724–30.

    CAS  PubMed  Google Scholar 

  139. Kosowicz J, Malczewska B, Czekalski S. Serum reverse triiodothyronine (3,3′,5′-l-triiodothyronine) in chronic renal failure. Nephron. 1980;26:85–9.

    CAS  PubMed  Google Scholar 

  140. De-Marchi S, Cecchin E, Villalta D, Tesio F. Serum reverse T3 assay for predicting glucose intolerance in uremic patients on dialysis therapy. Clin Nephrol. 1987;27:189–98.

    CAS  PubMed  Google Scholar 

  141. Pasqualini T, Zantleifer D, Balzaretti M, Granillo E, Fainstein-Day P. Evidence of hypothalamic-pituitary thyroid abnormalities in children with end-stage renal disease. J Pediatr. 1991;118:873–8.

    CAS  PubMed  Google Scholar 

  142. Verger M-F, Verger C, Hatt-Magnien D, Perrone F. Relationship between thyroid hormones and nutrition in chronic failure. Nephron. 1987;45:211–15.

    CAS  PubMed  Google Scholar 

  143. Pagliacci MC, Pelicci G, Grignani F, Giammartino C, Fedeli L, Carobi C, et al. Thyroid function tests in patients undergoing maintenance dialysis: characterization of the ‘low-T4 syndrome’ in subjects on regular hemodialysis and continuous ambulatory peritoneal dialysis. Nephron. 1987;46:225–30.

    CAS  PubMed  Google Scholar 

  144. Robey C, Shreedhar K, Batuman V. Effects of chronic peritoneal dialysis on thyroid function tests. Am J Kidney Dis. 1989;13:99–103.

    CAS  PubMed  Google Scholar 

  145. Hardy MJ, Ragbeer SS, Nascimento L. Pituitary-thyroid function in chronic renal failure assessed by a highly sensitive thyrotropin assay. J Clin Endocrinol Metab. 1988;66:233–6.

    CAS  PubMed  Google Scholar 

  146. Beckett GJ, Henderson CJ, Elwes R, Seth J, Lambie AT. Thyroid status in patients with chronic renal failure. Clin Nephrol. 1983;19:172–8.

    CAS  PubMed  Google Scholar 

  147. Davis FB, Spector DA, Davis PJ, Hirsch BR, Walshie JJ, Yoshida K. Comparison of pituitary-thyroid function in patients with end- stage renal disease and in age- and sex-matched controls. Kidney Int. 1982;21:362–4.

    CAS  PubMed  Google Scholar 

  148. Silverberg DS, Ulan RA, Fawcett DM, Dosseter JB, Grace M, Bettcher K. Effects of chronic hemodialysis on thyroid function in chronic renal failure. Can Med Assoc J. 1973;189:282–6.

    Google Scholar 

  149. Wheatley T, Clark PMS, Clark JDA, Holder R, Raggatt PR, Evans DB. Abnormalities of thyrotrophin (TSH) evening rise and pulsatile release in the hemodialysis patients: evidence for hypothalamic- pituitary changes in chronic renal failure. Clin Endocrinol. 1989;31:39–50.

    CAS  Google Scholar 

  150. Holliday MA, Chantler C. Metabolic and nutritional factors in children with renal insufficiency. Kidney Int. 1978;14:306–12.

    CAS  PubMed  Google Scholar 

  151. Williams GR, Franklyn JA, Neuberger JM, Sheppard MC. Thyroid hormone receptor expression in the “sick euthyroid” syndrome. Lancet. 1989;II:1477–81.

    Google Scholar 

  152. Kinlaw WB, Schwartz HL, Mariash CN, Bingham C, Carr FE, Oppenheimer JH. Hepatic messenger ribonucleic acid activity profiles in experimental azotemia in the rat. J Clin Invest. 1984;74:1934–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Lim VS, Zavala DC, Flanigan MJ, Freeman RM. Blunted peripheral tissue responsiveness to thyroid hormone in uremic patients. Kidney Int. 1987;31:808–14.

    CAS  PubMed  Google Scholar 

  154. Lim VS, Flanigan MJ, Zavala DC, Freeman RM. Protective adaptation of low serum triiodothyronine in patients with chronic renal failure. Kidney Int. 1985;28:541–9.

    CAS  PubMed  Google Scholar 

  155. Lim VS. Thyroid function in patients with chronic renal failure. Am J Kidney Dis. 2001;38:S80–4.

    CAS  PubMed  Google Scholar 

  156. Spaulding SW, Chopra IJ, Sherwin RS, Lyall SS. Effect of caloric restriction and dietary composition on serum T3 and reverse T3 in man. J Clin Endocrinol Metab. 1976;42:197–200.

    CAS  PubMed  Google Scholar 

  157. van Leusen R, Meinders AE. Cyclical changes in serum thyroid hormone concentrations related to hemodialysis: movement of hormone into and out of the extravascular space as a possible mechanism. Clin Nephrol. 1982;18:193–9.

    PubMed  Google Scholar 

  158. Liewendahl K, Tikanoja S, Mahonen H, Helenius T, Valimaki M, Tallgren LG. Concentrations of iodothyronines in serum of patients with chronic renal failure and other nonthyroidal illnesses: role of free fatty acids. Clin Chem. 1987;33:1382–6.

    CAS  PubMed  Google Scholar 

  159. Sharp NA, Devlin JT, Rimmer JM. Renal failure obfuscates the diagnosis of Cushing’s disease. JAMA. 1986;256:2564–5.

    CAS  PubMed  Google Scholar 

  160. Ramirez G, Gomez-Sanchez C, Meikle WA, Jubiz W. Evaluation of the hypothalamic hypophyseal adrenal axis in patients receiving long-term hemodialysis. Arch Intern Med. 1982;142:1448–52.

    CAS  PubMed  Google Scholar 

  161. Luger A, Lang I, Kovarik J, Stummvoll HK, Templ H. Abnormalities in the hypothalamic-pituitary-adrenocortical axis in patients with chronic renal failure. Am J Kidney Dis. 1987;9:51–4.

    CAS  PubMed  Google Scholar 

  162. Betts PR, Hose PM, Morris R. Serum cortisol concentrations in children with chronic renal insufficiency. Arch Dis Child. 1975;50:245–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Ferraris JR, Ramirez JA, Goldberg V, Rivarola MA. Glucocorticoids and adrenal androgens in children with end-stage renal disease. Acta Endocrinol (Copenh). 1991;124:245–50.

    CAS  Google Scholar 

  164. Wallace EZ, Rosman P, Toshav N, Sacerdote A, Balthazar A. Pituitary-adrenocortical function in chronic renal failure: studies of episodic secretion of cortisol and dexamethasone suppressibility. J Clin Endocrinol Metab. 1980;50:46–51.

    CAS  PubMed  Google Scholar 

  165. Cooke CR, Whelton PK, Moore MA, Caputo RA, Bledsoe T, Walker WG. Dissociation of the diurnal variation of aldosterone and cortisol in anephric patients. Kidney Int. 1979;15:669–75.

    CAS  PubMed  Google Scholar 

  166. McDonald WJ, Golper TA, Mass RD, Kendall JW, Porter GA, Girard DE, et al. Adrenocorticotropin-cortisol axis abnormalities in hemodialysis patients. J Clin Endocrinol Metab. 1979;48:92–5.

    CAS  PubMed  Google Scholar 

  167. Zager PG, Spalding CT, Frey HJ, Brittenham MC. Low dose adrenocorticotropin infusion in continuous ambulatory peritoneal dialysis patients. J Clin Endocrinol Metab. 1985;61:1205–10.

    CAS  PubMed  Google Scholar 

  168. Williams GH, Bailey GL, Hampers CL. Studies on the metabolism of aldosterone in chronic renal failure and anephric man. Kidney Int. 1973;4:280–8.

    CAS  PubMed  Google Scholar 

  169. Rodger RSC, Watson MJ, Sellars L, Wilkinson R, Ward MK, Kerr DNS. Hypothalamic-pituitary-adrenocortical suppression and recovery in renal transplant patients returning to maintenance dialysis. Q J Med. 1986;61:1039–46.

    CAS  PubMed  Google Scholar 

  170. van Coevorden A, Stolear J-C, Dhaene M, van Herweghem J-L. Effect of chronic oral testosterone undecanoate administration on the pituitary-testicular axis of hemodialyzed male patients. Clin Nephrol. 1986;26:48–54.

    PubMed  Google Scholar 

  171. Mastrogiacomo I, de Besi L, Zucchetta P, Serafini E, la Greca G, Gasparoto ML, et al. Male hypogonadism of uremic patients on hemodialysis. Arch Androl. 1988;20:171–5.

    CAS  PubMed  Google Scholar 

  172. Rosman PM, Farag A, Peckham R, Benn R, Tito J, Bacci V, et al. Pituitary-adrenocortical function in chronic renal failure: blunted suppression and early escape of plasma cortisol levels after intravenous dexamethasone. J Clin Endocrinol Metab. 1982;54:528–33.

    CAS  PubMed  Google Scholar 

  173. Kawai S, Ichikawa Y, Homma M. Differences in metabolic properties among cortisol, prednisolone, and dexamethasone in liver and renal diseases: accelerated metabolism of dexamethasone in renal failure. J Clin Endocrinol Metab. 1985;60:848–54.

    CAS  PubMed  Google Scholar 

  174. Defronzo RA, Tobin J, Andres R. The glucose clamp technique. A method or the quantification of beta cell sensitivity to glucose and of tissue sensitivity to insulin. Am J Physiol. 1979;237:E214–23.

    CAS  PubMed  Google Scholar 

  175. Katz AI, Rubenstein AH. Metabolism of proinsulin, insulin, and C-peptide in the rat. J Clin Invest. 1973;52:1113–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Feneberg R, Sparber M, Veldhuis JD, Mehls O, Ritz E, Schaefer F. Altered temporal organization of plasma insulin oscillations in chronic renal failure. J Clin Endocrinol Metab. 2002;87:1965–73.

    CAS  PubMed  Google Scholar 

  177. Hampers CL, Soeldner JS, Doak PB, Merrill JP. Effect of chronic renal failure and hemodialysis on carbohydrate metabolism. J Clin Invest. 1966;45:1719–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Smith WG, Hanning I, Johnston DG, Brown CB. Pancreatic beta-cell function in CAPD. Nephrol Dial Transplant. 1988;3:448–52.

