Skip to main content

Pathophysiology of Hypertension

Pediatric Nephrology

Abstract

The traditional view that blood pressure (BP) can fundamentally be viewed as a function of cardiac output and systemic vascular resistance remains valid, although much has been learned about the many ways in which these two arms of the equation can be affected, down to the cellular level. The goal of this chapter is to provide the reader with an overview of the many pathophysiologic alterations that can lead to the development of hypertension (HTN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Feber J, Ruzicka M, Geier P, Litwin M. Autonomic nervous system dysregulation in pediatric hypertension. Curr Hypertens Rep. 2014;16(5):426.

    PubMed  Google Scholar 

  2. Mary DA, Stoker JB. The activity of single vasoconstrictor nerve units in hypertension. Acta Physiol Scand. 2003;177(3):367–76.

    CAS  PubMed  Google Scholar 

  3. Julius S, Pascual AV, Sannerstedt R, Mitchell C. Relationship between cardiac output and peripheral resistance in borderline hypertension. Circulation. 1971;43(3):382–90.

    CAS  PubMed  Google Scholar 

  4. Julius S. Changing role of the autonomic nervous system in human hypertension. J Hypertens Suppl. 1990;8(7):S59–65.

    CAS  PubMed  Google Scholar 

  5. Mulvany MJ. The development and regression of vascular hypertrophy. J Cardiovasc Pharmacol. 1992;19 Suppl 2:S22–7.

    PubMed  Google Scholar 

  6. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med. 1994;330(20):1431–8.

    CAS  PubMed  Google Scholar 

  7. Vicaut E. Microcirculation and arterial hypertension. Drugs. 1999;58(Spec No 1):1–10.

    PubMed  Google Scholar 

  8. Owens GK, Schwartz SM. Alterations in vascular smooth muscle mass in the spontaneously hypertensive rat. Role of cellular hypertrophy, hyperploidy, and hyperplasia. Circ Res. 1982;51(3):280–9.

    CAS  PubMed  Google Scholar 

  9. Berk BC. Biology of the vascular wall in hypertension. In: Brenner BM, editor. Brenner and Rector’s the kidney. 6th ed. Philadelphia: W.B. Saunders; 2000. p. 1943–66.

    Google Scholar 

  10. Berk BC, Alexander RW, Brock TA, Gimbrone Jr MA, Webb RC. Vasoconstriction: a new activity for platelet-derived growth factor. Science. 1986;232(4746):87–90.

    CAS  PubMed  Google Scholar 

  11. Geisterfer AA, Peach MJ, Owens GK. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res. 1988;62(4):749–56.

    CAS  PubMed  Google Scholar 

  12. Folkow B. Structure and function of the arteries in hypertension. Am Heart J. 1987;114(4 Pt 2):938–48.

    CAS  PubMed  Google Scholar 

  13. Campese VM, Krol E. Neurogenic factors in renal hypertension. Curr Hypertens Rep. 2002;4(3):256–60.

    PubMed  Google Scholar 

  14. McCrory WW, Klein AA, Rosenthal RA. Blood pressure, heart rate, and plasma catecholamines in normal and hypertensive children and their siblings at rest and after standing. Hypertension. 1982;4(4):507–13.

    CAS  PubMed  Google Scholar 

  15. Goldstein DS, Lake CR, Chernow B, Ziegler MG, Coleman MD, Taylor AA, et al. Age-dependence of hypertensive-normotensive differences in plasma norepinephrine. Hypertension. 1983;5(1):100–4.

    CAS  PubMed  Google Scholar 

  16. Reinhart GA, Lohmeier TE, Hord Jr CE. Hypertension induced by chronic renal adrenergic stimulation is angiotensin dependent. Hypertension. 1995;25(5):940–9.

    CAS  PubMed  Google Scholar 

  17. Dubinion JH, Mi Z, Jackson EK. Role of renal sympathetic nerves in regulating renovascular responses to angiotensin II in spontaneously hypertensive rats. J Pharmacol Exp Ther. 2006;317(3):1330–6.

    CAS  PubMed  Google Scholar 

  18. Wong PC, Bernard R, Timmermans PB. Effect of blocking angiotensin II receptor subtype on rat sympathetic nerve function. Hypertension. 1992;19(6 Pt 2):663–7.

    CAS  PubMed  Google Scholar 

  19. Boke T, Malik KU. Enhancement by locally generated angiotensin II of release of the adrenergic transmitter in the isolated rat kidney. J Pharmacol Exp Ther. 1983;226(3):900–7.

    CAS  PubMed  Google Scholar 

  20. Lurbe E, Thijs L, Redon J, Alvarez V, Tacons J, Staessen J. Diurnal blood pressure curve in children and adolescents. J Hypertens. 1996;14(1):41–6.

    CAS  PubMed  Google Scholar 

  21. Seeman T, Palyzova D, Dusek J, Janda J. Reduced nocturnal blood pressure dip and sustained nighttime hypertension are specific markers of secondary hypertension. J Pediatr. 2005;147(3):366–71.

    PubMed  Google Scholar 

  22. Martino TA, Oudit GY, Herzenberg AM, Tata N, Koletar MM, Kabir GM, et al. Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am J Physiol Regul Integr Comp Physiol. 2008;294(5):R1675–83.

    CAS  PubMed  Google Scholar 

  23. Fagard RH, Thijs L, Staessen JA, Clement DL, De Buyzere ML, De Bacquer DA. Night-day blood pressure ratio and dipping pattern as predictors of death and cardiovascular events in hypertension. J Hum Hypertens. 2009;23(10):645–53.

    CAS  PubMed  Google Scholar 

  24. Moore RY. The suprachiasmatic nucleus and the circadian timing system. Prog Mol Biol Transl Sci. 2013;119:1–28.

    PubMed  Google Scholar 

  25. Sewerynek E. Melatonin and the cardiovascular system. Neuro Endocrinol Lett. 2002;23 Suppl 1:79–83.

    CAS  PubMed  Google Scholar 

  26. Pandi-Perumal SR, Trakht I, Srinivasan V, Spence DW, Maestroni GJ, Zisapel N, et al. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol. 2008;85(3):335–53.

    CAS  PubMed  Google Scholar 

  27. Goncharuk VD, van Heerikhuize J, Dai JP, Swaab DF, Buijs RM. Neuropeptide changes in the suprachiasmatic nucleus in primary hypertension indicate functional impairment of the biological clock. J Comp Neurol. 2001;431(3):320–30.

    CAS  PubMed  Google Scholar 

  28. Paulis L, Simko F. Blood pressure modulation and cardiovascular protection by melatonin: potential mechanisms behind. Physiol Res. 2007;56(6):671–84.

    CAS  PubMed  Google Scholar 

  29. Simoes ESAC, Flynn JT. The renin-angiotensin-aldosterone system in 2011: role in hypertension and chronic kidney disease. Pediatr Nephrol. 2012;27(10):1835–45.

    Google Scholar 

  30. Griendling KK, Murphy TJ, Alexander RW. Molecular biology of the renin-angiotensin system. Circulation. 1993;87(6):1816–28.

    CAS  PubMed  Google Scholar 

  31. Danser AH, Batenburg WW, van Esch JH, Krop M. Prorenin anno 2008. J Mol Med. 2008;86(6):655–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Batenburg WW, Danser AH. (Pro)renin and its receptors: pathophysiological implications. Clin Sci (Lond). 2012;123(3):121–33.

    CAS  Google Scholar 

  33. Muller DN, Luft FC. The renin-angiotensin system in the vessel wall. Basic Res Cardiol. 1998;93 Suppl 2:7–14.

    PubMed  Google Scholar 

  34. Bader M, Ganten D. Update on tissue renin-angiotensin systems. J Mol Med. 2008;86(6):615–21.

    CAS  PubMed  Google Scholar 

  35. Robles NR, Cerezo I, Hernandez-Gallego R. Renin-angiotensin system blocking drugs. J Cardiovasc Pharmacol Ther. 2014;19(1):14–33.

    CAS  PubMed  Google Scholar 

  36. Inagami T, Guo DF, Kitami Y. Molecular biology of angiotensin II receptors: an overview. J Hypertens Suppl. 1994;12(10):S83–94.

    CAS  PubMed  Google Scholar 

  37. Aguilera G, Catt K. Regulation of vascular angiotensin II receptors in the rat during altered sodium intake. Circ Res. 1981;49(3):751–8.

    CAS  PubMed  Google Scholar 

  38. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest. 1996;97(8):1916–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Muller DN, Dechend R, Mervaala EM, Park JK, Schmidt F, Fiebeler A, et al. NF-kappaB inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension. 2000;35(1 Pt 2):193–201.

    CAS  PubMed  Google Scholar 

  40. Vaughan DE, Lazos SA, Tong K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. J Clin Invest. 1995;95(3):995–1001.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Nakamura S, Nakamura I, Ma L, Vaughan DE, Fogo AB. Plasminogen activator inhibitor-1 expression is regulated by the angiotensin type 1 receptor in vivo. Kidney Int. 2000;58(1):251–9.

    CAS  PubMed  Google Scholar 

  42. Ruiz-Ortega M, Lorenzo O, Ruperez M, Konig S, Wittig B, Egido J. Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms. Circ Res. 2000;86(12):1266–72.

    CAS  PubMed  Google Scholar 

  43. Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336(15):1066–71.

    CAS  PubMed  Google Scholar 

  44. Zhu YC, Zhu YZ, Lu N, Wang MJ, Wang YX, Yao T. Role of angiotensin AT1 and AT2 receptors in cardiac hypertrophy and cardiac remodelling. Clin Exp Pharmacol Physiol. 2003;30(12):911–8.

    CAS  PubMed  Google Scholar 

  45. Simon G. Pathogenesis of structural vascular changes in hypertension. J Hypertens. 2004;22(1):3–10.

    CAS  PubMed  Google Scholar 

  46. Chandra S, Narang R, Sreenivas V, Bhatia J, Saluja D, Srivastava K. Association of angiotensin II type 1 receptor (A1166C) gene polymorphism and its increased expression in essential hypertension: a case–control study. PLoS One. 2014;9(7):e101502.

    PubMed Central  PubMed  Google Scholar 

  47. Sugimoto K, Katsuya T, Ohkubo T, Hozawa A, Yamamoto K, Matsuo A, et al. Association between angiotensin II type 1 receptor gene polymorphism and essential hypertension: the Ohasama Study. Hypertens Res. 2004;27(8):551–6.

    CAS  PubMed  Google Scholar 

  48. Ozono R, Wang ZQ, Moore AF, Inagami T, Siragy HM, Carey RM. Expression of the subtype 2 angiotensin (AT2) receptor protein in rat kidney. Hypertension. 1997;30(5):1238–46.

    CAS  PubMed  Google Scholar 

  49. Ichiki T, Kambayashi Y, Inagami T. Multiple growth factors modulate mRNA expression of angiotensin II type-2 receptor in R3T3 cells. Circ Res. 1995;77(6):1070–6.

    CAS  PubMed  Google Scholar 

  50. Matsubara H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res. 1998;83(12):1182–91.

    CAS  PubMed  Google Scholar 

  51. Savoia C, D’Agostino M, Lauri F, Volpe M. Angiotensin type 2 receptor in hypertensive cardiovascular disease. Curr Opin Nephrol Hypertens. 2011;20(2):125–32.

    CAS  PubMed  Google Scholar 

  52. Carey RM, Padia SH. Angiotensin AT2 receptors: control of renal sodium excretion and blood pressure. Trends Endocrinol Metab. 2008;19(3):84–7.

    CAS  PubMed  Google Scholar 

  53. DiBona GF. Central sympathoexcitatory actions of angiotensin II: role of type 1 angiotensin II receptors. J Am Soc Nephrol. 1999;10 Suppl 11:S90–4.

    CAS  PubMed  Google Scholar 

  54. Ferguson AV, Washburn DL. Angiotensin II: a peptidergic neurotransmitter in central autonomic pathways. Prog Neurobiol. 1998;54(2):169–92.

    CAS  PubMed  Google Scholar 

  55. Allen AM, Dampney RA, Mendelsohn FA. Angiotensin receptor binding and pressor effects in cat subretrofacial nucleus. Am J Physiol. 1988;255(5 Pt 2):H1011–7.

    CAS  PubMed  Google Scholar 

  56. Kumagai H, Oshima N, Matsuura T, Iigaya K, Imai M, Onimaru H, et al. Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertens Res. 2012;35(2):132–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Saigusa T, Iriki M, Arita J. Brain angiotensin II tonically modulates sympathetic baroreflex in rabbit ventrolateral medulla. Am J Physiol. 1996;271(3 Pt 2):H1015–21.

    CAS  PubMed  Google Scholar 

  58. Dampney RA, Fontes MA, Hirooka Y, Horiuchi J, Potts PD, Tagawa T. Role of angiotensin II receptors in the regulation of vasomotor neurons in the ventrolateral medulla. Clin Exp Pharmacol Physiol. 2002;29(5–6):467–72.

    CAS  PubMed  Google Scholar 

  59. Song K, Allen AM, Paxinos G, Mendelsohn FA. Mapping of angiotensin II receptor subtype heterogeneity in rat brain. J Comp Neurol. 1992;316(4):467–84.

    CAS  PubMed  Google Scholar 

  60. Bader M. ACE2, angiotensin-(1–7), and Mas: the other side of the coin. Pflugers Arch Eur J Physiol. 2013;465(1):79–85.

    CAS  Google Scholar 

  61. Yagil Y, Yagil C. Hypothesis: ACE2 modulates blood pressure in the mammalian organism. Hypertension. 2003;41(4):871–3.

    CAS  PubMed  Google Scholar 

  62. Wysocki J, Gonzalez-Pacheco FR, Batlle D. Angiotensin-converting enzyme 2: possible role in hypertension and kidney disease. Curr Hypertens Rep. 2008;10(1):70–7.