    CAS  PubMed  Google Scholar 

  179. Lowrie EG, Soeldner JS, Hamoers CL, Merril JP. Glucose metabolism and insulin secretion in uremic, prediabetic, and normal subjects. J Lab Clin Med. 1976;76:603–15.

    Google Scholar 

  180. Schmitz O. Effects of physiologic and supraphysiologic hyperglycemia on early and late-phase insulin secretion in chronically dialyzed uremic patients. Acta Endocrinol (Copenh). 1989;121:251–8.

    CAS  Google Scholar 

  181. Nakamura Y, Yoshida T, Kajiyama S, Kitagawa Y, Kanatsuna T, Kondo M. Insulin release from column-perifused isolated islets of uremic rats. Nephron. 1985;40(467-469):467–9.

    CAS  PubMed  Google Scholar 

  182. Defronzo RA, Tobin JD, Rowe JW, Andres R. Glucose intolerance in uremia. J Clin Invest. 1978;62:425–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Mak RH, Bettinelli A, Turner C, Haycock GB, Chantler C. The influence of hyperparathyroidism on glucose metabolism in uremia. J Clin Endocrinol Metab. 1985;60:229–33.

    CAS  PubMed  Google Scholar 

  184. Mak RHK, Turner C, Haycock GB, Chantler C. Secondary hyperparathyroidism and glucose intolerance in children with uremia. Kidney Int. 1983;24 Suppl 16:S128–33.

    Google Scholar 

  185. Fadda GZ, Akmal M, Premdas FH, Lipson LG, Massry SG. Insulin release from pancreatic islets: effects of CRF and excess PTH. Kidney Int. 1988;33:1066–72.

    CAS  PubMed  Google Scholar 

  186. Fadda GZ, Akmal M, Soliman AR, Lipson LG, Massry SG. Correction of glucose intolerance and the impaired insulin release of chronic renal failure by verapamil. Kidney Int. 1989;36:773–9.

    CAS  PubMed  Google Scholar 

  187. Pande RL, Perlstein TS, Beckmann JA, Craeger MA. Association of insulin resistance and inflammation with peripheral arterial disease: the National Health and Nutrition Examination Survey, 1999 to 2004. Circulation. 2008;118:33–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Kobayashi S, Oka M, Maesato K, Ikee R, Mano T, Hidekazu M, et al. Coronary artery calcification, ADMA, and insulin resistance in CKD patients. Clin J Am Soc Nephrol. 2008;3:1289–95.

    PubMed Central  PubMed  Google Scholar 

  189. Defronzo RA, Alvestrand A. Glucose intolerance in uremia: site and mechanism. Am J Clin Nutr. 1980;33:1438–45.

    CAS  PubMed  Google Scholar 

  190. Mak RH, Haycock GB, Chantler C. Glucose intolerance in children with chronic renal failure. Kidney Int. 1983;24 Suppl 15:S22–6.

    Google Scholar 

  191. Kalhan SC, Ricanati ES, Tserng KY, Savin SM. Glucose turnover in chronic uremia: increased recycling with diminished oxidation of glucose. Metabolism. 1983;32:1155–62.

    CAS  PubMed  Google Scholar 

  192. Schmitz O. Peripheral and hepatic resistance to insulin and hepatic resistance to glucagon in uraemic subjects. Acta Endocrinol (Copenh). 1988;118:125–34.

    CAS  Google Scholar 

  193. Westervelt FB, Schreiner GE. The carbohydrate intolerance of uremic patients. Ann Intern Med. 1962;57:266–75.

    CAS  PubMed  Google Scholar 

  194. Deferrari G, Garibotto G, Robaudo C, Lutman M, Viviani G, Sala R, et al. Glucose interorgan exchange in chronic renal failure. Kidney Int. 1983;24 Suppl 16:S115–20.

    Google Scholar 

  195. Taylor R, Heaton A, Hetherington CS, Alberti KG. Adipocyte insulin binding and insulin action in chronic renal failure before and during continuous ambulatory peritoneal dialysis. Metabolism. 1986;35:430–5.

    CAS  PubMed  Google Scholar 

  196. Weisinger JR, Contreras NE, Cajias J, Bellorin-Font E, Amair P, Guitierrez L, et al. Insulin binding and glycolytic activity in erythrocytes from dialyzed and nondialyzed uremic patients. Nephron. 1988;48:190–6.

    CAS  PubMed  Google Scholar 

  197. Pedersen O, Schmitz O, HjÆllund E, Richelsen B, Hansen HE. Postbinding defects of insulin action in human adipocytes from uremic patients. Kidney Int. 1985;27:780–4.

    CAS  PubMed  Google Scholar 

  198. Maloff BL, McCaleb M, Lockwood DH. Cellular basis of insulin resistance in chronic uremia. Am J Physiol. 1983;245:E178–84.

    CAS  PubMed  Google Scholar 

  199. Bak JF, Schmitz O, Sorensen SS, Frokjaer J, Kjaer T, Pedersen O. Activity of insulin receptor kinase and glycogen synthase in skeletal muscle from patients with chronic renal failure. Acta Endocrinol [Copenh]. 1989;121:744–50.

    CAS  Google Scholar 

  200. Mak RH. Insulin resistance in uremia: effect of dialysis modality. Pediatr Res. 1996;40:304–8.

    CAS  PubMed  Google Scholar 

  201. Hörl WH, Haag-Weber M, Georgopoulos A, Block LH. The physicochemical characterization of a novel polypeptide present in uremic serum that inhibits the biological activity of polymorphonuclear cells. Proc Natl Acad Sci U S A. 1990;87:6353–7.

    PubMed Central  PubMed  Google Scholar 

  202. Dzúrik R, Hupková V, Cernacek P, Valovicova E, Niederland TR, Mayskova A, et al. The isolation of an inhibitor of glucose utilization from the serum of uraemic subjects. Clin Chim Acta. 1973;46:77–83.

    PubMed  Google Scholar 

  203. McCaleb ML, Wish JB, Lockwood DH. Insulin resistance in chronic renal failure. Endocr Res. 1985;11:113–25.

    CAS  PubMed  Google Scholar 

  204. Mak RHK, Chang S, Xie WW. 1,25 Dihydroxycholecalciferol reverses inulin resistance and hypertension in the uremic rat. Pediatr Res. 1991;29:346A (Abstract).

    Google Scholar 

  205. Mak RH. Effect of recombinant human erythropoietin on insulin, amino acid, and lipid metabolism in uremia. J Pediatr. 1996;129:97–104.

    CAS  PubMed  Google Scholar 

  206. Marette A. Mediators of cytokine-induced insulin resistance in obesity and other inflammatory settings. Curr Opin Clin Nutr Metab. 2002;5:377–83.

    CAS  Google Scholar 

  207. Kawazoe Y, Naka T, Fujimoto M, Kohzaki H, Morita Y, Narazaki M, et al. Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1)/suppressor of cytokine signaling 1 (SOCS1) inhibits insulin signal transduction pathway through modulating insulin receptor substrate 1 (IRS-1) phosphorylation. J Exp Med. 2001;193:263–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Raj DS, Dominic EA, Pai A, Osman F, Morgan M, Picket G, et al. Skeletal muscle, cytokines, and oxidative stress in end-stage renal disease. Kidney Int. 2005;68:2338–44.

    CAS  PubMed  Google Scholar 

  209. Trirogoff ML, Shintani A, Himmelfarb J, Ikizler TA. Body mass index and fat mass are the primary correlates of insulin resistance in nondiabetic stage 3-4 chronic kidney disease patients. Am J Clin Nutr. 2007;86:1642–8.

    CAS  PubMed  Google Scholar 

  210. Sherwin RS, Bastl C, Finkelstein FO, Fisher M, Black H, Hendler R, et al. Influence of uremia and hemodialysis on the turnover and metabolic effects of glucagon. J Clin Invest. 1976;57:722–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Dighe RR, Rojas FJ, Birnbaumer L, Garber AJ. Glucagon-stimulable adenylyl cyclase in rat liver. Effects of chronic uremia and intermittent glucagon administration. J Clin Invest. 1984;73:1004–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Heaton A, Johnston DG, Burrin JM, Orskov H, Ward MK, Alberti KGMM, et al. Carbohydrate and lipid metabolism during continuous ambulatory dialysis (CAPD): the effect of a single dialysis cycle. Clin Sci. 1983;65:539–45.

    CAS  PubMed  Google Scholar 

  213. Lindholm B, Karlander SG. Glucose tolerance in patients undergoing continuous ambulatory peritoneal dialysis. Acta Med Scand. 1986;220:477–83.

    CAS  PubMed  Google Scholar 

  214. Heaton A, Taylor R, Johnston DG, Ward MK, Wilkinson R, Alberti KG. Hepatic and peripheral insulin action in chronic renal failure before and during continuous ambulatory peritoneal dialysis. Clin Sci. 1989;77:383–8.

    CAS  PubMed  Google Scholar 

  215. Takeguchi F, Nakayama M, Nakao T. Effects of icodextrin on insulin resistance and adipocytokine profiles in patients on peritoneal dialysis. Ther Apher Dial. 2008;12:243–9.

    CAS  PubMed  Google Scholar 

  216. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–80.

    PubMed  Google Scholar 

  217. Axelsson J, Stenvinkel P. Role of fat mass and adipokines in chronic kidney disease. Curr Opin Nephrol Hypertens. 2008;17:25–31.

    CAS  PubMed  Google Scholar 

  218. Heimbürger O, Lönnqvist F, Danielsson A, Nordenström J, Stenvinkel P. Serum immunoreactive leptin concentration and its relation to the body fat content in chronic renal failure. J Am Soc Nephrol. 1997;8:1423–30.

    PubMed  Google Scholar 

  219. Daschner M, Tönshoff B, Blum WF, Englaro P, Wingen AM, Schaefer F, et al. Inappropriate elevation of serum leptin levels in children with chronic renal failure. J Am Soc Nephrol. 1998;9:1074–9.