    CAS  PubMed  Google Scholar 

  63. Santos RA, Ferreira AJ, Simoes ESAC. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1–7)-Mas axis. Exp Physiol. 2008;93(5):519–27.

    CAS  PubMed  Google Scholar 

  64. Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100(14):8258–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Simoes-e-Silva AC, Baracho NC, Passaglio KT, Santos RA. Renal actions of angiotensin-(1–7). Braz J Med Biol Res. 1997;30(4):503–13.

    CAS  PubMed  Google Scholar 

  66. Sampaio WO, Nascimento AA, Santos RA. Systemic and regional hemodynamic effects of angiotensin-(1–7) in rats. Am J Physiol Heart Circ Physiol. 2003;284(6):H1985–94.

    CAS  PubMed  Google Scholar 

  67. DelliPizzi AM, Hilchey SD, Bell-Quilley CP. Natriuretic action of angiotensin(1–7). Br J Pharmacol. 1994;111(1):1–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. van der Wouden EA, Ochodnicky P, van Dokkum RP, Roks AJ, Deelman LE, de Zeeuw D, et al. The role of angiotensin(1–7) in renal vasculature of the rat. J Hypertens. 2006;24(10):1971–8.

    PubMed  Google Scholar 

  69. Nguyen G, Contrepas A. Physiology and pharmacology of the (pro)renin receptor. Curr Opin Pharmacol. 2008;8(2):127–32.

    CAS  PubMed  Google Scholar 

  70. Campbell DJ. Critical review of prorenin and (pro)renin receptor research. Hypertension. 2008;51(5):1259–64.

    CAS  PubMed  Google Scholar 

  71. Ott C, Schneider MP, Delles C, Schlaich MP, Hilgers KF, Schmieder RE. Association of (pro)renin receptor gene polymorphism with blood pressure in Caucasian men. Pharmacogenet Genomics. 2011;21(6):347–9.

    CAS  PubMed  Google Scholar 

  72. Reudelhuber TL. The interaction between prorenin, renin and the (pro)renin receptor: time to rethink the role in hypertension. Curr Opin Nephrol Hypertens. 2012;21(2):137–41.

    CAS  PubMed  Google Scholar 

  73. Curnow KM, Tusie-Luna MT, Pascoe L, Natarajan R, Gu JL, Nadler JL, et al. The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol Endocrinol. 1991;5(10):1513–22.

    CAS  PubMed  Google Scholar 

  74. Takeda Y, Yoneda T, Demura M, Miyamori I, Mabuchi H. Cardiac aldosterone production in genetically hypertensive rats. Hypertension. 2000;36(4):495–500.

    CAS  PubMed  Google Scholar 

  75. MacKenzie SM, Clark CJ, Fraser R, Gomez-Sanchez CE, Connell JM, Davies E. Expression of 11beta-hydroxylase and aldosterone synthase genes in the rat brain. J Mol Endocrinol. 2000;24(3):321–8.

    CAS  PubMed  Google Scholar 

  76. Williams GH. Aldosterone biosynthesis, regulation, and classical mechanism of action. Heart Fail Rev. 2005;10(1):7–13.

    CAS  PubMed  Google Scholar 

  77. Funder JW. Mineralocorticoid receptors: distribution and activation. Heart Fail Rev. 2005;10(1):15–22.

    CAS  PubMed  Google Scholar 

  78. Koenig W, Binner L, Gabrielsen F, Sund M, Rosenthal J, Hombach V. Catecholamines and the renin-angiotensin-aldosterone system during treatment with felodipine ER or hydrochlorothiazide in essential hypertension. J Cardiovasc Pharmacol. 1991;18(3):349–53.

    CAS  PubMed  Google Scholar 

  79. Wang W, McClain JM, Zucker IH. Aldosterone reduces baroreceptor discharge in the dog. Hypertension. 1992;19(3):270–7.

    CAS  PubMed  Google Scholar 

  80. Lijnen P, Petrov V. Induction of cardiac fibrosis by aldosterone. J Mol Cell Cardiol. 2000;32(6):865–79.

    CAS  PubMed  Google Scholar 

  81. Rocha R, Chander PN, Khanna K, Zuckerman A, Stier Jr CT. Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension. 1998;31(1 Pt 2):451–8.

    CAS  PubMed  Google Scholar 

  82. Dorrance AM, Osborn HL, Grekin R, Webb RC. Spironolactone reduces cerebral infarct size and EGF-receptor mRNA in stroke-prone rats. Am J Physiol Regul Integr Comp Physiol. 2001;281(3):R944–50.

    CAS  PubMed  Google Scholar 

  83. Susic D, Varagic J, Ahn J, Matavelli L, Frohlich ED. Long-term mineralocorticoid receptor blockade reduces fibrosis and improves cardiac performance and coronary hemodynamics in elderly SHR. Am J Physiol Heart Circ Physiol. 2007;292(1):H175–9.

    CAS  PubMed  Google Scholar 

  84. Savoia C, Touyz RM, Amiri F, Schiffrin EL. Selective mineralocorticoid receptor blocker eplerenone reduces resistance artery stiffness in hypertensive patients. Hypertension. 2008;51(2):432–9.

    CAS  PubMed  Google Scholar 

  85. Zeng C, Zhang M, Asico LD, Eisner GM, Jose PA. The dopaminergic system in hypertension. Clin Sci (Lond). 2007;112(12):583–97.

    CAS  Google Scholar 

  86. Harris RC, Zhang MZ. Dopamine, the kidney, and hypertension. Curr Hypertens Rep. 2012;14(2):138–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Lucas-Teixeira V, Serrao MP, Soares-Da-Silva P. Effect of salt intake on jejunal dopamine, Na+, K+-ATPase activity and electrolyte transport. Acta Physiol Scand. 2000;168(1):225–31.

    CAS  PubMed  Google Scholar 

  88. Bek MJ, Eisner GM, Felder RA, Jose PA. Dopamine receptors in hypertension. Mt Sinai J Med. 2001;68(6):362–9.

    CAS  PubMed  Google Scholar 

  89. Zabik JE, Sprague JE, Odio M. Interactive dopaminergic and noradrenergic systems in the regulation of thirst in the rat. Physiol Behav. 1993;54(1):29–33.

    CAS  PubMed  Google Scholar 

  90. Murphy MB, Murray C, Shorten GD. Fenoldopam: a selective peripheral dopamine-receptor agonist for the treatment of severe hypertension. N Engl J Med. 2001;345(21):1548–57.

    CAS  PubMed  Google Scholar 

  91. Jose PA, Eisner GM, Felder RA. Renal dopamine receptors in health and hypertension. Pharmacol Ther. 1998;80(2):149–82.

    CAS  PubMed  Google Scholar 

  92. Cheng HF, Becker BN, Harris RC. Dopamine decreases expression of type-1 angiotensin II receptors in renal proximal tubule. J Clin Invest. 1996;97(12):2745–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Asico LD, Ladines C, Fuchs S, Accili D, Carey RM, Semeraro C, et al. Disruption of the dopamine D3 receptor gene produces renin-dependent hypertension. J Clin Invest. 1998;102(3):493–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Krushkal J, Ferrell R, Mockrin SC, Turner ST, Sing CF, Boerwinkle E. Genome-wide linkage analyses of systolic blood pressure using highly discordant siblings. Circulation. 1999;99(11):1407–10.

    CAS  PubMed  Google Scholar 

  95. Sato M, Soma M, Nakayama T, Kanmatsuse K. Dopamine D1 receptor gene polymorphism is associated with essential hypertension. Hypertension. 2000;36(2):183–6.

    CAS  PubMed  Google Scholar 

  96. Sen S, Nesse R, Sheng L, Stoltenberg SF, Gleiberman L, Burmeister M, et al. Association between a dopamine-4 receptor polymorphism and blood pressure. Am J Hypertens. 2005;18(9 Pt 1):1206–10.

    CAS  PubMed  Google Scholar 

  97. Zhu H, Lu Y, Wang X, Treiber FA, Harshfield GA, Snieder H, et al. The G protein-coupled receptor kinase 4 gene affects blood pressure in young normotensive twins. Am J Hypertens. 2006;19(1):61–6.

    CAS  PubMed  Google Scholar 

  98. Staessen JA, Kuznetsova T, Zhang H, Maillard M, Bochud M, Hasenkamp S, et al. Blood pressure and renal sodium handling in relation to genetic variation in the DRD1 promoter and GRK4. Hypertension. 2008;51(6):1643–50.

    CAS  PubMed  Google Scholar 

  99. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998;339(5):321–8.

    CAS  PubMed  Google Scholar 

  100. Baldini PM, De Vito P, Fraziano M, Mattioli P, Luly P, Di Nardo P. Atrial natriuretic factor inhibits mitogen-induced growth in aortic smooth muscle cells. J Cell Physiol. 2002;193(1):103–9.

    CAS  PubMed  Google Scholar 

  101. Beltowski J, Wojcicka G. Regulation of renal tubular sodium transport by cardiac natriuretic peptides: two decades of research. Med Sci Monit Int Med J Exp Clin Res. 2002;8(2):RA39–52.

    Google Scholar 

  102. Cody RJ, Atlas SA, Laragh JH, Kubo SH, Covit AB, Ryman KS, et al. Atrial natriuretic factor in normal subjects and heart failure patients. Plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. J Clin Invest. 1986;78(5):1362–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Volpe M, Mele AF, Indolfi C, De Luca N, Lembo G, Focaccio A, et al. Hemodynamic and hormonal effects of atrial natriuretic factor in patients with essential hypertension. J Am Coll Cardiol. 1987;10(4):787–93.

    CAS  PubMed  Google Scholar 

  104. Hunt PJ, Espiner EA, Nicholls MG, Richards AM, Yandle TG. Differing biological effects of equimolar atrial and brain natriuretic peptide infusions in normal man. J Clin Endocrinol Metab. 1996;81(11):3871–6.

    CAS  PubMed  Google Scholar 

  105. Volpe M, Vecchione F, Cuocolo A, Lembo G, Pignalosa S, Condorelli M, et al. Hemodynamic responses to atrial natriuretic factor in nephrectomized rabbits: attenuation of the circulatory consequences of acute volume expansion. Circ Res. 1988;63(2):322–9.

    CAS  PubMed  Google Scholar 

  106. Rutledge DR, Sun Y, Ross EA. Polymorphisms within the atrial natriuretic peptide gene in essential hypertension. J Hypertens. 1995;13(9):953–5.

    CAS  PubMed  Google Scholar 

  107. Nakayama T, Soma M, Takahashi Y, Rehemudula D, Kanmatsuse K, Furuya K. Functional deletion mutation of the 5′-flanking region of type A human natriuretic peptide receptor gene and its association with essential hypertension and left ventricular hypertrophy in the Japanese. Circ Res. 2000;86(8):841–5.

    CAS  PubMed  Google Scholar 

  108. Wu Q, Xu-Cai YO, Chen S, Wang W. Corin: new insights into the natriuretic peptide system. Kidney Int. 2009;75:142–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Xue H, Wang S, Wang H, Sun K, Song X, Zhang W, et al. Atrial natriuretic peptide gene promoter polymorphism is associated with left ventricular hypertrophy in hypertension. Clin Sci (Lond). 2008;114(2):131–7.

    CAS  Google Scholar 

  110. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332(6163):411–5.

    CAS  PubMed  Google Scholar 

  111. Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A. 1989;86(8):2863–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Gray GA. Generation of endothelin. In: Gray GA, Webb DJ, editors. Molecular biology and pharmacology of the endothelins. Austin: R.G. Landes; 1995. p. 13–32.

    Google Scholar 

  113. Howard PG, Plumpton C, Davenport AP. Anatomical localization and pharmacological activity of mature endothelins and their precursors in human vascular tissue. J Hypertens. 1992;10(11):1379–86.

    CAS  PubMed  Google Scholar 

  114. Hirata Y. Endothelin peptides. Curr Opin Nephrol Hypertens. 1996;5(1):12–5.

    CAS  PubMed  Google Scholar 

  115. Miyoshi Y, Nakaya Y, Wakatsuki T, Nakaya S, Fujino K, Saito K, et al. Endothelin blocks ATP-sensitive K+ channels and depolarizes smooth muscle cells of porcine coronary artery. Circ Res. 1992;70(3):612–6.

    CAS  PubMed  Google Scholar 

  116. King AJ, Brenner BM, Anderson S. Endothelin: a potent renal and systemic vasoconstrictor peptide. Am J Physiol. 1989;256(6 Pt 2):F1051–8.

    CAS  PubMed  Google Scholar 

  117. Zeidel ML, Brady HR, Kone BC, Gullans SR, Brenner BM. Endothelin, a peptide inhibitor of Na(+)-K(+)-ATPase in intact renaltubular epithelial cells. Am J Physiol. 1989;257(6 Pt 1):C1101–7.

    CAS  PubMed  Google Scholar 

  118. Dupuis J. Endothelin receptor antagonists and their developing role in cardiovascular therapeutics. Can J Cardiol. 2000;16(7):903–10.

    CAS  PubMed  Google Scholar 

  119. Levin ER. Endothelins. N Engl J Med. 1995;333(6):356–63.

    CAS  PubMed  Google Scholar 

  120. Schiffrin EL, Lariviere R, Li JS, Sventek P. Enhanced expression of the endothelin-1 gene in blood vessels of DOCA-salt hypertensive rats: correlation with vascular structure. J Vasc Res. 1996;33(3):235–48.

    CAS  PubMed  Google Scholar 

  121. Haynes WG, Hand MF, Johnstone HA, Padfield PL, Webb DJ. Direct and sympathetically mediated venoconstriction in essential hypertension. Enhanced responses to endothelin-1. J Clin Invest. 1994;94(4):1359–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Davenport AP, Ashby MJ, Easton P, Ella S, Bedford J, Dickerson C, et al. A sensitive radioimmunoassay measuring endothelin-like immunoreactivity in human plasma: comparison of levels in patients with essential hypertension and normotensive control subjects. Clin Sci (Lond). 1990;78(3):261–4.

    CAS  Google Scholar 

  123. Kohno M, Murakawa K, Horio T, Yokokawa K, Yasunari K, Fukui T, et al. Plasma immunoreactive endothelin-1 in experimental malignant hypertension. Hypertension. 1991;18(1):93–100.

    CAS  PubMed  Google Scholar 

  124. Koyama H, Tabata T, Nishzawa Y, Inoue T, Morii H, Yamaji T. Plasma endothelin levels in patients with uraemia. Lancet. 1989;1(8645):991–2.

    CAS  PubMed  Google Scholar 

  125. Bunchman TE, Brookshire CA. Cyclosporine-induced synthesis of endothelin by cultured human endothelial cells. J Clin Invest. 1991;88(1):310–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Nambi P, Pullen M, Contino LC, Brooks DP. Upregulation of renal endothelin receptors in rats with cyclosporine A-induced nephrotoxicity. Eur J Pharmacol. 1990;187(1):113–6.

    CAS  PubMed  Google Scholar 

  127. Moutabarrik A, Ishibashi M, Fukunaga M, Kameoka H, Takano Y, Kokado Y, et al. FK 506 mechanism of nephrotoxicity: stimulatory effect on endothelin secretion by cultured kidney cells and tubular cell toxicity in vitro. Transplant Proc. 1991;23(6):3133–6.

    CAS  PubMed  Google Scholar 

  128. Ergul S, Parish DC, Puett D, Ergul A. Racial differences in plasma endothelin-1 concentrations in individuals with essential hypertension. Hypertension. 1996;28(4):652–5.

    CAS  PubMed  Google Scholar 

  129. Stevens PA, Brown MJ. Genetic variability of the ET-1 and the ETA receptor genes in essential hypertension. J Cardiovasc Pharmacol. 1995;26 Suppl 3:S9–12.

    CAS  PubMed  Google Scholar 

  130. Barath A, Endreffy E, Bereczki C, Gellen B, Szucs B, Nemeth I, et al. Endothelin-1 gene and endothelial nitric oxide synthase gene polymorphisms in adolescents with juvenile and obesity-associated hypertension. Acta Physiol Hung. 2007;94(1–2):49–66.

    CAS  PubMed  Google Scholar 

  131. Speed JS, Pollock DM. Endothelin, kidney disease, and hypertension. Hypertension. 2013;61(6):1142–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Moncada S, Higgs A. The l-arginine-nitric oxide pathway. N Engl J Med. 1993;329(27):2002–12.

    CAS  PubMed  Google Scholar 

  133. Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989;2(8670):997–1000.

    CAS  PubMed  Google Scholar 

  134. Gkaliagkousi E, Ferro A. Nitric oxide signalling in the regulation of cardiovascular and platelet function. Front Biosci. 2011;16:1873–97.

    CAS  Google Scholar 

  135. Panza JA, Quyyumi AA, Brush Jr JE, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 1990;323(1):22–7.

    CAS  PubMed  Google Scholar 

  136. Schlaich MP, Parnell MM, Ahlers BA, Finch S, Marshall T, Zhang WZ, et al. Impaired l-arginine transport and endothelial function in hypertensive and genetically predisposed normotensive subjects. Circulation. 2004;110(24):3680–6.

    CAS  PubMed  Google Scholar 

  137. Chen PY, Sanders PW. l-arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats. J Clin Invest. 1991;88(5):1559–67.

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Nakaki T, Hishikawa K, Suzuki H, Saruta T, Kato R. l-arginine-induced hypotension. Lancet. 1990;336(8716):696.

    CAS  PubMed  Google Scholar 

  139. Wang D, Strandgaard S, Iversen J, Wilcox CS. Asymmetric dimethylarginine, oxidative stress, and vascular nitric oxide synthase in essential hypertension. Am J Physiol Regul Integr Comp Physiol. 2009;296(2):R195–200.

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Spielman WS, Arend LJ. Adenosine receptors and signaling in the kidney. Hypertension. 1991;17(2):117–30.

    CAS  PubMed  Google Scholar 

  141. Chen YF, Li PL, Zou AP. Oxidative stress enhances the production and actions of adenosine in the kidney. Am J Physiol Regul Integr Comp Physiol. 2001;281(6):R1808–16.

    CAS  PubMed  Google Scholar 

  142. Trincavelli ML, Daniele S, Martini C. Adenosine receptors: what we know and what we are learning. Curr Top Med Chem. 2010;10(9):860–77.

    CAS  PubMed  Google Scholar 

  143. Welch WJ. Adenosine A1 receptor antagonists in the kidney: effects in fluid-retaining disorders. Curr Opin Pharmacol. 2002;2(2):165–70.

    CAS  PubMed  Google Scholar 

  144. Koupenova M, Johnston-Cox H, Ravid K. Regulation of atherosclerosis and associated risk factors by adenosine and adenosine receptors. Curr Atheroscler Rep. 2012;14(5):460–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Danzi S, Klein I. Thyroid hormone and the cardiovascular system. Med Clin North Am. 2012;96(2):257–68.

    CAS  PubMed  Google Scholar 

  146. Park KW, Dai HB, Ojamaa K, Lowenstein E, Klein I, Sellke FW. The direct vasomotor effect of thyroid hormones on rat skeletal muscle resistance arteries. Anesth Analg. 1997;85(4):734–8.

    CAS  PubMed  Google Scholar 

  147. Ertek S, Cicero AF. Hyperthyroidism and cardiovascular complications: a narrative review on the basis of pathophysiology. Arch Med Sci AMS. 2013;9(5):944–52.

    PubMed  Google Scholar 

  148. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med. 2001;344(7):501–9.

    CAS  PubMed  Google Scholar 

  149. Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, et al. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun. 1993;192(2):553–60.

    CAS  PubMed  Google Scholar 

  150. Ichiki Y, Kitamura K, Kangawa K, Kawamoto M, Matsuo H, Eto T. Distribution and characterization of immunoreactive adrenomedullin in human tissue and plasma. FEBS Lett. 1994;338(1):6–10.

    CAS  PubMed  Google Scholar 

  151. Sugo S, Minamino N, Kangawa K, Miyamoto K, Kitamura K, Sakata J, et al. Endothelial cells actively synthesize and secrete adrenomedullin. Biochem Biophys Res Commun. 1994;201(3):1160–6.

    CAS  PubMed  Google Scholar 

  152. Cheung BM, Li CY, Wong LY. Adrenomedullin: its role in the cardiovascular system. Semin Vasc Med. 2004;4(2):129–34.

    PubMed  Google Scholar 

  153. Hu W, Zhou PH, Zhang XB, Xu CG, Wang W. Pathophysiological functions of adrenomedullin and natriuretic peptides in patients with primary aldosteronism. Endocrine. 2014; DOI: 10.1007/s12020-014-0316-9.

    Google Scholar 

  154. Letizia C, Subioli S, Cerci S, Caliumi C, Verrelli C, Delfini E, et al. High plasma adrenomedullin concentrations in patients with high-renin essential hypertension. J Renin Angiotensin Aldosterone Syst. 2002;3(2):126–9.

    CAS  PubMed  Google Scholar 

  155. Ishimitsu T, Tsukada K, Minami J, Ono H, Matsuoka H. Variations of human adrenomedullin gene and its relation to cardiovascular diseases. Hypertens Res. 2003;26(Suppl):S129–34.

    CAS  PubMed  Google Scholar 

  156. Xu J, Li G, Wang P, Velazquez H, Yao X, Li Y, et al. Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Invest. 2005;115(5):1275–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  157. Desir GV, Wang L, Peixoto AJ. Human renalase: a review of its biology, function, and implications for hypertension. J Am Soc Hypertens JASH. 2012;6(6):417–26.

    CAS  PubMed  Google Scholar 

  158. Quelhas-Santos J, Sampaio-Maia B, Simoes-Silva L, Serrao P, Fernandes-Cerqueira C, Soares-Silva I, et al. Sodium-dependent modulation of systemic and urinary renalase expression and activity in the rat remnant kidney. J Hypertens. 2013;31(3):543–52; discussion 52–3.

    CAS  PubMed  Google Scholar 

  159. Desir G. Novel insights into the physiology of renalase and its role in hypertension and heart disease. Pediatr Nephrol. 2012;27(5):719–25.

    PubMed  Google Scholar 

  160. Stec A, Semczuk A, Furmaga J, Ksiazek A, Buraczynska M. Polymorphism of the renalase gene in end-stage renal disease patients affected by hypertension. Nephrol Dial Transplant. 2012;27(11):4162–6.

    CAS  PubMed  Google Scholar 

  161. Ivy JR, Bailey MA. Pressure natriuresis and the renal control of arterial blood pressure. J Physiol. 2014;592(Pt 18):3955–67.

    CAS  PubMed  Google Scholar 

  162. Cowley Jr AW. Role of the renal medulla in volume and arterial pressure regulation. Am J Physiol. 1997;273(1 Pt 2):R1–15.

    CAS  PubMed  Google Scholar 

  163. Bidani AK, Griffin KA, Williamson G, Wang X, Loutzenhiser R. Protective importance of the myogenic response in the renal circulation. Hypertension. 2009;54(2):393–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Iversen BM, Sekse I, Ofstad J. Resetting of renal blood flow autoregulation in spontaneously hypertensive rats. Am J Physiol. 1987;252(3 Pt 2):F480–6.

    CAS  PubMed  Google Scholar 

  165. Sorensen CM, Leyssac PP, Skott O, Holstein-Rathlou NH. Role of the renin-angiotensin system in regulation and autoregulation of renal blood flow. Am J Physiol Regul Integr Comp Physiol. 2000;279(3):R1017–24.

    CAS  PubMed  Google Scholar 

  166. Hayashi K, Epstein M, Loutzenhiser R. Pressure-induced vasoconstriction of renal microvessels in normotensive and hypertensive rats. Studies in the isolated perfused hydronephrotic kidney. Circ Res. 1989;65(6):1475–84.

    CAS  PubMed  Google Scholar 

  167. Hayashi K, Epstein M, Loutzenhiser R. Enhanced myogenic responsiveness of renal interlobular arteries in spontaneously hypertensive rats. Hypertension. 1992;19(2):153–60.

    CAS  PubMed  Google Scholar 

  168. Takenaka T, Forster H, De Micheli A, Epstein M. Impaired myogenic responsiveness of renal microvessels in Dahl salt-sensitive rats. Circ Res. 1992;71(2):471–80.

    CAS  PubMed  Google Scholar 

  169. Almeida JB, Saragoca MA, Tavares A, Cezareti ML, Draibe SA, Ramos OL. Severe hypertension induces disturbances of renal autoregulation. Hypertension. 1992;19(2 Suppl):II279–83.

    CAS  PubMed  Google Scholar 

  170. Crowley SD, Coffman TM. The inextricable role of the kidney in hypertension. J Clin Invest. 2014;124(6):2341–7.

    PubMed Central  CAS  Google Scholar 

  171. Ruiz-Opazo N, Lopez LV, Herrera VL. The dual AngII/AVP receptor gene N119S/C163R variant exhibits sodium-induced dysfunction and cosegregates with salt-sensitive hypertension in the Dahl salt-sensitive hypertensive rat model. Mol Med. 2002;8(1):24–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Kim GH, Masilamani S, Turner R, Mitchell C, Wade JB, Knepper MA. The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein. Proc Natl Acad Sci U S A. 1998;95(24):14552–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA. Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest. 1999;104(7):R19–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Meneton P, Jeunemaitre X, de Wardener HE, MacGregor GA. Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev. 2005;85(2):679–715.

    CAS  PubMed  Google Scholar 

  175. Arar MY, Hogg RJ, Arant Jr BS, Seikaly MG. Etiology of sustained hypertension in children in the southwestern United States. Pediatr Nephrol. 1994;8(2):186–9.

    CAS  PubMed  Google Scholar 

  176. Robinson RF, Batisky DL, Hayes JR, Nahata MC, Mahan JD. Body mass index in primary and secondary pediatric hypertension. Pediatr Nephrol. 2004;19(12):1379–84.

    PubMed  Google Scholar 

  177. Flynn JT, Alderman MH. Characteristics of children with primary hypertension seen at a referral center. Pediatr Nephrol. 2005;20(7):961–6.

    PubMed  Google Scholar 

  178. Kapur G, Ahmed M, Pan C, Mitsnefes M, Chiang M, Mattoo TK. Secondary hypertension in overweight and stage 1 hypertensive children: a Midwest Pediatric Nephrology Consortium report. J Clin Hypertens (Greenwich). 2010;12(1):34–9.

    Google Scholar 

  179. Din-Dzietham R, Liu Y, Bielo MV, Shamsa F. High blood pressure trends in children and adolescents in national surveys, 1963 to 2002. Circulation. 2007;116(13):1488–96.

    PubMed  Google Scholar 

  180. Flynn J. The changing face of pediatric hypertension in the era of the childhood obesity epidemic. Pediatr Nephrol. 2013;28(7):1059–66.

    PubMed  Google Scholar 

  181. Fagard R, Brguljan J, Staessen J, Thijs L, Derom C, Thomis M, et al. Heritability of conventional and ambulatory blood pressures. A study in twins. Hypertension. 1995;26(6 Pt 1):919–24.