    CAS  PubMed  Google Scholar 

  220. Cheung W, Yu PX, Little BM, Cone RD, Marks DL, Mak RH. Role of leptin and melanocortin signaling in uremia-associated cachexia. J Clin Invest. 2005;115:1659–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Mak RH, Cheung W, Cone RD, Marks DL. Leptin and inflammation-associated cachexia in chronic kidney disease. Kidney Int. 2006;69:794–7.

    CAS  PubMed  Google Scholar 

  222. Nordfors L, Lonnqvist F, Heimburger O, Danielsson A, Schalling M, Stenvinkel P. Low leptin gene expression and hyperleptinemia in chronic renal failure. Kidney Int. 1998;54:1267–75.

    CAS  PubMed  Google Scholar 

  223. Pecoits-Filho R, Nordfors L, Heimburger O, Lindholm B, Anderstam B, Marchlewska A, et al. Soluble leptin receptors and serum leptin in end-stage renal disease: relationship with inflammation and body composition. Eur J Clin Invest. 2002;32:811–17.

    CAS  PubMed  Google Scholar 

  224. Voegeling S, Fantuzzi G. Regulation of free and bound leptin and soluble leptin receptors during inflammation in mice. Cytokine. 2001;14:97–103.

    CAS  PubMed  Google Scholar 

  225. Chen K, Li F, Li J, Cai H, Strom S, Bisello A, et al. Induction of leptin resistance through direct interaction of C-reactive protein with leptin. Nat Med. 2006;12:425–32.

    CAS  PubMed  Google Scholar 

  226. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  227. Axelsson J, Quereshi AR, Heimburger O, Lindholm B, Stenvinkel P, Bárányi P. Body fat mass and serum leptin levels influence epoetin sensitivity in patients with ESRD. Am J Kidney Dis. 2005;46:628–34.

    CAS  PubMed  Google Scholar 

  228. Scholze A, Rattensperger D, Zidek W, Tepel M. Low serum leptin predicts mortality in patients with chronic kidney disease stage 5. Obesity. 2007;15:1617–22.

    CAS  PubMed  Google Scholar 

  229. Scherer PF, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995;270:26746–9.

    CAS  PubMed  Google Scholar 

  230. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp 30 enhances hepatic insulin action. Nat Med. 2001;7:947–53.

    CAS  PubMed  Google Scholar 

  231. Yamauchi R, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7:887–8.

    Google Scholar 

  232. Quchi N, Kihara S, Arita Y, Okamoti Y, Maeda K, Kuriyama H, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kB signaling through a cAMP-dependent pathway. Circulation. 2000;102:1296–301.

    Google Scholar 

  233. Arita Y, Kihara S, Ouchi N, Takahasi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Comm. 1999;257:79–83.

    CAS  PubMed  Google Scholar 

  234. Iwashima Y, Horio T, Kumada M, Suzuki Y, Kihara S, Rakugi H, et al. Adiponectin and renal function, and implication as a risk of cardiovascular disease. Am J Cardiol. 2006;98:1603–8.

    CAS  PubMed  Google Scholar 

  235. Qi L, Doria A, Manson JE, Meigs JB, Hunter D, Mantzoros CS, et al. Adiponectin genetic variability, plasma adiponectin, and cardiovascular risk in patients with type 2 diabetes. Diabetes. 2006;55:1512–16.

    CAS  PubMed  Google Scholar 

  236. Stenvinkel P, Marchlewska A, Pecoits-Filho R, Heimbürger O, Zhang Z, Hoff C, et al. Adiponectin in renal disease: relationship to phenotype and genetic variation in the gene encoding adiponectin. Kidney Int. 2004;65:274–81.

    CAS  PubMed  Google Scholar 

  237. Zoccali F, Mallamaci F, Tripepi G, Benedetto FA, Cutrupi S, Parlongo S, et al. Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J Am Soc Nephrol. 2002;13:134–41.

    CAS  PubMed  Google Scholar 

  238. Menon V, Li L, Wang X, Greene T, Balakrishnan V, Madero M, et al. Adiponectin and mortality in patients with chronic kidney disease. J Am Soc Nephrol. 2006;17:2599–606.

    CAS  PubMed  Google Scholar 

  239. Holcomb IN, Kabakoff RC, Chan B, Baker TW, Gurney A, Henzel W, et al. FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. EMBO J. 2000;19:4046–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  240. Osawa H, Onuma H, Ochi M, Murakami A, Yamauchi J, Takasuka T, et al. Resistin SNP-420 determines its monocyte mRNA and serum levels inducing type 2 diabetes. Biochem Biophys Res Commun. 2005;335:596–602.

    CAS  PubMed  Google Scholar 

  241. Axelsson J, Bergsten A, Quereshi AR, Heimburger O, Bárányi P, Lönnqvist F, et al. Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance. Kidney Int. 2006;69:596–604.

    CAS  PubMed  Google Scholar 

  242. Fillipidis G, Liakopoulos V, Mertens PR, Kiropoulos T, Stakias N, Verikouki C, et al. Resistin serum levels are increased but not correlated with insulin resistance in chronic hemodialysis patients. Blood Purif. 2005;23:421–8.

    Google Scholar 

  243. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307:426–30.

    CAS  PubMed  Google Scholar 

  244. Axelsson J, Witasp A, Carrero JJ, Qureshi AR, Suliman ME, Heimbürger O, et al. Circulating levels of visfatin/pre-B-cell colony-enhancing factor 1 in relation to genotype, GFR, body composition, and survival in patients with CKD. Am J Kidney Dis. 2007;49:237–44.

    CAS  PubMed  Google Scholar 

  245. Yilmaz MI, Saglam M, Carrero JJ, Qureshi AR, Caglar K, Eyileten T, et al. Endothelial dysfunction in type-2 diabetics with early diabetic nephropathy is associated with low circulating adiponectin. Nephrol Dial Transplant. 2008;23:959–65.

    CAS  PubMed  Google Scholar 

  246. van der Veer E, Ho C, O’Neil C, Barbosa N, Scott R, Cregan SP, et al. Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem. 2007;13:10841–5.

    Google Scholar 

  247. Jones RWA, Rigden SP, Barratt TM, Chantler C. The effects of chronic renal failure in infancy on growth, nutritional status and body composition. Pediatr Res. 1982;16:784–91.

    CAS  PubMed  Google Scholar 

  248. Kleinknecht C, Broyer M, Huot D, Marti-Henneberg C, Dartois A. Growth and development of nondialyzed children with chronic renal failure. Kidney Int. 1983;24:40–7.

    Google Scholar 

  249. Rizzoni G, Basso T, Setari M. Growth in children with chronic renal failure on conservative treatment. Kidney Int. 1984;26:52–8.

    CAS  PubMed  Google Scholar 

  250. Warady BA, Kriley MA, Lovell H, Farrell SE, Hellerstein S. Growth and development of infants with end-stage renal disease receiving long-term peritoneal dialysis. J Pediatr. 1988;112:714–19.

    CAS  PubMed  Google Scholar 

  251. Karlberg J, Schaefer F, Hennicke M, Wingen AM, Rigden S, Mehls O. Early age-dependent growth impairment in chronic renal failure. European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. Pediatr Nephrol. 1996;10:283–7.

    CAS  PubMed  Google Scholar 

  252. Franke D, Völker S, Haase S, Pavicic L, Querfeld U, Ehrich JH, Zivicnjak M. Prematurity, small for gestational age and perinatal parameters in children with congenital, hereditary and acquired chronic kidney disease. Nephrol Dial Transplant. 2010;25:3918–24.

    PubMed  Google Scholar 

  253. Greenbaum LA, Muñoz A, Schneider MF, Kaskel FJ, Askenazi DJ, Jenkins R, Hotchkiss H, Moxey-Mims M, Furth SL, Warady BA. The association between abnormal birth history and growth in children with CKD. Clin J Am Soc Nephrol. 2011;6:14–21.

    PubMed Central  PubMed  Google Scholar 

  254. Franke D, Alakan H, Pavičić L, Gellermann J, Müller D, Querfeld U, Haffner D, Živičnjak M. Birth parameters and parental height predict growth outcome in children with chronic kidney disease. Pediatr Nephrol. 2013;28:2335–41.

    PubMed  Google Scholar 

  255. Hamasaki Y, Ishikura K, Uemura O, Ito S, Wada N, Hattori M, Ohashi Y, Tanaka R, Nakanishi K, Kaneko T, Honda M. Growth impairment in children with pre-dialysis chronic kidney disease in Japan. Clin Exp Nephrol. 2015 Feb 26 (Epub ahead of print).

    Google Scholar 

  256. Schreuder MF, Nauta J. Prenatal programming of nephron number and blood pressure. Kidney Int. 2007;72:265–8.

    CAS  PubMed  Google Scholar 

  257. Ramage IJ, Geary DF, Harvey E, Secker DJ, Balfe JA, Balfe JW. Efficacy of gastrostomy feeding in infants and older children receiving chronic peritoneal dialysis. Perit Dial Int. 1999;19:231–6.

    CAS  PubMed  Google Scholar 

  258. Kari JA, Gonzalez C, Lederman SE, Shaw V, Rees L. Outcome and growth of infants with severe chronic renal failure. Kidney Int. 2000;57:1681–7.

    CAS  PubMed  Google Scholar 

  259. Van Dyck M, Bilem N, Proesmans W. Conservative treatment for chronic renal failure from birth: a 3-year follow-up study. Pediatr Nephrol. 1999;13:865–9.

    PubMed  Google Scholar 

  260. Sienna JL, Saqan R, Teh JC, Frieling ML, Secker D, Cornelius V, Geary DF. Body size in children with chronic kidney disease after gastrostomy tube feeding. Pediatr Nephrol. 2010;25:2115–21.

    PubMed  Google Scholar 

  261. Rees L, Azocar M, Borzych D, Watson AR, Büscher A, Edefonti A, Bilge I, Askenazi D, Leozappa G, Gonzales C, van Hoeck K, Secker D, Zurowska A, Rönnholm K, Bouts AH, Stewart H, Ariceta G, Ranchin B, Warady BA, Schaefer F. International pediatric peritoneal dialysis network (IPPN) registry. J Am Soc Nephrol. 2011;22:2303–12.