    CAS  PubMed  Google Scholar 

  182. Schneider GM, Jacobs DW, Gevirtz RN, O’Connor DT. Cardiovascular haemodynamic response to repeated mental stress in normotensive subjects at genetic risk of hypertension: evidence of enhanced reactivity, blunted adaptation, and delayed recovery. J Hum Hypertens. 2003;17(12):829–40.

    CAS  PubMed  Google Scholar 

  183. Longini Jr IM, Higgins MW, Hinton PC, Moll PP, Keller JB. Environmental and genetic sources of familial aggregation of blood pressure in Tecumseh, Michigan. Am J Epidemiol. 1984;120(1):131–44.

    PubMed  Google Scholar 

  184. Mongeau JG. Heredity and blood pressure in humans: an overview. Pediatr Nephrol. 1987;1(1):69–75.

    CAS  PubMed  Google Scholar 

  185. Lifton RP. Genetic determinants of human hypertension. Proc Natl Acad Sci U S A. 1995;92(19):8545–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Jeunemaitre X, Gimenez-Roqueplo AP, Celerier J, Corvol P. Angiotensinogen variants and human hypertension. Curr Hypertens Rep. 1999;1(1):31–41.

    CAS  PubMed  Google Scholar 

  187. Watt GC, Harrap SB, Foy CJ, Holton DW, Edwards HV, Davidson HR, et al. Abnormalities of glucocorticoid metabolism and the renin-angiotensin system: a four-corners approach to the identification of genetic determinants of blood pressure. J Hypertens. 1992;10(5):473–82.

    CAS  PubMed  Google Scholar 

  188. Williams SM, Addy JH, Phillips 3rd JA, Dai M, Kpodonu J, Afful J, et al. Combinations of variations in multiple genes are associated with hypertension. Hypertension. 2000;36(1):2–6.

    CAS  PubMed  Google Scholar 

  189. Binder A. A review of the genetics of essential hypertension. Curr Opin Cardiol. 2007;22(3):176–84.

    PubMed  Google Scholar 

  190. Zhao Q, Kelly TN, Li C, He J. Progress and future aspects in genetics of human hypertension. Curr Hypertens Rep. 2013;15(6):676–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Law CM, Barker DJ, Bull AR, Osmond C. Maternal and fetal influences on blood pressure. Arch Dis Child. 1991;66(11):1291–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  192. Zureik M, Bonithon-Kopp C, Lecomte E, Siest G, Ducimetiere P. Weights at birth and in early infancy, systolic pressure, and left ventricular structure in subjects aged 8 to 24 years. Hypertension. 1996;27(3 Pt 1):339–45.

    CAS  PubMed  Google Scholar 

  193. Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31(6):1235–9.

    CAS  PubMed  Google Scholar 

  194. Hofman PL, Cutfield WS. Insulin sensitivity in people born pre-term, with low or very low birth weight and small for gestational age. J Endocrinol Invest. 2006;29(1 Suppl):2–8.

    CAS  PubMed  Google Scholar 

  195. Siewert-Delle A, Ljungman S. The impact of birth weight and gestational age on blood pressure in adult life: a population-based study of 49-year-old men. Am J Hypertens. 1998;11(8 Pt 1):946–53.

    CAS  PubMed  Google Scholar 

  196. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341(8850):938–41.

    CAS  PubMed  Google Scholar 

  197. Mackenzie HS, Lawler EV, Brenner BM. Congenital oligonephropathy: the fetal flaw in essential hypertension? Kidney Int Suppl. 1996;55:S30–4.

    CAS  PubMed  Google Scholar 

  198. Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med. 2003;348(2):101–8.

    PubMed  Google Scholar 

  199. Beratis NG, Panagoulias D, Varvarigou A. Increased blood pressure in neonates and infants whose mothers smoked during pregnancy. J Pediatr. 1996;128(6):806–12.

    CAS  PubMed  Google Scholar 

  200. Singhal A, Cole TJ, Lucas A. Early nutrition in preterm infants and later blood pressure: two cohorts after randomised trials. Lancet. 2001;357(9254):413–9.

    CAS  PubMed  Google Scholar 

  201. Langley-Evans SC. Critical differences between two low protein diet protocols in the programming of hypertension in the rat. Int J Food Sci Nutr. 2000;51(1):11–7.

    CAS  PubMed  Google Scholar 

  202. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R. Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res. 2001;49(4):460–7.

    CAS  PubMed  Google Scholar 

  203. Alwasel SH, Kaleem I, Sahajpal V, Ashton N. Maternal protein restriction reduces angiotensin II AT(1) and AT(2) receptor expression in the fetal rat kidney. Kidney Blood Press Res. 2010;33(4):251–9.

    CAS  PubMed  Google Scholar 

  204. Ingelfinger JR, Woods LL. Perinatal programming, renal development, and adult renal function. Am J Hypertens. 2002;15(2 Pt 2):46S–9.

    PubMed  Google Scholar 

  205. Edvardsson VO, Steinthorsdottir SD, Eliasdottir SB, Indridason OS, Palsson R. Birth weight and childhood blood pressure. Curr Hypertens Rep. 2012;14(6):596–602.

    PubMed  Google Scholar 

  206. Hemachandra AH, Howards PP, Furth SL, Klebanoff MA. Birth weight, postnatal growth, and risk for high blood pressure at 7 years of age: results from the Collaborative Perinatal Project. Pediatrics. 2007;119(6):e1264–70.

    PubMed  Google Scholar 

  207. Belfort MB, Rifas-Shiman SL, Rich-Edwards J, Kleinman KP, Gillman MW. Size at birth, infant growth, and blood pressure at three years of age. J Pediatr. 2007;151(6):670–4.

    PubMed Central  PubMed  Google Scholar 

  208. Filler G, Yasin A, Kesarwani P, Garg AX, Lindsay R, Sharma AP. Big mother or small baby: which predicts hypertension? J Clin Hypertens (Greenwich). 2011;13(1):35–41.

    Google Scholar 

  209. Williams Jr DL, Jones KL, Pettibone DJ, Lis EV, Clineschmidt BV. Sarafotoxin S6c: an agonist which distinguishes between endothelin receptor subtypes. Biochem Biophys Res Commun. 1991;175(2):556–61.

    CAS  PubMed  Google Scholar 

  210. Johansson-Kark M, Rasmussen F, De Stavola B, Leon DA. Fetal growth and systolic blood pressure in young adulthood: the Swedish Young Male Twins Study. Paediatr Perinat Epidemiol. 2002;16(3):200–9.

    PubMed  Google Scholar 

  211. Falkner B, Kushner H, Onesti G, Angelakos ET. Cardiovascular characteristics in adolescents who develop essential hypertension. Hypertension. 1981;3(5):521–7.

    CAS  PubMed  Google Scholar 

  212. Voors AW, Webber LS, Berenson GS. Resting heart rate and pressure-rate product of children in a total biracial community: the Bogalusa Heart Study. Am J Epidemiol. 1982;116(2):276–86.

    CAS  PubMed  Google Scholar 

  213. Palatini P, Julius S. The role of cardiac autonomic function in hypertension and cardiovascular disease. Curr Hypertens Rep. 2009;11(3):199–205.

    PubMed  Google Scholar 

  214. Menkes MS, Matthews KA, Krantz DS, Lundberg U, Mead LA, Qaqish B, et al. Cardiovascular reactivity to the cold pressor test as a predictor of hypertension. Hypertension. 1989;14(5):524–30.

    CAS  PubMed  Google Scholar 

  215. Treiber FA, McCaffrey F, Musante L, Rhodes T, Davis H, Strong WB, et al. Ethnicity, family history of hypertension and patterns of hemodynamic reactivity in boys. Psychosom Med. 1993;55(1):70–7.

    CAS  PubMed  Google Scholar 

  216. Muller R, Steffen HM, Weller P, Krone W. Plasma catecholamines and adrenoceptors in young hypertensive patients. J Hum Hypertens. 1994;8(5):351–5.

    CAS  PubMed  Google Scholar 

  217. Masuo K, Mikami H, Ogihara T, Tuck ML. Sympathetic nerve hyperactivity precedes hyperinsulinemia and blood pressure elevation in a young, nonobese Japanese population. Am J Hypertens. 1997;10(1):77–83.

    CAS  PubMed  Google Scholar 

  218. Lopes HF, Silva HB, Consolim-Colombo FM, Barreto Filho JA, Riccio GM, Giorgi DM, et al. Autonomic abnormalities demonstrable in young normotensive subjects who are children of hypertensive parents. Braz J Med Biol Res. 2000;33(1):51–4.

    CAS  PubMed  Google Scholar 

  219. Zhu H, Poole J, Lu Y, Harshfield GA, Treiber FA, Snieder H, et al. Sympathetic nervous system, genes and human essential hypertension. Curr Neurovasc Res. 2005;2(4):303–17.

    CAS  PubMed  Google Scholar 

  220. Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings. Hypertension. 1989;14(2):177–83.

    CAS  PubMed  Google Scholar 

  221. Victor RG, Shafiq MM. Sympathetic neural mechanisms in human hypertension. Curr Hypertens Rep. 2008;10(3):241–7.

    CAS  PubMed  Google Scholar 

  222. Lambert E, Straznicky N, Schlaich M, Esler M, Dawood T, Hotchkin E, et al. Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension. 2007;50(5):862–8.

    CAS  PubMed  Google Scholar 

  223. Grassi G, Seravalle G, Dell’Oro R, Mancia G. Sympathetic mechanisms, organ damage, and antihypertensive treatment. Curr Hypertens Rep. 2011;13(4):303–8.

    CAS  PubMed  Google Scholar 

  224. Koch VH, Furusawa EA, Saito MI, Colli A, Ignes EC, Okay Y, et al. White coat hypertension in adolescents. Clin Nephrol. 1999;52(5):297–303.

    CAS  PubMed  Google Scholar 

  225. Neumann SA, Jennings JR, Muldoon MF, Manuck SB. White-coat hypertension and autonomic nervous system dysregulation. Am J Hypertens. 2005;18(5 Pt 1):584–8.

    PubMed  Google Scholar 

  226. Landsberg L. Insulin-mediated sympathetic stimulation: role in the pathogenesis of obesity-related hypertension (or, how insulin affects blood pressure, and why). J Hypertens. 2001;19(3 Pt 2):523–8.

    CAS  PubMed  Google Scholar 

  227. Tentolouris N, Liatis S, Katsilambros N. Sympathetic system activity in obesity and metabolic syndrome. Ann N Y Acad Sci. 2006;1083:129–52.

    CAS  PubMed  Google Scholar 

  228. Das UN, Repossi G, Dain A, Eynard AR. Is insulin resistance a disorder of the brain? Front Biosci. 2011;16:1–12.

    CAS  Google Scholar 

  229. Ahima RS, Flier JS. Leptin. Annu Rev Physiol. 2000;62:413–37.

    CAS  PubMed  Google Scholar 

  230. Nasrallah MP, Ziyadeh FN. Overview of the physiology and pathophysiology of leptin with special emphasis on its role in the kidney. Semin Nephrol. 2013;33(1):54–65.

    CAS  PubMed  Google Scholar 

  231. Hall JE, Hildebrandt DA, Kuo J. Obesity hypertension: role of leptin and sympathetic nervous system. Am J Hypertens. 2001;14(6 Pt 2):103S–15.

    CAS  PubMed  Google Scholar 

  232. Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI. Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest. 1997;100(2):270–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  233. da Silva AA, Kuo JJ, Hall JE. Role of hypothalamic melanocortin 3/4-receptors in mediating chronic cardiovascular, renal, and metabolic actions of leptin. Hypertension. 2004;43(6):1312–7.

    PubMed  Google Scholar 

  234. Rahmouni K. Obesity, sympathetic overdrive, and hypertension: the leptin connection. Hypertension. 2010;55(4):844–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  235. Gunduz Z, Dursun N, Akgun H, Ozturk F, Okur H, Koc N. Renal effects of long-term leptin infusion and preventive role of losartan treatment in rats. Regul Pept. 2005;132(1–3):59–66.

    CAS  PubMed  Google Scholar 

  236. Shatat IF, Flynn JT. Relationships between renin, aldosterone, and 24-hour ambulatory blood pressure in obese adolescents. Pediatr Res. 2011;69(4):336–40.

    CAS  PubMed  Google Scholar 

  237. Sarzani R, Salvi F, Dessi-Fulgheri P, Rappelli A. Renin-angiotensin system, natriuretic peptides, obesity, metabolic syndrome, and hypertension: an integrated view in humans. J Hypertens. 2008;26(5):831–43.

    CAS  PubMed  Google Scholar 

  238. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010;316(2):129–39.

    CAS  PubMed  Google Scholar 

  239. Ouchi N, Kihara S, Funahashi T, Matsuzawa Y, Walsh K. Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol. 2003;14(6):561–6.

    CAS  PubMed  Google Scholar 

  240. Keaney Jr JF, Larson MG, Vasan RS, Wilson PW, Lipinska I, Corey D, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol. 2003;23(3):434–9.

    CAS  PubMed  Google Scholar 

  241. Fujita K, Nishizawa H, Funahashi T, Shimomura I, Shimabukuro M. Systemic oxidative stress is associated with visceral fat accumulation and the metabolic syndrome. Circ J. 2006;70(11):1437–42.

    CAS  PubMed  Google Scholar 

  242. Warolin J, Coenen KR, Kantor JL, Whitaker LE, Wang L, Acra SA, et al. The relationship of oxidative stress, adiposity and metabolic risk factors in healthy Black and White American youth. Pediatr Obes. 2014;9(1):43–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  243. Hall JE. The kidney, hypertension, and obesity. Hypertension. 2003;41(3 Pt 2):625–33.

    PubMed  Google Scholar 

  244. Hunley TE, Ma LJ, Kon V. Scope and mechanisms of obesity-related renal disease. Curr Opin Nephrol Hypertens. 2010;19(3):227–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  245. Gupta AK, Clark RV, Kirchner KA. Effects of insulin on renal sodium excretion. Hypertension. 1992;19(1 Suppl):I78–82.

    CAS  PubMed  Google Scholar 

  246. Esler M, Rumantir M, Wiesner G, Kaye D, Hastings J, Lambert G. Sympathetic nervous system and insulin resistance: from obesity to diabetes. Am J Hypertens. 2001;14(11 Pt 2):304S–9.

    CAS  PubMed  Google Scholar 

  247. Rocchini AP, Key J, Bondie D, Chico R, Moorehead C, Katch V, et al. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N Engl J Med. 1989;321(9):580–5.

    CAS  PubMed  Google Scholar 

  248. Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest. 1991;87(6):2246–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  249. Reaven GM, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities–the role of insulin resistance and the sympathoadrenal system. N Engl J Med. 1996;334(6):374–81.

    CAS  PubMed  Google Scholar 

  250. Laakso M, Edelman SV, Brechtel G, Baron AD. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest. 1990;85(6):1844–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  251. Bornfeldt KE, Arnqvist HJ, Capron L. In vivo proliferation of rat vascular smooth muscle in relation to diabetes mellitus insulin-like growth factor I and insulin. Diabetologia. 1992;35(2):104–8.

    CAS  PubMed  Google Scholar 

  252. Lima NK, Abbasi F, Lamendola C, Reaven GM. Prevalence of insulin resistance and related risk factors for cardiovascular disease in patients with essential hypertension. Am J Hypertens. 2009;22(1):106–11.

    CAS  PubMed  Google Scholar 

  253. Falkner B, Hulman S, Tannenbaum J, Kushner H. Insulin resistance and blood pressure in young black men. Hypertension. 1990;16(6):706–11.

    CAS  PubMed  Google Scholar 

  254. Cannon PJ, Stason WB, Demartini FE, Sommers SC, Laragh JH. Hyperuricemia in primary and renal hypertension. N Engl J Med. 1966;275(9):457–64.

    CAS  PubMed  Google Scholar 

  255. Prebis JW, Gruskin AB, Polinsky MS, Baluarte HJ. Uric acid in childhood essential hypertension. J Pediatr. 1981;98(5):702–7.

    CAS  PubMed  Google Scholar 

  256. Sundstrom J, Sullivan L, D’Agostino RB, Levy D, Kannel WB, Vasan RS. Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension. 2005;45(1):28–33.

    PubMed  Google Scholar 

  257. Mellen PB, Bleyer AJ, Erlinger TP, Evans GW, Nieto FJ, Wagenknecht LE, et al. Serum uric acid predicts incident hypertension in a biethnic cohort: the atherosclerosis risk in communities study. Hypertension. 2006;48(6):1037–42.

    CAS  PubMed  Google Scholar 

  258. Forman JP, Choi H, Curhan GC. Plasma uric acid level and risk for incident hypertension among men. J Am Soc Nephrol. 2007;18(1):287–92.

    CAS  PubMed  Google Scholar 

  259. Mazzali M, Hughes J, Kim YG, Jefferson JA, Kang DH, Gordon KL, et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension. 2001;38(5):1101–6.

    CAS  PubMed  Google Scholar 

  260. Mazzali M, Kanellis J, Han L, Feng L, Xia YY, Chen Q, et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol. 2002;282(6):F991–7.

    CAS  PubMed  Google Scholar 

  261. Sanchez-Lozada LG, Tapia E, Lopez-Molina R, Nepomuceno T, Soto V, Avila-Casado C, et al. Effects of acute and chronic l-arginine treatment in experimental hyperuricemia. Am J Physiol Renal Physiol. 2007;292(4):F1238–44.

    CAS  PubMed  Google Scholar 

  262. Gruskin AB. The adolescent with essential hypertension. Am J Kidney Dis. 1985;6(2):86–90.

    CAS  PubMed  Google Scholar 

  263. Feig DI, Johnson RJ. Hyperuricemia in childhood primary hypertension. Hypertension. 2003;42(3):247–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  264. Zoccali C, Maio R, Mallamaci F, Sesti G, Perticone F. Uric acid and endothelial dysfunction in essential hypertension. J Am Soc Nephrol. 2006;17(5):1466–71.

    CAS  PubMed  Google Scholar 

  265. Mercuro G, Vitale C, Cerquetani E, Zoncu S, Deidda M, Fini M, et al. Effect of hyperuricemia upon endothelial function in patients at increased cardiovascular risk. Am J Cardiol. 2004;94(7):932–5.

    CAS  PubMed  Google Scholar 

  266. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2008;300(8):924–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  267. Dawson J, Walters M. Uric acid and xanthine oxidase: future therapeutic targets in the prevention of cardiovascular disease? Br J Clin Pharmacol. 2006;62:633–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  268. Weinberger MH, Miller JZ, Luft FC, et al. Sodium and blood pressure: an overview. In: Children’s blood pressure: report of the 88th Ross Conference on pediatric research. Columbus: Ross Laboratories; 1985. p. 77–85.

    Google Scholar 

  269. Law MR, Frost CD, Wald NJ. By how much does dietary salt reduction lower blood pressure? I–Analysis of observational data among populations. BMJ. 1991;302(6780):811–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  270. He FJ, MacGregor GA. Potassium intake and blood pressure. Am J Hypertens. 1999;12(8 Pt 1):849–51.

    CAS  PubMed  Google Scholar 

  271. Cutler JA, Follmann D, Allender PS. Randomized trials of sodium reduction: an overview. Am J Clin Nutr. 1997;65(2 Suppl):643S–51.

    CAS  PubMed  Google Scholar 

  272. Simons-Morton DG, Obarzanek E. Diet and blood pressure in children and adolescents. Pediatr Nephrol. 1997;11(2):244–9.

    CAS  PubMed  Google Scholar 

  273. Grimm Jr RH, Neaton JD, Elmer PJ, Svendsen KH, Levin J, Segal M, et al. The influence of oral potassium chloride on blood pressure in hypertensive men on a low-sodium diet. N Engl J Med. 1990;322(9):569–74.

    PubMed  Google Scholar 

  274. He FJ, Pombo-Rodrigues S, Macgregor GA. Salt reduction in England from 2003 to 2011: its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open. 2014;4(4):e004549.

    PubMed Central  PubMed  Google Scholar 

  275. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336(16):1117–24.

    CAS  PubMed  Google Scholar 

  276. Couch SC, Saelens BE, Levin L, Dart K, Falciglia G, Daniels SR. The efficacy of a clinic-based behavioral nutrition intervention emphasizing a DASH-type diet for adolescents with elevated blood pressure. J Pediatr. 2008;152(4):494–501.

    PubMed  Google Scholar 

  277. Weinberger MH. Salt sensitivity of blood pressure in humans. Hypertension. 1996;27(3 Pt 2):481–90.

    CAS  PubMed  Google Scholar 

  278. Simonetti GD, Raio L, Surbek D, Nelle M, Frey FJ, Mohaupt MG. Salt sensitivity of children with low birth weight. Hypertension. 2008;52:625–30.

    CAS  PubMed  Google Scholar 

  279. Harshfield GA, Dong Y, Kapuku GK, Zhu H, Hanevold CD. Stress-induced sodium retention and hypertension: a review and hypothesis. Curr Hypertens Rep. 2009;11(1):29–34.

    CAS  PubMed  Google Scholar 

  280. Berenson GS, Chen W, Dasmahapatra P, Fernandez C, Giles T, Xu J, et al. Stimulus response of blood pressure in black and white young individuals helps explain racial divergence in adult cardiovascular disease: the Bogalusa Heart Study. J Am Soc Hypertens JASH. 2011;5(4):230–8.

    PubMed  Google Scholar 

  281. Pickering TG. The effects of environmental and lifestyle factors on blood pressure and the intermediary role of the sympathetic nervous system. J Hum Hypertens. 1997;11 Suppl 1:S9–18.

    PubMed  Google Scholar 

  282. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104(4):545–56.

    CAS  PubMed  Google Scholar 

  283. Ingelfinger JR. The molecular basis of pediatric hypertension. Pediatr Clin North Am. 2006;53(5):1011–28, x–xi.

    PubMed  Google Scholar 

  284. Simonetti GD, Mohaupt MG, Bianchetti MG. Monogenic forms of hypertension. Eur J Pediatr. 2012;171(10):1433–9.

    CAS  PubMed  Google Scholar 

  285. Lifton RP, Dluhy RG, Powers M, Rich GM, Gutkin M, Fallo F, et al. Hereditary hypertension caused by chimaeric gene duplications and ectopic expression of aldosterone synthase. Nat Genet. 1992;2(1):66–74.

    CAS  PubMed  Google Scholar 

  286. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355(6357):262–5.

    CAS  PubMed  Google Scholar 

  287. Lafferty AR, Torpy DJ, Stowasser M, Taymans SE, Lin JP, Huggard P, et al. A novel genetic locus for low renin hypertension: familial hyperaldosteronism type II maps to chromosome 7 (7p22). J Med Genet. 2000;37(11):831–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  288. New MI, Geller DS, Fallo F, Wilson RC. Monogenic low renin hypertension. Trends Endocrinol Metab. 2005;16(3):92–7.

    CAS  PubMed  Google Scholar 

  289. Geller DS, Zhang J, Wisgerhof MV, Shackleton C, Kashgarian M, Lifton RP. A novel form of human Mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab. 2008;93(8):3117–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  290. Choi M, Scholl UI, Yue P, Bjorklund P, Zhao B, Nelson-Williams C, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011;331(6018):768–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  291. Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000;289(5476):119–23.

    CAS  PubMed  Google Scholar 

  292. Mune T, Rogerson FM, Nikkila H, Agarwal AK, White PC. Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet. 1995;10(4):394–9.

    CAS  PubMed  Google Scholar 

  293. Funder JW. Adrenal steroids: new answers, new questions. Science. 1987;237(4812):236–7.

    CAS  PubMed  Google Scholar 

  294. Bailey MA, Paterson JM, Hadoke PW, Wrobel N, Bellamy CO, Brownstein DG, et al. A switch in the mechanism of hypertension in the syndrome of apparent mineralocorticoid excess. J Am Soc Nephrol. 2008;19(1):47–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  295. Stowasser M, Gordon RD. Monogenic mineralocorticoid hypertension. Best Pract Res Clin Endocrinol Metab. 2006;20(3):401–20.

    CAS  PubMed  Google Scholar 

  296. Vehaskari VM. Heritable forms of hypertension. Pediatr Nephrol. 2009;24:1929–37.

    Google Scholar 

  297. Charmandari E, Kino T, Chrousos GP. Familial/sporadic glucocorticoid resistance: clinical phenotype and molecular mechanisms. Ann N Y Acad Sci. 2004;1024:168–81.

    CAS  PubMed  Google Scholar 

  298. Chrousos GP, Loriaux DL, Brandon D, Tomita M, Vingerhoeds AC, Merriam GR, et al. Primary cortisol resistance: a familial syndrome and an animal model. J Steroid Biochem. 1983;19(1B):567–75.

    CAS  PubMed  Google Scholar 

  299. Vingerhoeds AC, Thijssen JH, Schwarz F. Spontaneous hypercortisolism without Cushing’s syndrome. J Clin Endocrinol Metab. 1976;43(5):1128–33.

    CAS  PubMed  Google Scholar 

  300. Liddle GW, Bledsoe T, Coppage Jr WS. Hypertension reviews. J Tenn Med Assoc. 1974;67(8):669.

    CAS  PubMed  Google Scholar 

  301. Botero-Velez M, Curtis JJ, Warnock DG. Brief report: Liddle’s syndrome revisited–a disorder of sodium reabsorption in the distal tubule. N Engl J Med. 1994;330(3):178–81.

    CAS  PubMed  Google Scholar 

  302. Shimkets RA, Lifton RP, Canessa CM. The activity of the epithelial sodium channel is regulated by clathrin-mediated endocytosis. J Biol Chem. 1997;272(41):25537–41.

    CAS  PubMed  Google Scholar 

  303. Furuhashi M, Kitamura K, Adachi M, Miyoshi T, Wakida N, Ura N, et al. Liddle’s syndrome caused by a novel mutation in the proline-rich PY motif of the epithelial sodium channel beta-subunit. J Clin Endocrinol Metab. 2005;90(1):340–4.

    CAS  PubMed  Google Scholar 

  304. Snyder PM, Price MP, McDonald FJ, Adams CM, Volk KA, Zeiher BG, et al. Mechanism by which Liddle’s syndrome mutations increase activity of a human epithelial Na+ channel. Cell. 1995;83(6):969–78.

    CAS  PubMed  Google Scholar 

  305. Kamynina E, Staub O. Concerted action of ENaC, Nedd4-2, and Sgk1 in transepithelial Na(+) transport. Am J Physiol Renal Physiol. 2002;283(3):F377–87.

    CAS  PubMed  Google Scholar 

  306. Hannila-Handelberg T, Kontula K, Tikkanen I, Tikkanen T, Fyhrquist F, Helin K, et al. Common variants of the beta and gamma subunits of the epithelial sodium channel and their relation to plasma renin and aldosterone levels in essential hypertension. BMC Med Genet. 2005;6:4.

    PubMed Central  PubMed  Google Scholar 

  307. Swift PA, Macgregor GA. Genetic variation in the epithelial sodium channel: a risk factor for hypertension in people of African origin. Adv Ren Replace Ther. 2004;11(1):76–86.

    PubMed  Google Scholar 

  308. Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995;11(1):76–82.