    PubMed Central  PubMed  Google Scholar 

  262. Schaefer F, Wingen AM, Hennicke M, Rigden S, Mehls O. Growth charts for prepubertal children with chronic renal failure due to congenital renal disorders. European Study Group for Nutritional Treatment of Chronic Renal Failure in Childhood. Pediatr Nephrol. 1996;10:288–93.

    CAS  PubMed  Google Scholar 

  263. Hodson EM, Shaw PF, Evans RA, Dunstan CR, Hills EE, Wong SYP, et al. Growth retardation and renal osteodystrophy in children with chronic renal failure. J Pediatr. 1983;103:735–40.

    CAS  PubMed  Google Scholar 

  264. Polito C, Greco L, Totino SF, Oporto MR, la Manna A, Strano CG, et al. Statural growth of children with chronic renal failure on conservative treatment. Acta Paediatr Scand. 1987;76:97–102.

    CAS  PubMed  Google Scholar 

  265. Rappaport R, Bouthreuil E, Marti-Henneberg C, Basmaciogoul-Lari A. Linear growth rate, bone maturation and growth hormone secretion in prepubertal children with congenital adrenal hyperplasia. Acta Paediatr Scand. 1973;62:513–19.

    CAS  PubMed  Google Scholar 

  266. Klare B, Strom TM, Hahn H, Engelsberger I, Meusel E, Illner W-D, et al. Remarkable long-term prognosis and excellent growth in kidney- transplant children under cyclosporine monotherapy. Transplant Proc. 1991;23:1013–17.

    CAS  PubMed  Google Scholar 

  267. Offner G, Hoyer PF, Jüppner H, Krohn HP, Brodehl J. Somatic growth after kidney transplantation. Am J Dis Child. 1987;141:541–6.

    CAS  PubMed  Google Scholar 

  268. Haffner D, Schaefer F, Nissel R, Wühl E, Tönshoff B, Mehls O, et al. Effect of growth hormone treatment on adult height of children with chronic renal failure. N Engl J Med. 2000;343:923–30.

    CAS  PubMed  Google Scholar 

  269. Schärer K, Study Group On Pubertal Development In Chronic Renal Failure. Growth and development of children with chronic renal failure. Acta Paediatr Scand Suppl. 1990;366:90–2.

    PubMed  Google Scholar 

  270. Cundall DB, Brocklebank JT, Buckler JMH. Which bone age in chronic renal insufficiency and end-stage renal disease? Pediatr Nephrol. 1988;2:200–4.

    CAS  PubMed  Google Scholar 

  271. van Steenbergen MW, Wit JM, Donckerwolcke RAMG. Testosterone esters advance skeletal maturation more than growth in short boys with chronic renal failure and delayed puberty. Eur J Pediatr. 1991;150:676–780.

    PubMed  Google Scholar 

  272. van Diemen-Steenvoorde R, Donckerwolcke RA, Brackel H, Wolff ED, de Jong MCJW. Growth and sexual maturation in children after kidney transplantation. J Pediatr. 1987;110:351–6.

    PubMed  Google Scholar 

  273. Harambat J, Bonthuis M, van Stralen KJ, Ariceta G, Battelino N, Bjerre A, Jahnukainen T, Leroy V, Reusz G, Sandes AR, Sinha MD, Groothoff JW, Combe C, Jager KJ, Verrina E, Schaefer F, ESPN/ERA-EDTA Registry. Adult height in patients with advanced CKD requiring renal replacement therapy during childhood. Clin J Am Soc Nephrol. 2014;9:92–9.

    PubMed Central  PubMed  Google Scholar 

  274. North American Renal Trials and Collaborative Studies: 2008. Annual Transplant Report, Rockville, MD, EMMES Corporation, 2008.

    Google Scholar 

  275. Jung HW, Kim HY, Lee YA, Kang HG, Shin CH, Ha IS, Cheong HI, Yang SW. Factors affecting growth and final adult height after pediatric renal transplantation. Transplant Proc. 2013;45:108–14.

    CAS  PubMed  Google Scholar 

  276. Fine RN, Ho M, Tejani A. The contribution of renal transplantation to final adult height: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Pediatr Nephrol. 2001;16:951–6.

    CAS  PubMed  Google Scholar 

  277. Nissel R, Brazda I, Feneberg R, Wigger M, Greiner C, Querfeld U, et al. Effect of renal transplantation in childhood on longitudinal growth and adult height. Kidney Int. 2004;66:792–800.

    PubMed  Google Scholar 

  278. Zivicnjak M, Franke D, Filler G, Haffner D, Froede K, Nissel R, et al. Growth impairment shows an age-dependent pattern in boys with chronic kidney disease. Pediatr Nephrol. 2007;22:420–9.

    PubMed  Google Scholar 

  279. Franke D, Thomas L, Steffens R, Pavičić L, Gellermann J, Froede K, Querfeld U, Haffner D, Živičnjak M. Patterns of growth after kidney transplantation among children with ESRD. Clin J Am Soc Nephrol. 2015;10:127–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  280. Polito C, la Manna A, Olivieri AN, di Toro R. Proteinuria and statural growth. Child Urol Nephrol. 1988;9:286–9.

    Google Scholar 

  281. Schärer K, Essigmann HC, Schaefer F. Body growth of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol. 1999;13:828–34.

    PubMed  Google Scholar 

  282. Lam CN, Arneil GC. Long-term dwarfing effects of corticosteroid treatment for childhood nephrosis. Arch Dis Child. 1968;43:589–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  283. Foote KD, Brocklebank JT, Meadow SR. Height attainment in children with steroid-responsive nephrotic syndrome. Lancet. 1985;2:917–19.

    CAS  PubMed  Google Scholar 

  284. Rees L, Greene SA, Adlard P, Jones J, Haycock GB, Rigden SPA, et al. Growth and endocrine function in steroid sensitive nephrotic syndrome. Arch Dis Child. 1988;63:484–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  285. Holtta TM, Ronnholm KA, Jalanko H, Ala-Houala M, Antikainen M, Holmberg C. Peritoneal dialysis in children under 5 years of age. Perit Dial Int. 1997;17:573–80.

    CAS  PubMed  Google Scholar 

  286. Licht C, Eifinger F, Gharib M, Offner G, Michalk DV, Querfeld U. A stepwise approach to the treatment of early onset nephrotic syndrome. Pediatr Nephrol. 2000;14:1077–82.

    CAS  PubMed  Google Scholar 

  287. Kovacevic L, Reid CJ, Rigden SP. Management of congenital nephrotic syndrome. Pediatr Nephrol. 2003;18:426–30.

    PubMed  Google Scholar 

  288. Nash MA, Torrado AD, Greifer I, Spitzer A, Edelmann Jr CM. Renal tubular acidosis in infants and children. J Pediatr. 1972;80:738–48.

    CAS  PubMed  Google Scholar 

  289. Tsuru N, Chan JCM. Growth failure in children with metabolic alkalosis and with metabolic acidosis. Nephron. 1987;45:182–5.

    CAS  PubMed  Google Scholar 

  290. Morris RC, Sebastian AC. Renal tubular acidosis and Fanconi syndrome. In: Stanbury JB, Wyngaarden JB, Frederickson DS, editors. The metabolic basis of inherited disease. 3rd ed. New York: McGraw-Hill; 1983. p. 1808.

    Google Scholar 

  291. Brachet C, Birk J, Christophe C, Tenoutasse S, Velkeniers B, Heinrichs C, Rutishauser J. Growth retardation in untreated autosomal dominant familial neurohypophyseal diabetes insipidus caused by one recurring and two novel mutations in the vasopressin-neurophysin II gene. Eur J Endocrinol. 2011;164:179–87.

    CAS  PubMed  Google Scholar 

  292. Lejarraga H, Caletti MG, Caino S, Jiménez A. Long-term growth of children with nephrogenic diabetes insipidus. Pediatr Nephrol. 2008;23:2007–12.

    PubMed  Google Scholar 

  293. Simopoulos AP. Growth characteristics in patients with Bartter’s syndrome. Nephron. 1979;23:130–5.

    CAS  PubMed  Google Scholar 

  294. Flyvbjerg A, Dorup I, Everts ME, Orskov H. Evidence that potassium deficiency induces growth retardation through reduced circulating levels of growth hormone and insulin-like growth factor-I. Metabolism. 1991;40:769–75.

    CAS  PubMed  Google Scholar 

  295. Schaefer F, Yoon SA, Nouri P, Tsao T, Tummala P, Deng E, Rabkin R. Growth hormone-mediated janus associated kinase-signal transducers and activators of transcription signaling in the growth hormone-resistant potassium-deficient rat. J Am Soc Nephrol. 2004;15:2299–306.

    CAS  PubMed  Google Scholar 

  296. Seidel C, Timmermanns G, Seyberth H, Schärer K. Body growth in the hyperprostaglandin E syndrome. Pediatr Nephrol. 1995;9:723–8.

    CAS  PubMed  Google Scholar 

  297. Brochard K, Boyer O, Blanchard A, Loirat C, Niaudet P, Macher MA, Deschenes G, Bensman A, Decramer S, Cochat P, Morin D, Broux F, Caillez M, Guyot C, Novo R, Jeunemaître X, Vargas-Poussou R. Phenotype-genotype correlation in antenatal and neonatal variants of Bartter syndrome. Nephrol Dial Transplant. 2009;24:1455–64.

    CAS  PubMed  Google Scholar 

  298. Haffner D, Weinfurth A, Seidel C, Manz F, Schmidt H, Waldherr R, et al. Body growth in primary de Toni-Debre-Fanconi syndrome. Pediatr Nephrol. 1997;11:40–5.

    CAS  PubMed  Google Scholar 

  299. Haffner D, Weinfurth A, Manz F, Schmidt H, Bremer HJ, Mehls O, et al. Long-term outcome of paediatric patients with hereditary tubular disorders. Nephron. 1999;83:250–60.

    CAS  PubMed  Google Scholar 

  300. Winkler L, Offner G, Krull F, Brodehl J. Growth and pubertal development in nephropathic cystinosis. Eur J Pediatr. 1993;152:244–9.

    CAS  PubMed  Google Scholar 

  301. Leumann E, Hoppe B. The primary hyperoxalurias. J Am Soc Nephrol. 2001;12:1986–93.

    CAS  PubMed  Google Scholar 

  302. da Silva VA, Zurbrügg RP, Lavanchy P, Blumberg A, Suter H, Wyss SR, et al. Long-term treatment of infantile nephropathic cystinosis with cysteamine. N Engl J Med. 1985;313:1460–3.