    CAS  PubMed  Google Scholar 

  309. Williams SS. Advances in genetic hypertension. Curr Opin Pediatr. 2007;19(2):192–8.

    PubMed  Google Scholar 

  310. Staub O, Verrey F. Impact of Nedd4 proteins and serum and glucocorticoid-induced kinases on epithelial Na+ transport in the distal nephron. J Am Soc Nephrol. 2005;16(11):3167–74.

    CAS  PubMed  Google Scholar 

  311. Paver WK, Pauline GJ. Hypertension and hyperpotassaemia without renal disease in a young male. Med J Aust. 1964;2:305–6.

    CAS  PubMed  Google Scholar 

  312. Gordon RD. The syndrome of hypertension and hyperkalemia with normal glomerular filtration rate: Gordon’s syndrome. Aust N Z J Med. 1986;16(2):183–4.

    CAS  PubMed  Google Scholar 

  313. Take C, Ikeda K, Kurasawa T, Kurokawa K. Increased chloride reabsorption as an inherited renal tubular defect in familial type II pseudohypoaldosteronism. N Engl J Med. 1991;324(7):472–6.

    CAS  PubMed  Google Scholar 

  314. Erdogan G, Corapcioglu D, Erdogan MF, Hallioglu J, Uysal AR. Furosemide and dDAVP for the treatment of pseudohypoaldosteronism type II. J Endocrinol Invest. 1997;20(11):681–4.

    CAS  PubMed  Google Scholar 

  315. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293(5532):1107–12.

    CAS  PubMed  Google Scholar 

  316. Disse-Nicodeme S, Achard JM, Desitter I, Houot AM, Fournier A, Corvol P, et al. A new locus on chromosome 12p13.3 for pseudohypoaldosteronism type II, an autosomal dominant form of hypertension. Am J Hum Genet. 2000;67(2):302–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  317. Mansfield TA, Simon DB, Farfel Z, Bia M, Tucci JR, Lebel M, et al. Multilocus linkage of familial hyperkalaemia and hypertension, pseudohypoaldosteronism type II, to chromosomes 1q31-42 and 17p11-q21. Nat Genet. 1997;16(2):202–5.

    CAS  PubMed  Google Scholar 

  318. Cope G, Golbang A, O’Shaughnessy KM. WNK kinases and the control of blood pressure. Pharmacol Ther. 2005;106(2):221–31.

    CAS  PubMed  Google Scholar 

  319. Golbang AP, Murthy M, Hamad A, Liu CH, Cope G, Van’t Hoff W, et al. A new kindred with pseudohypoaldosteronism type II and a novel mutation (564D > H) in the acidic motif of the WNK4 gene. Hypertension. 2005;46(2):295–300.

    CAS  PubMed  Google Scholar 

  320. Huang CL, Kuo E. Mechanisms of disease: WNK-ing at the mechanism of salt-sensitive hypertension. Nat Clin Pract Nephrol. 2007;3(11):623–30.

    CAS  PubMed  Google Scholar 

  321. Huang CL, Kuo E, Toto RD. WNK kinases and essential hypertension. Curr Opin Nephrol Hypertens. 2008;17(2):133–7.

    CAS  PubMed  Google Scholar 

  322. Schuster H, Wienker TF, Toka HR, Bahring S, Jeschke E, Toka O, et al. Autosomal dominant hypertension and brachydactyly in a Turkish kindred resembles essential hypertension. Hypertension. 1996;28(6):1085–92.

    CAS  PubMed  Google Scholar 

  323. Bilginturan N, Zileli S, Karacadag S, Pirnar T. Hereditary brachydactyly associated with hypertension. J Med Genet. 1973;10(3):253–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  324. Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soos MA, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402(6764):880–3.

    CAS  PubMed  Google Scholar 

  325. Wilson FH, Hariri A, Farhi A, Zhao H, Petersen KF, Toka HR, et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science. 2004;306(5699):1190–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  326. Nystrom HC, Jia J, Johansson M, Lambert G, Bergstrom G. Neurohormonal influences on maintenance and reversal of two-kidney one-clip renal hypertension. Acta Physiol Scand. 2002;175(3):245–51.

    CAS  PubMed  Google Scholar 

  327. Nakada T, Kubota Y, Suzuki H, Sasagawa I, Watanabe M, Ishigooka M. Suppression of sympathetic nervous system attenuates the development of two-kidney, one-clip Goldblatt hypertension. J Urol. 1996;156(4):1480–4.

    CAS  PubMed  Google Scholar 

  328. Johansson M, Elam M, Rundqvist B, Eisenhofer G, Herlitz H, Lambert G, et al. Increased sympathetic nerve activity in renovascular hypertension. Circulation. 1999;99(19):2537–42.

    CAS  PubMed  Google Scholar 

  329. Imanishi M, Akabane S, Takamiya M, Kawamura M, Matsushima Y, Kuramochi M, et al. Critical degree of renal arterial stenosis that causes hypertension in dogs. Angiology. 1992;43(10):833–42.

    CAS  PubMed  Google Scholar 

  330. Brown JJ, Davies DL, Morton JJ, Robertson JI, Cuesta V, Lever AF, et al. Mechanism of renal hypertension. Lancet. 1976;1(7971):1219–21.

    CAS  PubMed  Google Scholar 

  331. Eng E, Veniant M, Floege J, Fingerle J, Alpers CE, Menard J, et al. Renal proliferative and phenotypic changes in rats with two-kidney, one-clip Goldblatt hypertension. Am J Hypertens. 1994;7(2):177–85.

    CAS  PubMed  Google Scholar 

  332. Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Oshima T, Chayama K. Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med. 2002;346(25):1954–62.

    CAS  PubMed  Google Scholar 

  333. Tullus K, Brennan E, Hamilton G, Lord R, McLaren CA, Marks SD, et al. Renovascular hypertension in children. Lancet. 2008;371(9622):1453–63.

    CAS  PubMed  Google Scholar 

  334. Vo NJ, Hammelman BD, Racadio JM, Strife CF, Johnson ND, Racadio JM. Anatomic distribution of renal artery stenosis in children: implications for imaging. Pediatr Radiol. 2006;36(10):1032–6.

    PubMed  Google Scholar 

  335. Rushton AR. The genetics of fibromuscular dysplasia. Arch Intern Med. 1980;140(2):233–6.

    CAS  PubMed  Google Scholar 

  336. Bofinger A, Hawley C, Fisher P, Daunt N, Stowasser M, Gordon R. Polymorphisms of the renin-angiotensin system in patients with multifocal renal arterial fibromuscular dysplasia. J Hum Hypertens. 2001;15(3):185–90.

    CAS  PubMed  Google Scholar 

  337. Quiros-Tejeira RE, Ament ME, Heyman MB, Martin MG, Rosenthal P, Hall TR, et al. Variable morbidity in alagille syndrome: a review of 43 cases. J Pediatr Gastroenterol Nutr. 1999;29(4):431–7.

    CAS  PubMed  Google Scholar 

  338. Rose C, Wessel A, Pankau R, Partsch CJ, Bursch J. Anomalies of the abdominal aorta in Williams-Beuren syndrome–another cause of arterial hypertension. Eur J Pediatr. 2001;160(11):655–8.

    CAS  PubMed  Google Scholar 

  339. NAPRTCS. North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) 2008 Annual Report 2008.

    Google Scholar 

  340. Wuhl E, Hadtstein C, Mehls O, Schaefer F, Escape Trial G. Home, clinic, and ambulatory blood pressure monitoring in children with chronic renal failure. Pediatr Res. 2004;55(3):492–7.

    PubMed  Google Scholar 

  341. Flynn JT, Mitsnefes M, Pierce C, Cole SR, Parekh RS, Furth SL, et al. Blood pressure in children with chronic kidney disease. A report from the Chronic Kidney Disease in Children study. Hypertension. 2008;52:631–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  342. VanDeVoorde RG, Mitsnefes MM. Hypertension and CKD. Adv Chronic Kidney Dis. 2011;18(5):355–61.

    PubMed  Google Scholar 

  343. Alvarez-Lara MA, Martin-Malo A, Espinosa M, Rodriguez-Benot A, Aljama P. Blood pressure and body water distribution in chronic renal failure patients. Nephrol Dial Transplant. 2001;16 Suppl 1:94–7.

    PubMed  Google Scholar 

  344. Chapman AB, Johnson A, Gabow PA, Schrier RW. The renin-angiotensin-aldosterone system and autosomal dominant polycystic kidney disease. N Engl J Med. 1990;323(16):1091–6.

    CAS  PubMed  Google Scholar 

  345. Boero R, Pignataro A, Ferro M, Quarello F. Sympathetic nervous system and chronic renal failure. Clin Exp Hypertens. 2001;23(1–2):69–75.

    CAS  PubMed  Google Scholar 

  346. Fleck C, Janz A, Schweitzer F, Karge E, Schwertfeger M, Stein G. Serum concentrations of asymmetric (ADMA) and symmetric (SDMA) dimethylarginine in renal failure patients. Kidney Int Suppl. 2001;78:S14–8.

    CAS  PubMed  Google Scholar 

  347. Morris ST, McMurray JJ, Spiers A, Jardine AG. Impaired endothelial function in isolated human uremic resistance arteries. Kidney Int. 2001;60(3):1077–82.

    CAS  PubMed  Google Scholar 

  348. Vajo Z, Moffitt RA, Parvathala S, Szekacs B, Dachman WD. Elevated endothelin-1 levels and persistent stage IV hypertension in a nonvolume overloaded anephric patient. Am J Hypertens. 1996;9(9):935–7.

    CAS  PubMed  Google Scholar 

  349. Van Geet C, Van Damme-Lombaerts R, Vanrusselt M, de Mol A, Proesmans W, Vermylen J. Recombinant human erythropoietin increases blood pressure, platelet aggregability and platelet free calcium mobilisation in uraemic children: a possible link? Thromb Haemost. 1990;64(1):7–10.

    PubMed  Google Scholar 

  350. Hadtstein C, Schaefer F. Hypertension in children with chronic kidney disease: pathophysiology and management. Pediatr Nephrol. 2008;23(3):363–71.

    PubMed Central  PubMed  Google Scholar 

  351. Mitsnefes MM, Knilans T, Mays W, Khoury PR, Daniels SR. Blood pressure and total peripheral resistance in children with chronic kidney disease. Pediatr Nephrol. 2005;20(6):803–6.

    PubMed  Google Scholar 

  352. Hasegawa K, Matsushita Y, Inoue T, Morii H, Ishibashi M, Yamaji T. Plasma levels of atrial natriuretic peptide in patients with chronic renal failure. J Clin Endocrinol Metab. 1986;63(4):819–22.

    CAS  PubMed  Google Scholar 

  353. Bennett WM, Henrich WL, Stoff JS. The renal effects of nonsteroidal anti-inflammatory drugs: summary and recommendations. Am J Kidney Dis. 1996;28(1 Suppl 1):S56–62.

    CAS  PubMed  Google Scholar 

  354. Vallance P, Leone A, Calver A, Collier J, Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 1992;339(8793):572–5.

    CAS  PubMed  Google Scholar 

  355. London G, Guerin A, Pannier B, Marchais S, Benetos A, Safar M. Increased systolic pressure in chronic uremia. Role of arterial wave reflections. Hypertension. 1992;20(1):10–9.

    CAS  PubMed  Google Scholar 

  356. Portaluppi F, Smolensky M. Circadian rhythm and environmental determinants of blood pressure regulation in normal and hypertensive conditions. In: White WB, editor. Blood pressure monitoring in cardiovascular medicine and therapeutics. Totowa: Humana Press; 2001. p. 79–138.

    Google Scholar 

  357. NAPRTCS. North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) 2011 Annual Report 2011. Available from https://web.emmes.com/study/ped/

  358. Halbach SM, Martz K, Mattoo T, Flynn J. Predictors of blood pressure and its control in pediatric patients receiving dialysis. J Pediatr. 2012;160(4):621–5.e1.

    PubMed Central  PubMed  Google Scholar 

  359. Leypoldt JK, Cheung AK, Delmez JA, Gassman JJ, Levin NW, Lewis JA, et al. Relationship between volume status and blood pressure during chronic hemodialysis. Kidney Int. 2002;61(1):266–75.

    PubMed  Google Scholar 

  360. Lameire N, Van Biesen W. Importance of blood pressure and volume control in peritoneal dialysis patients. Perit Dial Int. 2001;21(2):206–11.

    CAS  PubMed  Google Scholar 

  361. Rahman M, Smith MC. Hypertension in hemodialysis patients. Curr Hypertens Rep. 2001;3(6):496–502.

    CAS  PubMed  Google Scholar 

  362. Erkan E, Devarajan P, Kaskel F. Role of nitric oxide, endothelin-1, and inflammatory cytokines in blood pressure regulation in hemodialysis patients. Am J Kidney Dis. 2002;40(1):76–81.

    CAS  PubMed  Google Scholar 

  363. Vaziri ND. Cardiovascular effects of erythropoietin and anemia correction. Curr Opin Nephrol Hypertens. 2001;10(5):633–7.

    CAS  PubMed  Google Scholar 

  364. Krapf R, Hulter HN. Arterial hypertension induced by erythropoietin and erythropoiesis-stimulating agents (ESA). Clin J Am Soc Nephrol. 2009;4(2):470–80.

    CAS  PubMed  Google Scholar 

  365. Heidenreich S, Rahn KH, Zidek W. Direct vasopressor effect of recombinant human erythropoietin on renal resistance vessels. Kidney Int. 1991;39(2):259–65.

    CAS  PubMed  Google Scholar 

  366. Agarwal R, Lewis R, Davis JL, Becker B. Lisinopril therapy for hemodialysis hypertension: hemodynamic and endocrine responses. Am J Kidney Dis. 2001;38(6):1245–50.

    CAS  PubMed  Google Scholar 

  367. Baluarte HJ, Gruskin AB, Ingelfinger JR, Stablein D, Tejani A. Analysis of hypertension in children post renal transplantation–a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Pediatr Nephrol. 1994;8(5):570–3.

    CAS  PubMed  Google Scholar 

  368. Mitsnefes M, Ho PL, McEnery PT. Hypertension and progression of chronic renal insufficiency in children: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). J Am Soc Nephrol. 2003;14(10):2618–22.

    PubMed  Google Scholar 

  369. Tejani AH, Sullivan EK, Harmon WE, Fine RN, Kohaut E, Emmett L, et al. Pediatric renal transplantation – the NAPRTCS experience. Clin Transpl. 1997:87–100.

    Google Scholar 

  370. NAPRTCS. North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) 2002 Annual Report Potomac, MD 2007. Available from http://www.naprtcs.org

  371. Seeman T. Ambulatory blood pressure monitoring in pediatric renal transplantation. Curr Hypertens Rep. 2012;14(6):608–18.

    PubMed  Google Scholar 

  372. Olyaei AJ, deMattos AM, Bennett WM. A practical guide to the management of hypertension in renal transplant recipients. Drugs. 1999;58(6):1011–27.

    CAS  PubMed  Google Scholar 

  373. Mitsnefes MM. Hypertension and end-organ damage in pediatric renal transplantation. Pediatr Transplant. 2004;8(4):394–9.

    PubMed  Google Scholar 

  374. Seeman T. Hypertension after renal transplantation. Pediatr Nephrol. 2009;24:959–72.

    Google Scholar 

  375. Flynn JT. Ambulatory blood pressure monitoring should be routinely performed after pediatric renal transplantation. Pediatr Transplant. 2012;16(6):533–6.

    PubMed  Google Scholar 

  376. Park JB, Schiffrin EL. Effects of antihypertensive therapy on hypertensive vascular disease. Curr Hypertens Rep. 2000;2(3):280–8.

    CAS  PubMed  Google Scholar 

  377. Broyer M, Guest G, Gagnadoux MF, Beurton D. Hypertension following renal transplantation in children. Pediatr Nephrol. 1987;1(1):16–21.

    CAS  PubMed  Google Scholar 

  378. Schwenger V, Zeier M, Ritz E. Hypertension after renal transplantation. Curr Hypertens Rep. 2001;3(5):434–9.

    CAS  PubMed  Google Scholar 

  379. Takeda Y, Miyamori I, Wu P, Yoneda T, Furukawa K, Takeda R. Effects of an endothelin receptor antagonist in rats with cyclosporine-induced hypertension. Hypertension. 1995;26(6 Pt 1):932–6.

    CAS  PubMed  Google Scholar 

  380. Watschinger B, Sayegh MH. Endothelin in organ transplantation. Am J Kidney Dis. 1996;27(1):151–61.

    CAS  PubMed  Google Scholar 

  381. Scherrer U, Vissing SF, Morgan BJ, Rollins JA, Tindall RS, Ring S, et al. Cyclosporine-induced sympathetic activation and hypertension after heart transplantation. N Engl J Med. 1990;323(11):693–9.

    CAS  PubMed  Google Scholar 

  382. Esteva-Font C, Ars E, Guillen-Gomez E, Campistol JM, Sanz L, Jimenez W, et al. Ciclosporin-induced hypertension is associated with increased sodium transporter of the loop of Henle (NKCC2). Nephrol Dial Transplant. 2007;22(10):2810–6.

    CAS  PubMed  Google Scholar 

  383. Kramer BK, Zulke C, Kammerl MC, Schmidt C, Hengstenberg C, Fischereder M, et al. Cardiovascular risk factors and estimated risk for CAD in a randomized trial comparing calcineurin inhibitors in renal transplantation. Am J Transplant. 2003;3(8):982–7.

    PubMed  Google Scholar 

  384. Chapman JR, O’Connell PJ, Nankivell BJ. Chronic renal allograft dysfunction. J Am Soc Nephrol. 2005;16(10):3015–26.

    PubMed  Google Scholar 

  385. Audard V, Matignon M, Hemery F, Snanoudj R, Desgranges P, Anglade MC, et al. Risk factors and long-term outcome of transplant renal artery stenosis in adult recipients after treatment by percutaneous transluminal angioplasty. Am J Transplant. 2006;6(1):95–9.

    CAS  PubMed  Google Scholar 

  386. Pouria S, State OI, Wong W, Hendry BM. CMV infection is associated with transplant renal artery stenosis. QJM. 1998;91(3):185–9.

    CAS  PubMed  Google Scholar 

  387. Humar A, Matas AJ. Surgical complications after kidney transplantation. Semin Dial. 2005;18(6):505–10.

    PubMed  Google Scholar 

  388. Laskow DA, Curtis JJ. Post-transplant hypertension. Am J Hypertens. 1990;3(9):721–5.

    CAS  PubMed  Google Scholar 

  389. Luke RG. Pathophysiology and treatment of posttransplant hypertension. J Am Soc Nephrol. 1991;2(2 Suppl 1):S37–44.

    CAS  PubMed  Google Scholar 

  390. Ross RD, Clapp SK, Gunther S, Paridon SM, Humes RA, Farooki ZQ, et al. Augmented norepinephrine and renin output in response to maximal exercise in hypertensive coarctectomy patients. Am Heart J. 1992;123(5):1293–9.

    CAS  PubMed  Google Scholar 

  391. Choy M, Rocchini AP, Beekman RH, Rosenthal A, Dick M, Crowley D, et al. Paradoxical hypertension after repair of coarctation of the aorta in children: balloon angioplasty versus surgical repair. Circulation. 1987;75(6):1186–91.

    CAS  PubMed  Google Scholar 

  392. O’Sullivan JJ, Derrick G, Darnell R. Prevalence of hypertension in children after early repair of coarctation of the aorta: a cohort study using casual and 24 hour blood pressure measurement. Heart. 2002;88(2):163–6.

    PubMed Central  PubMed  Google Scholar 

  393. Heger M, Willfort A, Neunteufl T, Rosenhek R, Gabriel H, Wollenek G, et al. Vascular dysfunction after coarctation repair is related to the age at surgery. Int J Cardiol. 2005;99(2):295–9.

    PubMed  Google Scholar 

  394. Kenny D, Polson JW, Martin RP, Caputo M, Wilson DG, Cockcroft JR, et al. Relationship of aortic pulse wave velocity and baroreceptor reflex sensitivity to blood pressure control in patients with repaired coarctation of the aorta. Am Heart J. 2011;162(2):398–404.

    PubMed  Google Scholar 

  395. De Bruno MP, Turoni CMJ, Maranon RO, Reynoso HA, Coviello A. Structural changes in the kidney induced by coarctation hypertension. Clin Exp Hypertens. 2001;23(6):501–11.

    PubMed  Google Scholar 

  396. Jennette JC, Falk RJ. The pathology of vasculitis involving the kidney. Am J Kidney Dis. 1994;24(1):130–41.

    CAS  PubMed  Google Scholar 

  397. Fountoulakis S, Tsatsoulis A. Molecular genetic aspects and pathophysiology of endocrine hypertension. Hormones (Athens). 2006;5(2):90–106.

    Google Scholar 

  398. Fonseca V, Bouloux PM. Phaeochromocytoma and paraganglioma. Baillieres Clin Endocrinol Metab. 1993;7(2):509–44.

    CAS  PubMed  Google Scholar 

  399. Neumann HP, Berger DP, Sigmund G, Blum U, Schmidt D, Parmer RJ, et al. Pheochromocytomas, multiple endocrine neoplasia type 2, and von Hippel-Lindau disease. N Engl J Med. 1993;329(21):1531–8.

    CAS  PubMed  Google Scholar 

  400. Neumann HP, Bausch B, McWhinney SR, Bender BU, Gimm O, Franke G, et al. Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med. 2002;346(19):1459–66.

    CAS  PubMed  Google Scholar 

  401. Pawlu C, Bausch B, Reisch N, Neumann HP. Genetic testing for pheochromocytoma-associated syndromes. Ann Endocrinol (Paris). 2005;66(3):178–85.

    CAS  Google Scholar 

  402. Mulligan LM, Eng C, Healey CS, Clayton D, Kwok JB, Gardner E, et al. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat Genet. 1994;6(1):70–4.

    CAS  PubMed  Google Scholar 

  403. Latif F, Duh FM, Gnarra J, Tory K, Kuzmin I, Yao M, et al. von Hippel-Lindau syndrome: cloning and identification of the plasma membrane Ca(++)-transporting ATPase isoform 2 gene that resides in the von Hippel-Lindau gene region. Cancer Res. 1993;53(4):861–7.

    CAS  PubMed  Google Scholar 

  404. Astuti D, Douglas F, Lennard TW, Aligianis IA, Woodward ER, Evans DG, et al. Germline SDHD mutation in familial phaeochromocytoma. Lancet. 2001;357(9263):1181–2.

    CAS  PubMed  Google Scholar 

  405. Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet. 2001;69(1):49–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  406. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000;287(5454):848–51.

    CAS  PubMed  Google Scholar 

  407. Benn DE, Gimenez-Roqueplo AP, Reilly JR, Bertherat J, Burgess J, Byth K, et al. Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J Clin Endocrinol Metab. 2006;91(3):827–36.

    CAS  PubMed  Google Scholar 

  408. Erickson D, Kudva YC, Ebersold MJ, Thompson GB, Grant CS, van Heerden JA, et al. Benign paragangliomas: clinical presentation and treatment outcomes in 236 patients. J Clin Endocrinol Metab. 2001;86(11):5210–6.

    CAS  PubMed  Google Scholar 

  409. Niemann S, Muller U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet. 2000;26(3):268–70.

    CAS  PubMed  Google Scholar 

  410. Yao L, Schiavi F, Cascon A, Qin Y, Inglada-Perez L, King EE, et al. Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA. 2010;304(23):2611–9.

    CAS  PubMed  Google Scholar 

  411. Comino-Mendez I, Gracia-Aznarez FJ, Schiavi F, Landa I, Leandro-Garcia LJ, Leton R, et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet. 2011;43(7):663–7.

    CAS  PubMed  Google Scholar 

  412. Lim PO, MacDonald TM. Primary aldosteronism, diagnosed by the aldosterone to renin ratio, is a common cause of hypertension. Clin Endocrinol (Oxf). 2003;59(4):427–30.

    CAS  Google Scholar 

  413. Rossi GP, Pessina AC, Heagerty AM. Primary aldosteronism: an update on screening, diagnosis and treatment. J Hypertens. 2008;26(4):613–21.

    CAS  PubMed  Google Scholar 

  414. Conn JW. Aldosterone in clinical medicine; past, present, and future. AMA Arch Intern Med. 1956;97(2):135–44.

    CAS  PubMed  Google Scholar 

  415. Stewart PM. Mineralocorticoid hypertension. Lancet. 1999;353(9161):1341–7.

    CAS  PubMed  Google Scholar 

  416. Schlaich MP, Klingbeil A, Hilgers K, Schobel HP, Schmieder RE. Relation between the renin-angiotensin-aldosterone system and left ventricular structure and function in young normotensive and mildly hypertensive subjects. Am Heart J. 1999;138(5 Pt 1):810–7.

    CAS  PubMed  Google Scholar 

  417. Duprez DA, De Buyzere ML, Rietzschel ER, Taes Y, Clement DL, Morgan D, et al. Inverse relationship between aldosterone and large artery compliance in chronically treated heart failure patients. Eur Heart J. 1998;19(9):1371–6.

    CAS  PubMed  Google Scholar 

  418. Pirpiris M, Sudhir K, Yeung S, Jennings G, Whitworth JA. Pressor responsiveness in corticosteroid-induced hypertension in humans. Hypertension. 1992;19(6 Pt 1):567–74.

    CAS  PubMed  Google Scholar 

  419. Gomez-Sanchez CE. Cushing’s syndrome and hypertension. Hypertension. 1986;8(3):258–64.

    CAS  PubMed  Google Scholar 

  420. Mantero F, Boscaro M. Glucocorticoid-dependent hypertension. J Steroid Biochem Mol Biol. 1992;43(5):409–13.

    CAS  PubMed  Google Scholar 

  421. Sato A, Suzuki H, Murakami M, Nakazato Y, Iwaita Y, Saruta T. Glucocorticoid increases angiotensin II type 1 receptor and its gene expression. Hypertension. 1994;23(1):25–30.

    CAS  PubMed  Google Scholar 

  422. Kornel L, Manisundaram B, Nelson WA. Glucocorticoids regulate Na+ transport in vascular smooth muscle through the glucocorticoid receptor-mediated mechanism. Am J Hypertens. 1993;6(9):736–44.

    CAS  PubMed  Google Scholar 

  423. Krakoff L, Nicolis G, Amsel B. Pathogenesis of hypertension in Cushing’s syndrome. Am J Med. 1975;58(2):216–20.

    CAS  PubMed  Google Scholar 

  424. Melmed S. Acromegaly and cancer: not a problem? J Clin Endocrinol Metab. 2001;86(7):2929–34.

    CAS  PubMed  Google Scholar 

  425. Rajasoorya C, Holdaway IM, Wrightson P, Scott DJ, Ibbertson HK. Determinants of clinical outcome and survival in acromegaly. Clin Endocrinol (Oxf). 1994;41(1):95–102.

    CAS  Google Scholar 

  426. Moller J, Jorgensen JO, Moller N, Hansen KW, Pedersen EB, Christiansen JS. Expansion of extracellular volume and suppression of atrial natriuretic peptide after growth hormone administration in normal man. J Clin Endocrinol Metab. 1991;72(4):768–72.