    PubMed  Google Scholar 

  303. Gahl WA, Reed GF, Thoene JG, Schulman JD, Rizzo WB, Jonas AJ, et al. Cysteamine therapy for children with nephropathic cystinosis. N Engl J Med. 1987;316:971–7.

    CAS  PubMed  Google Scholar 

  304. van’t Hoff WG, Gretz N. The treatment of cystinosis with cysteamine and phosphocysteamine in the United Kingdom and Eire. Pediatr Nephrol. 1995;9:685–9.

    Google Scholar 

  305. Wühl E, Haffner D, Offner G, Broyer M, van’t Hoff WG, Mehls O, et al. Long-term treatment with growth hormone in short children with nephropathic cystinosis. J Pediatr. 2001;138:880–7.

    PubMed  Google Scholar 

  306. Nissel R, Latta K, Gagnadoux MF, Kelly D, Hulton S, Kemper MJ, et al. Body growth after combined liver-kidney transplantation in children with primary hyperoxaluria type 1. Transplantation. 2006;15:48–54.

    Google Scholar 

  307. Smellie JM, Preece MA, Paton AM. Normal somatic growth in children receiving low-dose prophylactic co-trimoxazole. Eur J Pediatr. 1983;140:301–4.

    CAS  PubMed  Google Scholar 

  308. Sutton R, Atwell JD. Physical growth velocity during conservative treatment and following subsequent surgical treatment for primary vesicoureteric reflux. Br J Urol. 1989;63:245–50.

    CAS  PubMed  Google Scholar 

  309. Polito C, la Manna A, Capacchione A, Pullano F, Iovene A, del Gado R. Height and weight in children with vesicoureteral reflux and renal scarring. Pediatr Nephrol. 1996;10:564–7.

    CAS  PubMed  Google Scholar 

  310. Seidel C, Schaefer F, Schärer K. Body growth in urinary tract malformation. Pediatr Nephrol. 1993;7:151–5.

    CAS  PubMed  Google Scholar 

  311. Furth SL, Hwang W, Yang C, Neu AM, Fivush BA, Powe NR. Growth failure, risk of hospitalization and death for children with end-stage renal disease. Pediatr Nephrol. 2002;17:450–5.

    PubMed  Google Scholar 

  312. Wong CS, Gipson DS, Gillen DL, Emerson S, Koepsell T, Sherrard DJ, et al. Anthropometic measures and risk of death in children with end-stage renal disease. Pediatr Nephrol. 2002;17:450–5.

    Google Scholar 

  313. Bamgbola FO, Kaskel FJ. Uremic malnutrition-inflammation syndrome in chronic renal disease: a pathobiologic entity. J Ren Nutr. 2003;13:250–8.

    PubMed  Google Scholar 

  314. Heaf J. High transport and malnutrition-inflammation-atherosclerosis (MIA) syndrome. Perit Dial Int. 2003;23:109–10.

    PubMed  Google Scholar 

  315. Stenvinkel P, Alvestrand A. Inflammation in end-stage renal disease: sources, consequences, and therapy. Semin Dial. 2002;15:329–37.

    PubMed  Google Scholar 

  316. Furth SL, Stablein D, Fine RN, Powe NR, Fivush BA. Adverse clinical outcomes associated with short stature at dialysis initiation: a report of the North American Pediatric Renal Transplant Cooperative Study. Pediatrics. 2002;109:909–13.

    PubMed  Google Scholar 

  317. Büscher AK, Büscher R, Hauffa BP, Hoyer PF. Alterations in appetite-regulating hormones influence protein-energy wasting in pediatric patients with chronic kidney disease. Pediatr Nephrol. 2010;25:2295–301.

    PubMed  Google Scholar 

  318. Gupta RK, Kuppusamy T, Patrie JT, Gaylinn B, Liu J, Thorner MO, Bolton WK. Association of plasma des-acyl ghrelin levels with CKD. Clin J Am Soc Nephrol. 2013;8:1098–105.

    CAS  PubMed Central  PubMed  Google Scholar 

  319. Jones RWA, Dalton RN, Turner C, Start K, Haycock GB, Chantler C. Oral essential amino acid and ketoacid supplements in children with chronic renal failure. Kidney Int. 1983;24:95–103.

    CAS  PubMed  Google Scholar 

  320. Norman LJ, Coleman JE, Macdonald IA, Tomsett AM, Watson AR. Nutrition and growth in relation to severity of renal disease in children. Pediatr Nephrol. 2000;15:259–65.

    CAS  PubMed  Google Scholar 

  321. Arnold WC, Danford D, Holliday MA. Effects of calorie supplementation on growth in uremia. Kidney Int. 1983;24:205–9.

    CAS  PubMed  Google Scholar 

  322. Betts PR, Magrath G, White RHR. Role of dietary energy supplementation in growth of children with chronic renal insufficiency. Br Med J. 1977;1:416–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  323. Orejas G, Santos F, Malaga S, Rey C, Cobo A, Simarro M. Nutritional status of children with moderate chronic renal failure. Pediatr Nephrol. 1995;9:52–6.

    CAS  PubMed  Google Scholar 

  324. Foreman JW, Abitbol CL, Trachtman H, Garin EH, Feld LG, Strife CF, et al. Nutritional intake in children with renal insufficiency: a report of the Growth Failure in Children with Renal Diseases Study. J Am Coll Nutr. 1996;15:579–85.

    CAS  PubMed  Google Scholar 

  325. Wingen AM, Fabian-Bach C, Schaefer F, Mehls O. Randomised multicentre study of a low-protein diet on the progression of chronic renal failure in children. European Study Group of Nutritional Treatment of Chronic Renal Failure in Childhood. Lancet. 1997;349:1117–23.

    CAS  PubMed  Google Scholar 

  326. Mehls O, Ritz E, Gilli G, Bartholomé K, Beibbarth H, Hohenegger M, et al. Nitrogen metabolism and growth in experimental uremia. Int J Pediatr Nephrol. 1980;1:34–41.

    CAS  PubMed  Google Scholar 

  327. Rajan VR, Mitch WE. Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact. Pediatr Nephrol. 2008;23:527–35.

    PubMed Central  PubMed  Google Scholar 

  328. May RC, Kelly RA, Mitch WE. Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism. J Clin Invest. 1986;77:614–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  329. May RC, Hara Y, Kelly RA, Block KP, Buse MG, Mitch WE. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis. Am J Physiol. 1987;252:E712–18.

    CAS  PubMed  Google Scholar 

  330. Bailey JL, Wang X, England BK, Price SR, Ding X, Mitch BE. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway. J Clin Invest. 1996;97:1447–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  331. Boirie Y, Broyer M, Gagnadoux MF, Niaudet P, Bresson JL. Alterations of protein metabolism by metabolic acidosis in children with chronic renal failure. Kidney Int. 2000;58:236–41.

    CAS  PubMed  Google Scholar 

  332. Rodig NM, McDermott KC, Schneider MF, Hotchkiss HM, Yadin O, Seikaly MG, Furth SL, Warady BA. Growth in children with chronic kidney disease: a report from the Chronic Kidney Disease in Children Study. Pediatr Nephrol. 2014;29:1987–95.

    PubMed Central  PubMed  Google Scholar 

  333. Challa A, Chan W, Krieg Jr RJ, Thabet M, Liu F, Hintz RL, et al. Effect of metabolic acidosis on the expression of insulin-like growth factor and growth hormone receptor. Kidney Int. 1993;44:1224–7.

    CAS  PubMed  Google Scholar 

  334. Brüngger M, Hulter HN, Krapf R. Effect of chronic metabolic acidosis on the growth hormone/IGF1 endocrine axis: new cause of growth hormone insensitivity in humans. Kidney Int. 1997;51:216–21.

    PubMed  Google Scholar 

  335. Wassner SJ. Altered growth and protein turnover in rats fed sodium-deficient diets. Pediatr Res. 1989;26:608–13.

    CAS  PubMed  Google Scholar 

  336. Wassner SJ. The effect of sodium repletion on growth and protein turnover in sodium-depleted rats. Pediatr Nephrol. 1991;5:501–4.

    CAS  PubMed  Google Scholar 

  337. Heinly MM, Wassner SJ. The effect of isolated chloride depletion on growth and protein turnover in young rats. Pediatr Nephrol. 1994;8:555–60.

    CAS  PubMed  Google Scholar 

  338. Grossman H, Duggan E, McCamman S, Welchert E, Hellerstein S. The dietary chloride deficiency syndrome. Pediatrics. 1980;66:366–74.

    CAS  PubMed  Google Scholar 

  339. Lejarraga H, Caletti MG, Caino S, Jiménez A. Long-term growth of children with nephrogenic diabetes insipidus. Pediatr Nephrol. 2008;23:2007–12.

    PubMed  Google Scholar 

  340. Kattamis CA, Kattamis AC. Management of thalassemias: growth and development, hormone substitution, vitamin supplementation, and vaccination. Semin Hematol. 1995;32:269–79.

    CAS  PubMed  Google Scholar 

  341. Martin GR, Ongkingo JR, Turner ME, Skurow ES, Ruley EJ. Recombinant erythropoietin (Epogen) improves cardiac exercise performance in children with end-stage renal disease. Pediatr Nephrol. 1993;7:276–80.

    CAS  PubMed  Google Scholar 

  342. Morris KP, Sharp J, Watson S, Coulthard MG. Non-cardiac benefits of human recombinant erythropoietin in end stage renal failure and anemia. Arch Dis Child. 1993;69:580–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  343. Mehls O, Ritz E, Gilli G, Wangdak T, Krempien B. Effect of vitamin D on growth in experimental uremia. Am J Clin Nutr. 1978;31:1927–31.

    CAS  PubMed  Google Scholar 

  344. Mehls O, Ritz E, Gilli G, Heinrich U. Role of hormonal disturbances in uremic growth failure. Contrib Nephrol. 1986;50:119–29.

    CAS  PubMed  Google Scholar 

  345. Kuizon BD, Goodman WG, Jüppner H, Boechat I, Nelson P, Gales B, et al. Diminished linear growth during intermittent calcitriol therapy in children undergoing CCPD. Kidney Int. 1998;53:205–11.

    CAS  PubMed  Google Scholar 

  346. Kreusser W, Weinkauf R, Mehls O, Ritz E. Effect of parathyroid hormone, calcitonin and growth hormone on cAMP content of growth cartilage in experimental uremia. Eur J Clin Invest. 1982;12:337–43.

    CAS  PubMed  Google Scholar 

  347. Klaus G, von Eichel B, May T, Hügel U, Mayer H, Ritz E, et al. Synergistic effects of parathyroid hormone and 1,25- dihydroxyvitamin D3 on proliferation and vitamin D receptor expression of rat growth cartilage cells. Endocrinology. 1994;135:1307–15.

    CAS  PubMed  Google Scholar 

  348. Schmitt CP, Hessing S, Oh J, Weber L, Ochlich P, Mehls O. Intermittent administration of parathyroid hormone (1-37) improves growth and bone mineral density in uremic rats. Kidney Int. 2000;57:1484–92.

    CAS  PubMed  Google Scholar 

  349. Schmitt CP, Ardissino G, Testa S, Claris-Appiani A, Mehls O. Growth in children with chronic renal failure on intermittent versus daily calcitriol. Kidney Int. 2005;67:2338–45.

    Google Scholar 

  350. Waller SC, Ridout D, Cantor R, Rees L. Parathyroid hormone and growth in children with chronic renal failure. Kidney Int. 2005;67:2338–45.

    CAS  PubMed  Google Scholar 

  351. Cansick J, Waller S, Ridout D, Rees L. Growth and PTH in prepubertal children on long-term dialysis. Pediatr Nephrol. 2007;22:1349–54.

    PubMed  Google Scholar 

  352. Borzych D, Rees L, Ha IS, Chua A, Valles PG, Lipka M, Zambrano P, Ahlenstiel T, Bakkaloglu SA, Spizzirri AP, Lopez L, Ozaltin F, Printza N, Hari P, Klaus G, Bak M, Vogel A, Ariceta G, Yap HK, Schaefer F, International Pediatric PD Network (IPPN). The bone and mineral disorder of children undergoing chronic peritoneal dialysis. Kidney Int. 2010;78:1295–304.

    PubMed  Google Scholar 

  353. Krempien B, Mehls O, Ritz E. Morphological studies on pathogenesis of epiphyseal slipping in uremic children. Virchows Arch (A). 1974;362:129–43.

    CAS  Google Scholar 

  354. Mehls O, Ritz E, Krempien B, Gilli G, Link K, Willich W, et al. Slipped epiphyses in renal osteodystrophy. Arch Dis Child. 1975;50:545–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  355. Mehls O, Ritz E, Oppermann HC, Guignard JP. Femoral head necrosis in uremic children without steroid treatment or transplantation. J Pediatr. 1981;6:926–9.

    Google Scholar 

  356. Hidalgo G, Ng DK, Moxey-Mims M, Minnick ML, Blydt-Hansen T, Warady BA, Furth SL. Association of income level with kidney disease severity and progression among children and adolescents with CKD: a report from the Chronic Kidney Disease in Children (CKiD) Study. Am J Kidney Dis. 2013;62:1087–94.

    PubMed  Google Scholar 

  357. Schaefer F, Borzych-Duzalka D, Azocar M, Munarriz RL, Sever L, Aksu N, Barbosa LS, Galan YS, Xu H, Coccia PA, Szabo A, Wong W, Salim R, Vidal E, Pottoore S, Warady BA, IPPN investigators. Impact of global economic disparities on practices and outcomes of chronic peritoneal dialysis in children: insights from the International Pediatric Peritoneal Dialysis Network Registry. Perit Dial Int. 2012;32:399–409.

    PubMed Central  PubMed  Google Scholar 

  358. Rodig NM, McDermott KC, Schneider MF, Hotchkiss HM, Yadin O, Seikaly MG, Furth SL, Warady BA. Growth in children with chronic kidney disease: a report from the Chronic Kidney Disease in Children Study. Pediatr Nephrol. 2014;29:1987–95.

    PubMed Central  PubMed  Google Scholar 

  359. van Huis M, Bonthuis M, Sahpazova E, Mencarelli F, Spasojević B, Reusz G, Caldas-Afonso A, Bjerre A, Baiko S, Vondrak K, Molchanova EA, Kolvek G, Zaikova N, Böhm M, Ariceta G, Jager KJ, Schaefer F, van Stralen KJ, Groothoff JW. Considerable variations in growth hormone policy and prescription in paediatric end-stage renal disease across European countries – a report from the ESPN/ERA-EDTA registry. Nephrol Dial Transplant. 2015 Apr 28 (Epub ahead of print).

    Google Scholar 

  360. Strife CF, Quinlan M, Mears K, Davey ML, Clardy C. Improved growth of three uremic children by nocturnal nasogastric feedings. Am J Dis Child. 1986;140:438–43.

    CAS  PubMed  Google Scholar 

  361. Rodriguez-Soriano J, Arant BS, Brodehl J, Norman ME. Fluid and electrolyte imbalances in children with chronic renal failure. Am J Kidney Dis. 1986;7:268–9.

    CAS  PubMed  Google Scholar 

  362. Parekh RS, Flynn JT, Smoyer WE, Milne JL, Kershaw DB, Bunchman TE, et al. Improved growth in young children with severe chronic renal insufficiency who use specified nutritional therapy. J Am Soc Nephrol. 2001;12:2418–26.

    CAS  PubMed  Google Scholar 

  363. Fennell RSI, Orak JK, Hudson T, Garin EH, Iravani A, Van Deusen WJ, et al. Growth in children with various therapies for end-stage renal disease. Am J Dis Child. 1984;138:28–31.

    PubMed  Google Scholar 

  364. Trachtman H, Hackney P, Tejani A. Pediatric hemodialysis: a decade’s (1974–1984) perspective. Kidney Int. 1986;30:S15–22.

    Google Scholar 

  365. Neu AM, Bedinger M, Fivush BA, Warady BA, Watkins SL, Friedman AL, et al. Growth in adolescent hemodialysis patients: data from the Centers for Medicare & Medicaid Services ESRD Clinical Performance Measures Project. Pediatr Nephrol. 2005;20:1156–60.

    PubMed  Google Scholar 

  366. Fischbach M, Terzic J, Menouer S, Dheu C, Seuge L, Zalosczic A. Daily online haemodiafiltration promotes catch-up growth in children on chronic dialysis. Nephrol Dial Transplant. 2010;25:867–73.

    CAS  PubMed  Google Scholar 

  367. Schaefer F. Daily online haemodiafiltration: the perfect ‘stimulus package’ to induce growth? Nephrol Dial Transplant. 2010;25:658–60.

    PubMed  Google Scholar 

  368. de Camargo MF, Henriques CL, Vieira S, Komi S, Leão ER, Nogueira PC. Growth of children with end-stage renal disease undergoing daily hemodialysis. Pediatr Nephrol. 2014;29:439–44.

    PubMed  Google Scholar 

  369. Potter DE, Luis ES, Wipfler JE, Portale AA. Comparison of continuous ambulatory peritoneal dialysis and hemodialysis in children. Kidney Int. 1986;30:S11–14.

    Google Scholar 

  370. von Lilien T, Gilli G, Salusky IB. Growth in children undergoing continuous ambulatory or cycling peritoneal dialysis. In: Schärer K, editor. Pediatric and adolescent endocrinology. Basel: Karger; 1989. p. 27–35.

    Google Scholar 

  371. Fine RN, Mehls O. CAPD/CCPD in children: four years’ experience. Kidney Int. 1986;30:S7–10.

    Google Scholar 

  372. Schaefer F, Klaus G, Mehls O, the Mideuropean Pediatric Peritoneal Dialysis Study Group. Peritoneal transport properties and dialysis dose affect growth and nutritional status in children on chronic peritoneal dialysis. J Am Soc Nephrol. 1999;10:1786–92.

    CAS  PubMed  Google Scholar 

  373. Chadha V, Blowey DL, Warady BA. Is growth a valid outcome measure of dialysis clearance in children undergoing peritoneal dialysis? Perit Dial Int. 2001;21(3 Suppl):S179–84.

    PubMed  Google Scholar 

  374. Reisman L, Lieberman KV, Burrows L, Schanzer H. Follow-up of cyclosporine-treated pediatric renal allograft recipients after cessation of prednisone. Transplantation. 1990;49:76–80.

    CAS  PubMed  Google Scholar 

  375. Broyer M, Guest G, Gagnadoux M-F. Growth rate in children receiving alternate-day corticosteroid treatment after kidney transplantation. J Pediatr. 1992;120:721–5.

    CAS  PubMed  Google Scholar 

  376. Kaiser BA, Polinsky MS, Palmer JA, Dunn S, Mochon M, Flynn JT, et al. Growth after conversion to alternate-day corticosteroids in children with renal transplants: a single-center study. Pediatr Nephrol. 1994;8:320–5.

    CAS  PubMed  Google Scholar 

  377. Hokken-Koelega AC, Van Zaal MA, de Ridder MA, Wilff ED, de Jong MC, Donckerwolcke RA, et al. Growth after renal transplantation in prepubertal children: impact of various treatment modalities. Pediatr Res. 1994;35:367–71.

    CAS  PubMed  Google Scholar 

  378. Fine RN. Growth post-renal transplantation in children: lessons from the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Pediatr Transplant. 1997;1:85–9.

    CAS  PubMed  Google Scholar 

  379. Rodriguez-Soriano J, Vallo A, Quintela MJ, Malaga S, Loris C. Predictors of final adult height after renal transplantation during childhood: a single-center study. Nephron. 2000;86:266–73.

    CAS  PubMed  Google Scholar 

  380. Qvist E, Marttinen E, Rönnhom K, Antikainen M, Jalanko H, Sipila I, et al. Growth after renal transplantation in infancy or early childhood. Pediatr Nephrol. 2002;17(6):438–43.

    PubMed  Google Scholar 

  381. Tejani A, Cortes L, Sullivan EK. A longitudinal study of the natural history of growth post- transplantation. Kidney Int. 1996;53:103–8.