    CAS  PubMed  Google Scholar 

  427. Moller J, Nielsen S, Hansen TK. Growth hormone and fluid retention. Horm Res. 1999;51 Suppl 3:116–20.

    CAS  PubMed  Google Scholar 

  428. Colao A, Marzullo P, Di Somma C, Lombardi G. Growth hormone and the heart. Clin Endocrinol (Oxf). 2001;54(2):137–54.

    CAS  Google Scholar 

  429. Kamide K, Hori MT, Zhu JH, Takagawa Y, Barrett JD, Eggena P, et al. Insulin and insulin-like growth factor-I promotes angiotensinogen production and growth in vascular smooth muscle cells. J Hypertens. 2000;18(8):1051–6.

    CAS  PubMed  Google Scholar 

  430. Lu C, Schwartzbauer G, Sperling MA, Devaskar SU, Thamotharan S, Robbins PD, et al. Demonstration of direct effects of growth hormone on neonatal cardiomyocytes. J Biol Chem. 2001;276(25):22892–900.

    CAS  PubMed  Google Scholar 

  431. Nilsson IL, Rastad J, Johansson K, Lind L. Endothelial vasodilatory function and blood pressure response to local and systemic hypercalcemia. Surgery. 2001;130(6):986–90.

    CAS  PubMed  Google Scholar 

  432. Sangal AK, Kevwitch M, Rao DS, Rival J. Hypomagnesemia and hypertension in primary hyperparathyroidism. South Med J. 1989;82(9):1116–8.

    CAS  PubMed  Google Scholar 

  433. Montenegro J, Gonzalez O, Saracho R, Aguirre R, Martinez I. Changes in renal function in primary hypothyroidism. Am J Kidney Dis. 1996;27(2):195–8.

    CAS  PubMed  Google Scholar 

  434. Fletcher AK, Weetman AP. Hypertension and hypothyroidism. J Hum Hypertens. 1998;12(2):79–82.

    CAS  PubMed  Google Scholar 

  435. Klein I, Levey GS. The cardiovascular system in thyrotoxicosis. In: Braverman LE, Utiger RD, editors. Werner and Ingbar’s the thyroid: a fundamental and clinical text. 8th ed. Philadelphia: Lippincott, Williams and Wilkins; 2000. p. 596–604.

    Google Scholar 

  436. Conn JW, Cohen EL, Lucas CP, McDonald WJ, Mayor GH, Blough Jr WM, et al. Primary reninism. Hypertension, hyperreninemia, and secondary aldosteronism due to renin-producing juxtaglomerular cell tumors. Arch Intern Med. 1972;130(5):682–96.

    CAS  PubMed  Google Scholar 

  437. Friedman K, Hutchinson J, Mihora D, Kumar S, Frieder R, Sances A. Effect of roof strength in injury mitigation during pole impact. Biomed Sci Instrum. 2007;43:69–74.

    PubMed  Google Scholar 

  438. Contreras F, Rivera M, Vasquez J, De la Parte MA, Velasco M. Diabetes and hypertension physiopathology and therapeutics. J Hum Hypertens. 2000;14 Suppl 1:S26–31.

    PubMed  Google Scholar 

  439. Epstein M, Sowers JR. Diabetes mellitus and hypertension. Hypertension. 1992;19(5):403–18.

    CAS  PubMed  Google Scholar 

  440. Nosadini R, Sambataro M, Thomaseth K, Pacini G, Cipollina MR, Brocco E, et al. Role of hyperglycemia and insulin resistance in determining sodium retention in non-insulin-dependent diabetes. Kidney Int. 1993;44(1):139–46.

    CAS  PubMed  Google Scholar 

  441. Savoia C, Schiffrin EL. Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic interventions. Clin Sci (Lond). 2007;112(7):375–84.

    CAS  Google Scholar 

  442. Smets K, Vanhaesebrouck P. Dexamethasone associated systemic hypertension in low birth weight babies with chronic lung disease. Eur J Pediatr. 1996;155(7):573–5.

    CAS  PubMed  Google Scholar 

  443. Anderson AH, Warady BA, Daily DK, Johnson JA, Thomas MK. Systemic hypertension in infants with severe bronchopulmonary dysplasia: associated clinical factors. Am J Perinatol. 1993;10(3):190–3.

    CAS  PubMed  Google Scholar 

  444. Alagappan A, Malloy MH. Systemic hypertension in very low-birth weight infants with bronchopulmonary dysplasia: incidence and risk factors. Am J Perinatol. 1998;15(1):3–8.

    CAS  PubMed  Google Scholar 

  445. Hla KM, Young TB, Bidwell T, Palta M, Skatrud JB, Dempsey J. Sleep apnea and hypertension. A population-based study. Ann Intern Med. 1994;120(5):382–8.

    CAS  PubMed  Google Scholar 

  446. Morgan BJ. Vascular consequences of intermittent hypoxia. Adv Exp Med Biol. 2007;618:69–84.

    PubMed  Google Scholar 

  447. Enright PL, Goodwin JL, Sherrill DL, Quan JR, Quan SF. Blood pressure elevation associated with sleep-related breathing disorder in a community sample of white and Hispanic children: the Tucson Children’s Assessment of Sleep Apnea study. Arch Pediatr Adolesc Med. 2003;157(9):901–4.

    PubMed  Google Scholar 

  448. Marcus CL, Greene MG, Carroll JL. Blood pressure in children with obstructive sleep apnea. Am J Respir Crit Care Med. 1998;157(4 Pt 1):1098–103.

    CAS  PubMed  Google Scholar 

  449. Lam JC, Ip MS. An update on obstructive sleep apnea and the metabolic syndrome. Curr Opin Pulm Med. 2007;13(6):484–9.

    PubMed  Google Scholar 

  450. Krassioukov AV, Karlsson AK, Wecht JM, Wuermser LA, Mathias CJ, Marino RJ, et al. Assessment of autonomic dysfunction following spinal cord injury: rationale for additions to International Standards for Neurological Assessment. J Rehabil Res Dev. 2007;44(1):103–12.

    PubMed  Google Scholar 

  451. Yamamoto K, Sobue G, Iwase S, Nagamatsu M, Mano T, Mitsuma T. Skin sympathetic nerve activity in Guillain-Barre syndrome: a microneurographic study. J Neurol Neurosurg Psychiatry. 1997;63(4):537–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  452. Okada T, Hiyoshi K, Noto N, Fujita Y, Fuchigami T, Okubo O, et al. A case of Guillain-Barre syndrome accompanied by sympathetic overactivity and hypertensive encephalopathy. Acta Paediatr. 1996;85(8):1006–8.

    CAS  PubMed  Google Scholar 

  453. Gitlow SE, Bertani LM, Wilk E, Li BL, Dziedzic S. Excretion of catecholamine metabolites by children with familial dysautonomia. Pediatrics. 1970;46(4):513–22.

    CAS  PubMed  Google Scholar 

  454. Bell GM. Intracranial disorders and hypertension. In: Laragh JH, Brenner BM, editors. Hypertension: pathophysiology, diagnosis and management. New York: Raven; 1995. p. 2451–8.

    Google Scholar 

  455. Plets C. Arterial hypertension in neurosurgical emergencies. Am J Cardiol. 1989;63(6):40C–2.

    CAS  PubMed  Google Scholar 

  456. Roberts JM, Pearson G, Cutler J, Lindheimer M. Summary of the NHLBI working group on research on hypertension during pregnancy. Hypertension. 2003;41(3):437–45.

    CAS  PubMed  Google Scholar 

  457. Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet. 2005;365(9461):785–99.

    PubMed  Google Scholar 

  458. Conrad KP, Benyo DF. Placental cytokines and the pathogenesis of preeclampsia. Am J Reprod Immunol. 1997;37(3):240–9.

    CAS  PubMed  Google Scholar 

  459. Granger JP, Alexander BT, Bennett WA, Khalil RA. Pathophysiology of pregnancy-induced hypertension. Am J Hypertens. 2001;14(6 Pt 2):178S–85.

    CAS  PubMed  Google Scholar 

  460. Lindheimer MD, Taler SJ, Cunningham FG. Hypertension in pregnancy. J Am Soc Hypertens JASH. 2010;4(2):68–78.

    CAS  PubMed  Google Scholar 

  461. Taylor RN, Varma M, Teng NN, Roberts JM. Women with preeclampsia have higher plasma endothelin levels than women with normal pregnancies. J Clin Endocrinol Metab. 1990;71(6):1675–7.

    CAS  PubMed  Google Scholar 

  462. Wang Y, Walsh SW, Kay HH. Placental lipid peroxides and thromboxane are increased and prostacyclin is decreased in women with preeclampsia. Am J Obstet Gynecol. 1992;167(4 Pt 1):946–9.

    CAS  PubMed  Google Scholar 

  463. Baumwell S, Karumanchi SA. Pre-eclampsia: clinical manifestations and molecular mechanisms. Nephron Clin Pract. 2007;106(2):c72–81.

    PubMed  Google Scholar 

  464. Gilbert JS, Ryan MJ, LaMarca BB, Sedeek M, Murphy SR, Granger JP. Pathophysiology of hypertension during preeclampsia: linking placental ischemia with endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2008;294(2):H541–50.

    CAS  PubMed  Google Scholar 

  465. LaMarca BD, Gilbert J, Granger JP. Recent progress toward the understanding of the pathophysiology of hypertension during preeclampsia. Hypertension. 2008;51(4):982–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  466. Yallampalli C, Garfield RE. Inhibition of nitric oxide synthesis in rats during pregnancy produces signs similar to those of preeclampsia. Am J Obstet Gynecol. 1993;169(5):1316–20.

    CAS  PubMed  Google Scholar 

  467. Molnar M, Suto T, Toth T, Hertelendy F. Prolonged blockade of nitric oxide synthesis in gravid rats produces sustained hypertension, proteinuria, thrombocytopenia, and intrauterine growth retardation. Am J Obstet Gynecol. 1994;170(5 Pt 1):1458–66.

    CAS  PubMed  Google Scholar 

  468. Loke YW, King A. Immunology of implantation. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000;14(5):827–37.

    CAS  PubMed  Google Scholar 

  469. Pincomb GA, Lovallo WR, Passey RB, Whitsett TL, Silverstein SM, Wilson MF. Effects of caffeine on vascular resistance, cardiac output and myocardial contractility in young men. Am J Cardiol. 1985;56(1):119–22.

    CAS  PubMed  Google Scholar 

  470. Evoniuk G, von Borstel RW, Wurtman RJ. Antagonism of the cardiovascular effects of adenosine by caffeine or 8-(p-sulfophenyl)theophylline. J Pharmacol Exp Ther. 1987;240(2):428–32.

    CAS  PubMed  Google Scholar 

  471. Nzerue CM, Hewan-Lowe K, Riley Jr LJ. Cocaine and the kidney: a synthesis of pathophysiologic and clinical perspectives. Am J Kidney Dis. 2000;35(5):783–95.

    CAS  PubMed  Google Scholar 

  472. Berman JA, Setty A, Steiner MJ, Kaufman KR, Skotzko C. Complicated hypertension related to the abuse of ephedrine and caffeine alkaloids. J Addict Dis. 2006;25(3):45–8.

    PubMed  Google Scholar 

  473. Vaziri ND. Mechanism of erythropoietin-induced hypertension. Am J Kidney Dis. 1999;33(5):821–8.

    CAS  PubMed  Google Scholar 

  474. Di Gennaro C, Barilli A, Giuffredi C, Gatti C, Montanari A, Vescovi PP. Sodium sensitivity of blood pressure in long-term detoxified alcoholics. Hypertension. 2000;35(4):869–74.

    PubMed  Google Scholar 

  475. Weir MR. Renal effects of nonselective NSAIDs and coxibs. Cleve Clin J Med. 2002;69 Suppl 1:SI53–8.

    PubMed  Google Scholar 

  476. Oelkers W, Schoneshofer M, Blumel A. Effects of progesterone and four synthetic progestagens on sodium balance and the renin-aldosterone system in man. J Clin Endocrinol Metab. 1974;39(5):882–90.

    CAS  PubMed  Google Scholar 

  477. McAreavey D, Cumming AM, Boddy K, Brown JJ, Fraser R, Leckie BJ, et al. The renin-angiotensin system and total body sodium and potassium in hypertensive women taking oestrogen-progestagen oral contraceptives. Clin Endocrinol (Oxf). 1983;18(2):111–8.

    CAS  Google Scholar 

  478. Narkiewicz K, van de Borne PJ, Hausberg M, Cooley RL, Winniford MD, Davison DE, et al. Cigarette smoking increases sympathetic outflow in humans. Circulation. 1998;98(6):528–34.

    CAS  PubMed  Google Scholar 

  479. Celermajer DS, Adams MR, Clarkson P, Robinson J, McCredie R, Donald A, et al. Passive smoking and impaired endothelium-dependent arterial dilatation in healthy young adults. N Engl J Med. 1996;334(3):150–4.

    CAS  PubMed  Google Scholar 

  480. Liang YL, Shiel LM, Teede H, Kotsopoulos D, McNeil J, Cameron JD, et al. Effects of blood pressure, smoking, and their interaction on carotid artery structure and function. Hypertension. 2001;37(1):6–11.

    CAS  PubMed  Google Scholar 

  481. Mansoor GA. Herbs and alternative therapies in the hypertension clinic. Am J Hypertens. 2001;14(9 Pt 1):971–5.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Flynn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Yamaguchi, I., Flynn, J.T. (2014). Pathophysiology of Hypertension. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_55-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_55-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Pathophysiology and Epidemiology of Hypertension in Children
    Published:
    31 August 2021

    DOI: https://doi.org/10.1007/978-3-642-27843-3_55-2

  2. Original

    Pathophysiology of Hypertension
    Published:
    03 December 2014

    DOI: https://doi.org/10.1007/978-3-642-27843-3_55-1