    CAS  Google Scholar 

  382. Tejani A, Fine R, Alexander S, Harmon W, Stablein D. Factors predictive of sustained growth in children after renal transplantation. The North American Pediatric Renal Transplant Cooperative Study. J Pediatr. 1993;122:397–402.

    CAS  PubMed  Google Scholar 

  383. Broyer M, Guest G. Growth after kidney transplantation – a single centre experience. In: Schärer K, editor. Growth and endocrine changes in children and adolescents with chronic renal failure, Pediatric and adolescent endocrinology, vol. 20. Basel: Karger; 1989. p. 36–45.

    Google Scholar 

  384. DeShazo CV, Simmons RL, Berstein SM, DeShazo MM, Willmert J, Kjellstrand CM, et al. Results of renal transplantation in 100 children. Surgery. 1974;76:461–3.

    CAS  PubMed  Google Scholar 

  385. Sarna S, Hoppu K, Neuvonen PJ, Laine J, Holmberg C. Methylprednisolone exposure, rather than dose, predicts adrenal suppression and growth inhibition in children with liver and renal transplantation. J Clin Endocrinol Metab. 1997;82:75–7.

    CAS  PubMed  Google Scholar 

  386. Ferraris JR, Pasqalini T, Legal S, Sorroche P, Galich AM, Pennisi P, et al. Effect of deflazacort versus methylprednisone on growth, body composition, lipid profile, and bone mass after renal transplantation. Pediatr Nephrol. 2000;14:682–8.

    CAS  PubMed  Google Scholar 

  387. Schärer K, Feneberg R, Klaus G, Paschen C, Wuster C, Mehls O, et al. Experience with deflazacort in children and adolescents after renal transplantation. Pediatr Nephrol. 2000;14:457–63.

    PubMed  Google Scholar 

  388. Jabs K, Sullivan EK, Avner ED, Harmon WE. Alternate-day steroid dosing improves growth without affecting graft survival or long-term graft function. A report of the North American Pediatric Renal Transplant Cooperative Study. Transplantation. 1996;61:31–6.

    CAS  PubMed  Google Scholar 

  389. Chao SM, Jones CL, Powell HR, Johnstone L, Francis DM, Becker GJ, et al. Triple immunosuppression with subsequent prednisolone withdrawal: 6 years’ experience in paediatric renal allograft recipients. Pediatr Nephrol. 1994;8:62–9.

    CAS  PubMed  Google Scholar 

  390. Ellis D. Growth and renal function after steroid-free tacrolimus-based immunosuppression in children with renal transplants. Pediatr Nephrol. 2000;14:689–94.

    CAS  PubMed  Google Scholar 

  391. Motoyoma O, Hasagawa A, Ohara T, Hattori M, Kawaguchi H, Takahashi K, et al. A prospective trial of steroid cessation after renal transplantation in pediatric patients treated with cyclosporine and mizoribine. Pediatr Transplant. 1997;1:29–36.

    Google Scholar 

  392. Höcker B, John U, Plank C, Wühl E, Weber L, Misselwitz J, et al. Successful withdrawal of steroids in pediatric renal transplant recipients receiving cyclosporine A and mycophenolate mofetil treatment: results after four years. Transplantation. 2004;78:228–34.

    PubMed  Google Scholar 

  393. Ingulli E, Sharma V, Singh A, Suthanthiran M, Tejani A. Steroid withdrawal, rejection and the mixed lymphocyte reaction in children after renal transplantation. Kidney Int Suppl. 1993;43:S36–9.

    CAS  PubMed  Google Scholar 

  394. Klaus G, Jeck N, Konrad M, Forster B, Soergel M. Risk of steroid withdrawal in pediatric renal transplant patients with suspected steroid toxicity. Clin Nephrol. 2001;56:S37–42.

    CAS  PubMed  Google Scholar 

  395. Vidhun JR, Sarwal MM. Corticosteroid avoidance in pediatric renal transplantation. Pediatr Nephrol. 2005;20:418–26.

    PubMed  Google Scholar 

  396. Baron J, Klein KO, Colli MJ, Yanovski JA, Novosad JA, Bacher JD, et al. Catch-up growth after glucocorticoid excess: a mechanism intrinsic to the growth plate. Endocrinology. 1994;135:1367–71.

    CAS  PubMed  Google Scholar 

  397. Pape L, Ehrich JH, Zivicnjak M, Offner G. Growth in children after kidney transplantation with living related donor graft of cadaveric graft. Lancet. 2005;366:151–3.

    CAS  PubMed  Google Scholar 

  398. Mehls O, Ritz E, Hunziker EB, Eggli P, Heinrich U, Zapf J. Improvement of growth and food utilization by human recombinant growth hormone in uremia. Kidney Int. 1988;33:45–52.

    CAS  PubMed  Google Scholar 

  399. Koch VH, Lippe BM, Nelson PA, Boechat MI, Sherman BM, Fine RN. Accelerated growth after recombinant human growth hormone treatment of children with chronic renal failure. J Pediatr. 1989;115:365–71.

    CAS  PubMed  Google Scholar 

  400. Rees L, Rigden SPA, Ward G, Preece MA. Treatment of short stature in renal disease with recombinant human growth hormone. Arch Dis Child. 1990;65:856–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  401. Tönshoff B, Dietz M, Haffner D, et al. Effects of two years growth hormone treatment in short children with renal disease. Acta Paediatr Scand. 1991;379(Suppl):33.

    Google Scholar 

  402. Hokken-Koelega AC, Stijnen T, de Muinck-Keizer-Schrama SM, Wit JM, Wolff ED, de Jong MC, et al. Placebo controlled, double blind, cross-over trials of growth hormone treatment in prepubertal children with chronic renal failure. Lancet. 1991;338:585–90.

    CAS  PubMed  Google Scholar 

  403. Fine RN, Kohaut EC, Brown D, Perlman AJ, Genentech Collaborative Study Group. Growth after recombinant human growth hormone treatment in children with chronic renal failure. J Pediatr. 1993;124:374–82.

    Google Scholar 

  404. Haffner D, Wühl E, Schaefer F, Nissel R, Tönshoff B, Mehls O. Factors predictive of the short- and long-term efficacy of growth hormone treatment in prepubertal children with chronic renal failure. German Study Group for Growth Hormone Treatment in Children with Chronic Renal Failure. J Am Soc Nephrol. 1998;9:1899–907.

    CAS  PubMed  Google Scholar 

  405. Fine RN, Kohaut E, Brown D, Kuntze J, Attie KM. Long-term treatment of growth retarded children with chronic renal insufficiency, with recombinant human growth hormone. Kidney Int. 1996;49:781–5.

    CAS  PubMed  Google Scholar 

  406. Hokken-Koelega A, Mulder P, De Jong R, Lilien M, Donckerwolcke R, Groothof J. Long-term effects of growth hormone treatment on growth and puberty in patients with chronic renal insufficiency. Pediatr Nephrol. 2000;14:701–6.

    CAS  PubMed  Google Scholar 

  407. Hodson EM, Willis NS, Craig JC. Growth hormone for children with chronic kidney disease. Cochrane Database Syst Rev. 2012;2, CD003264.

    PubMed  Google Scholar 

  408. Fine RN, Attie KM, Kuntze J, Brown DF, Kohaut EC. Recombinant human growth hormone in infants and young children with chronic renal insufficiency, Genentech Collaborative Study Group. Pediatr Nephrol. 1995;9:451–7.

    CAS  PubMed  Google Scholar 

  409. Santos F, Moreno ML, Neto A, Ariceta G, Vara J, Alonso A, Bueno A, Afonso AC, Correia AJ, Muley R, Barrios V, Gómez C, Argente J. Improvement in growth after 1 year of growth hormone therapy in well-nourished infants with growth retardation secondary to chronic renal failure: results of a multicenter, controlled, randomized, open clinical trial. Clin J Am Soc Nephrol. 2010;5:1190–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  410. Wühl E, Haffner D, Nissel R, Schaefer F, Mehls O. Short dialyzed children respond less to growth hormone than patients prior to dialysis. German Study Group for Growth Hormone Treatment in Chronic Renal Failure. Pediatr Nephrol. 1996;10:294–8.

    PubMed  Google Scholar 

  411. Berard E, Crosnier H, Six-Beneton A, Chevallier T, Cochat P, Broyer M. Recombinant human growth hormone treatment of children on hemodialysis. French Society of Pediatric Nephrology Pediatr Nephrol. 1998;12:304–10.

    CAS  PubMed  Google Scholar 

  412. Schaefer F, Wühl E, Haffner D, Mehls O, German Study Group for Growth Hormone Treatment in Chronic Renal Failure. Stimulation of growth hormone in children undergoing peritoneal or hemodialysis treatment. Adv Perit Dial. 1994;10:321–6.

    CAS  PubMed  Google Scholar 

  413. Wühl E, Haffner D, Gretz N, Offner G, van’t Hoff WG, Broyer M, et al. Treatment with recombinant human growth hormone in short children with nephropathic cystinosis: no evidence for increased deterioration rate of renal function. Pediatr Res. 1998;43:484–8.

    PubMed  Google Scholar 

  414. Johannson G, Janssens F, Proesmans W. Treatment with Genotropin in short children with chronic renal failure, either before active replacement therapy or with functioning renal transplants. An interim report on five European studies. Acta Paediatr Scand. 1990;370:36–42.

    Google Scholar 

  415. Fine RN, Yadin O, Nelson PA, Pyke-Grimm K, Boechat MI, Lippe BH, et al. Recombinant human growth hormone treatment of children following renal transplantation. Pediatr Nephrol. 1991;5:147–51.

    CAS  PubMed  Google Scholar 

  416. Hokken-Koelega AC, Stijnen T, de Jong RC, Donckerwolcke RA, Groothoff JW, Wolff ED, et al. A placebo-controlled, double-blind trial of growth hormone treatment in prepubertal children after renal transplant. Kidney Int Suppl. 1996;53:S128–34.

    CAS  PubMed  Google Scholar 

  417. Guest G, Berard E, Crosnier H, Chevallier T, Rappaport R, Broyer M. Effects of growth hormone in short children after renal transplantation. Pediatr Nephrol. 1998;12:437–46.

    CAS  PubMed  Google Scholar 

  418. Janssen F, Van Damme-Lombaerts R, Van Dyck M, Hall M, Schurmans T, Herman J, et al. Impact of growth hormone treatment on a Belgian population of short children with renal allografts. Pediatr Transplant. 1997;1:190–6.

    CAS  PubMed  Google Scholar 

  419. Fine RN, Stablein D, Cohen AH, Tejani A, Kohaut E. Recombinant human growth hormone post-renal transplantation in children: a randomized controlled study of the NAPRTCS. Kidney Int. 2002;62:688–96.

    CAS  PubMed  Google Scholar 

  420. Haffner D, Wühl E, Tönshoff B, Mehls O. Growth hormone treatment in short children: 5-year experience German Study Group for Growth Hormone Treatment in Chronic Renal Failure. Nephrol Dial Transplant. 1994;9:960–1.

    Google Scholar 

  421. Hokken-Koelega AC, Stijnen T, de Ridder MA, de Munick Keizer-Schrama SM, Wolff ED, de Jong MC, et al. Growth hormone treatment in growth-retarded adolescents after renal transplant. Lancet. 1994;343:1313–17.

    CAS  PubMed  Google Scholar 

  422. Rees L, Ward G, Rigden SPA. Growth over 10 years following a 1-year trial of growth hormone therapy. Pediatr Nephrol. 2000;14:309–14.

    CAS  PubMed  Google Scholar 

  423. Fine RN, Sullivan EK, Kuntze J, Blethen S, Kohaut E. The impact of recombinant human growth hormone treatment during chronic renal insufficiency on renal transplant recipients. J Pediatr. 2000;136:376–82.

    CAS  PubMed  Google Scholar 

  424. Rosenkranz J, Reichwald-Klugger E, Oh J, Turzer M, Mehls O, Schaefer F. Psychosocial rehabilitation and satisfaction with life in adults with childhood-onset of end-stage renal disease. Pediatr Nephrol. 2005;20:1288–94.

    PubMed  Google Scholar 

  425. Al-Uzri A, Matheson M, Gipson DS, Mendley SR, Hooper SR, Yadin O, Rozansky DJ, Moxey-Mims M, Furth SL, Warady BA, Gerson AC, Chronic Kidney Disease in Children Study Group. The impact of short stature on health-related quality of life in children with chronic kidney disease. J Pediatr. 2013;163:736–41.

    PubMed Central  PubMed  Google Scholar 

  426. Fine RN, Ho M, Tejani A, Blethen S. Adverse events with rhGH treatment of patients with chronic renal insufficiency and end-stage renal disease. J Pediatr. 2003;142:539–45.

    CAS  PubMed  Google Scholar 

  427. Vimalachandra D, Hodson EM, Willis NS, Craig JC, Cowell C, Knight JF. Growth hormone for children with chronic kidney disease. Cochrane Database Syst Rev. 2006;3, CD003264.

    PubMed  Google Scholar 

  428. Haffner D, Nissel R, Wühl E, Schaefer F, Bettendorf M, Tönshoff B, et al. Metabolic effects of long-term growth hormone treatment in prepubertal children with chronic renal failure and after kidney transplantation. Pediatr Res. 1997;43:209–15.

    Google Scholar 

  429. Filler G, Franke D, Amendt P, Ehrich JH. Reversible diabetes mellitus during growth hormone therapy in chronic renal failure. Pediatr Nephrol. 1998;12:405–7.

    CAS  PubMed  Google Scholar 

  430. Stefanidis CP, Papathanassiou A, Michelis K, Theodoridis X, Papachristou F, Sotiriou J. Diabetes mellitus after therapy with recombinant human growth hormone. Br J Clin Pract Suppl. 1996;85:66–7.

    CAS  PubMed  Google Scholar 

  431. Cutfield WS, Wilton P, Bennmarker H, Albertsson-Wikland K, Chatelain P, Ranke MB, et al. Incidence of diabetes mellitus and impaired glucose tolerance in children and adolescents receiving growth hormone treatment. Lancet. 2000;355:610–13.

    CAS  PubMed  Google Scholar 

  432. Kaufman D. Growth hormone and renal osteodystrophy: a case report. Pediatr Nephrol. 1998;12:157–9.

    CAS  PubMed  Google Scholar 

  433. Picca S, Cappa M, Rizzoni G. Hyperparathyroidism during growth hormone treatment: a role for puberty? Pediatr Nephrol. 2000;14:56–8.

    CAS  PubMed  Google Scholar 

  434. Mehls O, Salusky IB. Recent advances and controversies in childhood renal osteodystrophy. Pediatr Nephrol. 1987;1:212–23.

    CAS  PubMed  Google Scholar 

  435. Auernhammer CJ, Strasburger CJ. Effects of growth hormone and insulin-like growth factor I on the immune system. Eur J Endocrinol. 1995;133:635–45.

    CAS  PubMed  Google Scholar 

  436. Hokken-Koelega ACS, Stijnen T, de Jong RC, Donckerwolcke RA, Groothoff JW, Wolff ED, et al. A placebo-controlled double-blind trial of growth hormone treatment in prepubertal children with renal allografts. Kidney Int. 1996;49(Suppl):S128–34.

    Google Scholar 

  437. Maxwell H, Rees L, for the British Association for Paediatric Nephrology. Randomised controlled trial of recombinant human growth hormone in prepubertal and pubertal renal transplant recipients. Arch Dis Child. 1998;79:481–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  438. Tyden G, Wernersson A, Sandberg J, Berg U. Development of renal cell carcinoma in living donor kidney grafts. Transplantation. 2000;70:1650–6.

    CAS  PubMed  Google Scholar 

  439. Boose AR, Pieters R, Delemarre-Van de Waal HA, Veerman AJ. Growth hormone therapy and leukemia. Tijdschr Kindergeneeskd. 1992;60:1–6.

    CAS  PubMed  Google Scholar 

  440. Furlanetto R. Guidelines of the use of growth hormone in children with short stature. A report by the Drug and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society. J Pediatr. 1995;127:857.

    CAS  Google Scholar 

  441. Cochat P, Six-Beneton A. Adverse effects of recombinant human growth hormone in renal patients. Proceedings: 3rd Novo Nordisk workshop on CRI; 1997. p. 19–23.

    Google Scholar 

  442. Dharnidharka VR, Talley LI, Martz KL, Stablein DM, Fine RN. Recombinant growth hormone use pretransplant and risk for post-transplant lymphoproliferative disease – a report of the NAPRTCS. Pediatr Transplant. 2008;12:689–95.

    PubMed  Google Scholar 

  443. Lampit M, Nave T, Hochberg Z. Water and sodium retention during short-term administration of growth hormone to short normal children. Horm Res. 1998;50:83–8.

    CAS  PubMed  Google Scholar 

  444. Hanukoglu A, Belutserkovsky O, Phillip M. Growth hormone activates renin-aldosterone system in children with idiopathic short stature and in a pseudohypoaldosteronism patient with a mutation in epithelial sodium channel alpha subunit. J Steroid Biochem Mol Biol. 2001;77:49–57.

    CAS  PubMed  Google Scholar 

  445. Malozowski S, Tanner LA, Wysowski D, Fleming GA. Growth hormone, insulin-like growth factor I and benign intracranial hypertension. N Engl J Med. 1993;329:665–6.

    CAS  PubMed  Google Scholar 

  446. Wingenfeld P, Schmidt B, Hoppe B, Querfeld U, Schonau E, Moritz C, et al. Acute glaucoma and intracranial hypertension in a child on long-term peritoneal dialysis treated with growth hormone. Pediatr Nephrol. 1995;9:742–5.

    CAS  PubMed  Google Scholar 

  447. Koller EA, Stadel BV, Malozowski SN. Papilledema in 15 renally compromised patients treated with growth hormone. Pediatr Nephrol. 1997;11:451–4.

    CAS  PubMed  Google Scholar 

  448. Hokken-Koelega AC, Stijnen T, de Jong MC, Donckerwolcke RA, De Muinck Keizer-Schrama SM. Double blind trial comparing the effects of two doses of growth hormone in prepubertal patients with chronic renal insufficiency. J Clin Endocrinol Metab. 1994;79:1185–90.

    CAS  PubMed  Google Scholar 

  449. Fine RN, Pyke-Grimm K, Nelson PA. Recombinant human growth hormone (rhGH) treatment in children with chronic renal failure (CRF): long-term (one to three years) outcome. Pediatr Nephrol. 1991;5:477–81.

    CAS  PubMed  Google Scholar 

  450. Al-Uzri A, Swinford RD, Nguyen T, Jenkins R, Gunsul A, Kachan-Liu SS, Rosenfeld R. The utility of the IGF-I generation test in children with chronic kidney disease. Pediatr Nephrol. 2013;28:2323–33.

    PubMed  Google Scholar 

  451. Fine RN, Brown DF, Kuntze J, et al. Growth after discontinuation of recombinant human growth hormone therapy in children with chronic renal failure. J Pediatr. 1996;129:883–91.

    CAS  PubMed  Google Scholar 

  452. Fine RN, Brown DF, Kuntze J, Wooster P, Kohaut EE. Growth after discontinuation of recombinant human growth hormone therapy in children with chronic renal insufficiency. J Pediatr. 1996;129:883–91.

    CAS  PubMed  Google Scholar 

  453. Hokken-Koelega AC, Nauta J, Lilien M, Ploos van Amstel J, Levcenko N. Long-term growth hormone treatment in children with chronic renal failure. Pediatr Nephrol. 2004;19:C38.

    Google Scholar 

  454. Nissel R, Ucur E, Mehls O, Haffner D. Final height after long-term treatment with recombinant human growth hormone (rhGH) in children with uremic growth failure. Nephrol Dial Transplant. 2006;21:367–8.

    Google Scholar 

  455. Fine RN, Sullivan EK, Tejani A. The impact of recombinant human growth hormone treatment on final adult height. Pediatr Nephrol. 2000;14:679–81.

    CAS  PubMed  Google Scholar 

  456. Tejani A, Fine RN, Alexander S, et al. Factors predictive of sustained growth in children after renal transplantation. The North American Pediatric Renal Transplant Cooperative Study. J Pediatr. 1993;122:397–402.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Schaefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schaefer, F. (2015). Endocrine and Growth Abnormalities in Children with Chronic Renal Disease. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_60-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_60-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics