Skip to main content

Translational Research Methods: The Value of Animal Models in Renal Research

  • Living reference work entry
  • First Online:
Pediatric Nephrology
  • 310 Accesses

Abstract

The use of animal models has been an essential aspect of nearly all areas of nephrological research since its earliest days. Research on kidney formation and malformation, physiology and pathophysiology, immunological injury, and tolerance or transplant rejection all depend on the use of animal experimentation. This chapter will emphasize genetic approaches that utilize animals, as this area has shown the great progress in the development of novel technologies that have had great impact in all areas of nephrology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, et al. WT-1 is required for early kidney development. Cell. 1993;74(4):679–91.

    CAS  PubMed  Google Scholar 

  2. Torres M, Gomez PE, Dressler GR, Gruss P. Pax-2 controls multiple steps of urogenital development. Development. 1995;121(12):4057–65.

    CAS  PubMed  Google Scholar 

  3. Moore MW, Klein RD, Farinas I, Sauer H, Armani M, Philips H, et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature. 1996;382:76–9.

    CAS  PubMed  Google Scholar 

  4. Pichel JG, Shen L, Sheng HZ, Granholm A-C, Drago J, Grinberg A, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996;382:73–6.

    CAS  PubMed  Google Scholar 

  5. Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M. Renal aegenesis and absence of enteric ganglions in mice lacking GDNF. Nature. 1996;382:70–4.

    CAS  PubMed  Google Scholar 

  6. Kispert A, Vainio S, McMahon AP. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development. 1998;125(21):4225–34.

    CAS  PubMed  Google Scholar 

  7. Dudley AT, Lyons KM, Robertson EJ. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 1995;9(22):2795–807.

    CAS  PubMed  Google Scholar 

  8. Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 1995;9(22):2808–20.

    CAS  PubMed  Google Scholar 

  9. Robertson EJ. Isolation of embryonic stem cells. In: Robertson EJ, editor. Teratocarcinomas and embryonic stem cells: a practical approach. Oxford: IRL Press; 1987.

    Google Scholar 

  10. Bradley A. Production and analysis of chimeric mice. In: Robertson EJ, editor. Teratocarcinomas and embryonic stem cells: a practical approach. Oxford: IRL Press; 1987. p. 113–51.

    Google Scholar 

  11. Thomas KR, Capecchi MR. Targeting of genes to specific sites in the mammalian genome. Cold Spring Harb Symp Quant Biol. 1986;51(1):1101–13.

    CAS  PubMed  Google Scholar 

  12. Thomas KR, Deng C, Capecchi MR. High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol Cell Biol. 1992;12(7):2919–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Capecchi MR. The new mouse genetics: altering the genome by gene targeting. Trends Genet. 1989;5(3):70–6.

    CAS  PubMed  Google Scholar 

  14. Orban PC, Chui D, Marth JD. Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A. 1992;89(15):6861–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Sauer B. Inducible gene targeting in mice using the Cre/lox system. Methods. 1998;14(4):381–92.

    CAS  PubMed  Google Scholar 

  16. Stricklett PK, Nelson RD, Kohan DE. The Cre/loxP system and gene targeting in the kidney. Am J Physiol. 1999;276(5 Pt 2):F651–7.

    CAS  PubMed  Google Scholar 

  17. Furth PA, St. Onge L, Boger H, Gruss P, Gossen M, Kistner A, et al. Temporal control of gene expression in transgenic mice by a tetracycline responsive promoter. Proc Natl Acad Sci U S A. 1994;91:9302–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Sohal DS, Nghiem M, Crackower MA, Witt SA, Kimball TR, Tymitz KM, et al. Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ Res. 2001;89(1):20–5.

    CAS  PubMed  Google Scholar 

  19. Verrou C, Zhang Y, Zurn C, Schamel WW, Reth M. Comparison of the tamoxifen regulated chimeric Cre recombinases MerCreMer and CreMer. Biol Chem. 1999;380(12):1435–8.

    CAS  PubMed  Google Scholar 

  20. Gawlik A, Quaggin SE. Conditional gene targeting in the kidney. Curr Mol Med. 2005;5(5):527–36.

    CAS  PubMed  Google Scholar 

  21. Park JS, Valerius MT, McMahon AP. Wnt/beta-catenin signaling regulates nephron induction during mouse kidney development. Development. 2007;134(13):2533–9.

    CAS  PubMed  Google Scholar 

  22. Moeller MJ, Sanden SK, Soofi A, Wiggins RC, Holzman LB. Two gene fragments that direct podocyte-specific expression in transgenic mice. J Am Soc Nephrol. 2002;13(6):1561–7.

    CAS  PubMed  Google Scholar 

  23. Wong MA, Cui S, Quaggin SE. Identification and characterization of a glomerular-specific promoter from the human nephrin gene. Am J Physiol Renal Physiol. 2000;279:F1027–32.

    CAS  PubMed  Google Scholar 

  24. Eremina V, Wong MA, Cui S, Schwartz L, Quaggin SE. Glomerular-specific gene excision in vivo. J Am Soc Nephrol. 2002;13:788–93.

    CAS  PubMed  Google Scholar 

  25. Li H, Zhou X, Davis DR, Xu D, Sigmund CD. An androgen-inducible proximal tubule-specific Cre recombinase transgenic model. Am J Physiol Renal Physiol. 2008;294(6):F1481–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Dworniczak B, Skryabin B, Tchinda J, Heuck S, Seesing FJ, Metzger D, et al. Inducible Cre/loxP recombination in the mouse proximal tubule. Nephron Exp Nephrol. 2007;106(1):e11–20.

    CAS  PubMed  Google Scholar 

  27. Rubera I, Poujeol C, Bertin G, Hasseine L, Counillon L, Poujeol P, et al. Specific Cre/Lox recombination in the mouse proximal tubule. J Am Soc Nephrol. 2004;15(8):2050–6.

    CAS  PubMed  Google Scholar 

  28. Stricklett PK, Taylor D, Nelson RD, Kohan DE. Thick ascending limb-specific expression of Cre recombinase. Am J Physiol Renal Physiol. 2003;285(1):F33–9.

    CAS  PubMed  Google Scholar 

  29. Marose TD, Merkel CE, McMahon AP, Carroll TJ. Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol. 2008;314(1):112–26.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Stricklett PK, Nelson RD, Kohan DE. Targeting collecting tubules using the aquaporin-2 promoter. Exp Nephrol. 1999;7(1):67–74.

    CAS  PubMed  Google Scholar 

  31. Li WL, Cheng X, Tan XH, Zhang JS, Sun YS, Chen L, et al. Endothelial cell-specific expression of Cre recombinase in transgenic mice. Yi Chuan Xue Bao. 2005;32(9):909–15.

    CAS  PubMed  Google Scholar 

  32. Licht AH, Raab S, Hofmann U, Breier G. Endothelium-specific Cre recombinase activity in flk-1-Cre transgenic mice. Dev Dyn. 2004;229(2):312–8.

    CAS  PubMed  Google Scholar 

  33. Cattelino A, Liebner S, Gallini R, Zanetti A, Balconi G, Corsi A, et al. The conditional inactivation of the beta-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J Cell Biol. 2003;162(6):1111–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 2005;33(4):e36.

    PubMed Central  PubMed  Google Scholar 

  35. Zhang XM, Huang JD. Combination of overlapping bacterial artificial chromosomes by a two-step recombinogenic engineering method. Nucleic Acids Res. 2003;31(15):e81.

    PubMed Central  PubMed  Google Scholar 

  36. Testa G, Zhang Y, Vintersten K, Benes V, Pijnappel WW, Chambers I, et al. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat Biotechnol. 2003;21(4):443–7.

    CAS  PubMed  Google Scholar 

  37. Gaj T, Gersbach CA, Barbas 3rd CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review].

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Peng Y, Clark KJ, Campbell JM, Panetta MR, Guo Y, Ekker SC. Making designer mutants in model organisms. Development. 2014;141(21):4042–54. [Review].

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Ramalingam S, Annaluru N, Chandrasegaran S. A CRISPR way to engineer the human genome. Genome Biol. 2013;14(2):107. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    PubMed Central  PubMed  Google Scholar 

  40. Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods. 2013;10(10):957–63. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review].

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Yang L, Mali P, Kim-Kiselak C, Church G. CRISPR-Cas-mediated targeted genome editing in human cells. Methods Mol Biol. 2014;1114:245–67. [Research Support, N.I.H., Extramural].

    CAS  PubMed  Google Scholar 

  42. Cheng JC, Moore TB, Sakamoto KM. RNA interference and human disease. Mol Genet Metab. 2003;80(1–2):121–8.

    CAS  PubMed  Google Scholar 

  43. Campbell TN, Choy FY. RNA interference: past, present and future. Curr Issues Mol Biol. 2005;7(1):1–6.

    CAS  PubMed  Google Scholar 

  44. Tijsterman M, Plasterk RH. Dicers at RISC; the mechanism of RNAi. Cell. 2004;117(1):1–3.

    CAS  PubMed  Google Scholar 

  45. Shukla V, Coumoul X, Deng CX. RNAi-based conditional gene knockdown in mice using a U6 promoter driven vector. Int J Biol Sci. 2007;3(2):91–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Coumoul X, Deng CX. RNAi in mice: a promising approach to decipher gene functions in vivo. Biochimie. 2006;88(6):637–43.

    CAS  PubMed  Google Scholar 

  47. Vintersten K, Testa G, Naumann R, Anastassiadis K, Stewart AF. Bacterial artificial chromosome transgenesis through pronuclear injection of fertilized mouse oocytes. Methods Mol Biol. 2008;415:83–100.

    CAS  PubMed  Google Scholar 

  48. Feng G, Lu J, Gross J. Generation of transgenic mice. Methods Mol Med. 2004;99:255–67.

    CAS  PubMed  Google Scholar 

  49. Isola LM, Gordon JW. Transgenic animals: a new era in developmental biology and medicine. Biotechnology. 1991;16:3–20.

    CAS  PubMed  Google Scholar 

  50. Gordon JW, Ruddle FH. Gene transfer into mouse embryos: production of transgenic mice by pronuclear injection. Methods Enzymol. 1983;101:411–33.

    CAS  PubMed  Google Scholar 

  51. Schedl A, Larin Z, Montoliu L, Thies E, Kelsey G, Lehrach H, et al. A method for the generation of YAC transgenic mice by pronuclear microinjection. Nucleic Acids Res. 1993;21(20):4783–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Nottle MB, Nagashima H, Verma PJ, Du ZT, Grupen CG, Ashman RJ, et al. Developments in transgenic techniques in pigs. J Reprod Fertil Suppl. 1997;52:237–44.

    CAS  PubMed  Google Scholar 

  53. Filipiak WE, Saunders TL. Advances in transgenic rat production. Transgenic Res. 2006;15(6):673–86.

    CAS  PubMed  Google Scholar 

  54. Majumdar A, Drummond IA. Podocyte differentiation in the absence of endothelial cells as revealed in the zebrafish avascular mutant, cloche. Dev Genet. 1999;24(3–4):220–9.

    CAS  PubMed  Google Scholar 

  55. Drummond I. Making a zebrafish kidney: a tale of two tubes. Trends Cell Biol. 2003;13(7):357–65.

    PubMed  Google Scholar 

  56. Hostetter CL, Sullivan-Brown JL, Burdine RD. Zebrafish pronephros: a model for understanding cystic kidney disease. Dev Dyn. 2003;228(3):514–22.

    CAS  PubMed  Google Scholar 

  57. Drummond IA. Zebrafish kidney development. Methods Cell Biol. 2004;76:501–30.

    CAS  PubMed  Google Scholar 

  58. Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development. 2004;131(16):4085–93. [Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  59. Hentschel DM, Park KM, Cilenti L, Zervos AS, Drummond I, Bonventre JV. Acute renal failure in zebrafish: a novel system to study a complex disease. Am J Physiol Renal Physiol. 2005;288(5):F923–9.

    CAS  PubMed  Google Scholar 

  60. Hentschel DM, Mengel M, Boehme L, Liebsch F, Albertin C, Bonventre JV, et al. Rapid screening of glomerular slit diaphragm integrity in larval zebrafish. Am J Physiol Renal Physiol. 2007;293(5):F1746–50.

    CAS  PubMed  Google Scholar 

  61. Davis EE, Frangakis S, Katsanis N. Interpreting human genetic variation with in vivo zebrafish assays. Biochim Biophys Acta. 2014;1842(10):1960–70. [Review].

    CAS  PubMed  Google Scholar 

  62. Niederriter AR, Davis EE, Golzio C, Oh EC, Tsai IC, Katsanis N. In vivo modeling of the morbid human genome using Danio rerio. J Vis Exp. 2013;(78):e50338. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Video-Audio Media].

    Google Scholar 

  63. Fishman MC. Zebrafish genetics: the enigma of arrival. Proc Natl Acad Sci U S A. 1999;96(19):10554–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Shimoda N, Knapik EW, Ziniti J, Sim C, Yamada E, Kaplan S, et al. Zebrafish genetic map with 2000 microsatellite markers. Genomics. 1999;58(3):219–32.

    CAS  PubMed  Google Scholar 

  65. Knapik EW, Goodman A, Ekker M, Chevrette M, Delgado J, Neuhauss S, et al. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nat Genet. 1998;18(4):338–43.

    CAS  PubMed  Google Scholar 

  66. Drummond IA, Majumdar A, Hentschel H, Elger M, Solnica-Krezel L, Schier AF, et al. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development. 1998;125(23):4655–67.

    CAS  PubMed  Google Scholar 

  67. Liu S, Lu W, Obara T, Kuida S, Lehoczky J, Dewar K, et al. A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development. 2002;129(24):5839–46.

    CAS  PubMed  Google Scholar 

  68. Briggs JP. The zebrafish: a new model organism for integrative physiology. Am J Physiol Regul Integr Comp Physiol. 2002;282(1):R3–9.

    CAS  PubMed  Google Scholar 

  69. Serluca FC, Fishman MC. Pre-pattern in the pronephric kidney field of zebrafish. Development. 2001;128(12):2233–41.

    CAS  PubMed  Google Scholar 

  70. Majumdar A, Drummond IA. The zebrafish floating head mutant demonstrates podocytes play an important role in directing glomerular differentiation. Dev Biol. 2000;222(1):147–57.

    CAS  PubMed  Google Scholar 

  71. Drummond IA. The zebrafish pronephros: a genetic system for studies of kidney development. Pediatr Nephrol. 2000;14(5):428–35.

    CAS  PubMed  Google Scholar 

  72. Majumdar A, Lun K, Brand M, Drummond IA. Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development. 2000;127(10):2089–98.

    CAS  PubMed  Google Scholar 

  73. Vogel G. GENOMICS: Sanger will sequence Zebrafish genome. Science. 2000;290(5497):1671b.

    CAS  PubMed  Google Scholar 

  74. Stickney HL, Schmutz J, Woods IG, Holtzer CC, Dickson MC, Kelly PD, et al. Rapid mapping of zebrafish mutations with SNPs and oligonucleotide microarrays. Genome Res. 2002;12(12):1929–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Bradley KM, Elmore JB, Breyer JP, Yaspan BL, Jessen JR, Knapik EW, et al. A major zebrafish polymorphism resource for genetic mapping. Genome Biol. 2007;8(4):R55.

    PubMed Central  PubMed  Google Scholar 

  76. Damert A, Kusserow H. Generation of transgenic mice by pronuclear injection. Methods Mol Med. 2003;89:513–28.

    CAS  PubMed  Google Scholar 

  77. Gaiano N, Allende M, Amsterdam A, Kawakami K, Hopkins N. Highly efficient germ-line transmission of proviral insertions in zebrafish. Proc Natl Acad Sci U S A. 1996;93(15):7777–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Gaiano N, Hopkins N. Introducing genes into zebrafish. Biochim Biophys Acta. 1996;1288(1):O11–4.

    PubMed  Google Scholar 

  79. Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug 2nd RG, et al. In vivo genome editing using a high-efficiency TALEN system. Nature. 2012;491(7422):114–8. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31(3):227–9. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Cade L, Reyon D, Hwang WY, Tsai SQ, Patel S, Khayter C, et al. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res. 2012;40(16):8001–10. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Shin J, Chen J, Solnica-Krezel L. Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development. 2014;141(19):3807–18.

    CAS  PubMed  Google Scholar 

  83. Amsterdam A, Hopkins N. Retrovirus-mediated insertional mutagenesis in zebrafish. Methods Cell Biol. 1999;60:87–98.

    CAS  PubMed  Google Scholar 

  84. Talbot WS, Hopkins N. Zebrafish mutations and functional analysis of the vertebrate genome. Genes Dev. 2000;14(7):755–62.

    CAS  PubMed  Google Scholar 

  85. Amsterdam A, Hopkins N. Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet. 2006;22(9):473–8.

    CAS  PubMed  Google Scholar 

  86. Draper BW, Morcos PA, Kimmel CB. Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis. 2001;30(3):154–6.

    CAS  PubMed  Google Scholar 

  87. Scholpp S, Brand M. Morpholino-induced knockdown of zebrafish engrailed genes eng2 and eng3 reveals redundant and unique functions in midbrain–hindbrain boundary development. Genesis. 2001;30(3):129–33.

    CAS  PubMed  Google Scholar 

  88. Hrabe de Angelis M, Strivens M. Large-scale production of mouse phenotypes: the search for animal models for inherited diseases in humans. Brief Bioinform. 2001;2(2):170–80.

    CAS  PubMed  Google Scholar 

  89. Nolan PM, Peters J, Vizor L, Strivens M, Washbourne R, Hough T, et al. Implementation of a large-scale ENU mutagenesis program: towards increasing the mouse mutant resource. Mamm Genome. 2000;11(7):500–6.

    CAS  PubMed  Google Scholar 

  90. Chen Y, Yee D, Dains K, Chatterjee A, Cavalcoli J, Schneider E, et al. Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Nat Genet. 2000;24(3):314–7.

    CAS  PubMed  Google Scholar 

  91. Anderson KV. Finding the genes that direct mammalian development: ENU mutagenesis in the mouse. Trends Genet. 2000;16(3):99–102.

    CAS  PubMed  Google Scholar 

  92. Justice MJ, Noveroske JK, Weber JS, Zheng B, Bradley A. Mouse ENU mutagenesis. Hum Mol Genet. 1999;8(10):1955–63.

    CAS  PubMed  Google Scholar 

  93. Hrabe de Angelis M, Balling R. Large scale ENU screens in the mouse: genetics meets genomics. Mutat Res. 1998;400(1–2):25–32.

    CAS  PubMed  Google Scholar 

  94. Knapik EW. ENU mutagenesis in zebrafish–from genes to complex diseases. Mamm Genome. 2000;11(7):511–9.

    CAS  PubMed  Google Scholar 

  95. Beckwith LG, Moore JL, Tsao-Wu GS, Harshbarger JC, Cheng KC. Ethylnitrosourea induces neoplasia in zebrafish (Danio rerio). Lab Invest. 2000;80(3):379–85.

    CAS  PubMed  Google Scholar 

  96. Weinstein BM, Schier AF, Abdelilah S, Malicki J, Solnica-Krezel L, Stemple DL, et al. Hematopoietic mutations in the zebrafish. Development. 1996;123:303–9.

    CAS  PubMed  Google Scholar 

  97. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development. 1996;123:1–36.

    CAS  PubMed  Google Scholar 

  98. Solnica-Krezel L, Schier AF, Driever W. Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics. 1994;136(4):1401–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Dietrich WF, Copeland NG, Gilbert DJ, Miller JC, Jenkins NA, Lander ES. Mapping the mouse genome: current status and future prospects. Proc Natl Acad Sci U S A. 1995;92(24):10849–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Brown DM, Matise TC, Koike G, Simon JS, Winer ES, Zangen S, et al. An integrated genetic linkage map of the laboratory rat. Mamm Genome. 1998;9(7):521–30.

    CAS  PubMed  Google Scholar 

  101. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280(5366):1077–82.

    CAS  PubMed  Google Scholar 

  102. Tsang S, Sun Z, Luke B, Stewart C, Lum N, Gregory M, et al. A comprehensive SNP-based genetic analysis of inbred mouse strains. Mamm Genome. 2005;16(7):476–80.

    CAS  PubMed  Google Scholar 

  103. Grant SF, Hakonarson H. Microarray technology and applications in the arena of genome-wide association. Clin Chem. 2008;54(7):1116–24.

    CAS  PubMed  Google Scholar 

  104. Patil N, Nouri N, McAllister L, Matsukaki H, Ryder T. Single-nucleotide polymorphism genotyping using microarrays. Curr Protoc Hum Genet. 2013;Chapter 2:Unit 2 9.

    Google Scholar 

  105. Pletcher MT, McClurg P, Batalov S, Su AI, Barnes SW, Lagler E, et al. Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol. 2004;2(12):e393.

    PubMed Central  PubMed  Google Scholar 

  106. Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK, Bennett B, et al. The nature and identification of quantitative trait loci: a community’s view. Nat Rev Genet. 2003;4(11):911–6.

    PubMed  Google Scholar 

  107. Korstanje R, Paigen B. From QTL to gene: the harvest begins. Nat Genet. 2002;31(3):235–6.

    CAS  PubMed  Google Scholar 

  108. Pezzolesi MG, Skupien J, Mychaleckyj JC, Warram JH, Krolewski AS. Insights to the genetics of diabetic nephropathy through a genome-wide association study of the GoKinD collection. Semin Nephrol. 2010;30(2):126–40. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    PubMed Central  PubMed  Google Scholar 

  109. Pezzolesi MG, Poznik GD, Mychaleckyj JC, Paterson AD, Barati MT, Klein JB, et al. Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes. 2009;58(6):1403–10. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Malhotra A, Igo Jr RP, Thameem F, Kao WH, Abboud HE, Adler SG, et al. Genome-wide linkage scans for type 2 diabetes mellitus in four ethnically diverse populations-significant evidence for linkage on chromosome 4q in African Americans: the Family Investigation of Nephropathy and Diabetes Research Group. Diabetes Metab Res Rev. 2009;25(8):740–7. [Multicenter Study Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural].

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Genovese G, Tonna SJ, Knob AU, Appel GB, Katz A, Bernhardy AJ, et al. A risk allele for focal segmental glomerulosclerosis in African Americans is located within a region containing APOL1 and MYH9. Kidney Int. 2010;78(7):698–704. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed Central  PubMed  Google Scholar 

  112. Wasser WG, Tzur S, Wolday D, Adu D, Baumstein D, Rosset S, et al. Population genetics of chronic kidney disease: the evolving story of APOL1. J Nephrol. 2012;25(5):603–18. [Research Support, Non-U.S. Gov’t Review].

    CAS  PubMed  Google Scholar 

  113. Shlush LI, Bercovici S, Wasser WG, Yudkovsky G, Templeton A, Geiger D, et al. Admixture mapping of end stage kidney disease genetic susceptibility using estimated mutual information ancestry informative markers. BMC Med Genomics. 2010;3:47. [Research Support, Non-U.S. Gov’t].

    PubMed Central  PubMed  Google Scholar 

  114. Tsaih SW, Pezzolesi MG, Yuan R, Warram JH, Krolewski AS, Korstanje R. Genetic analysis of albuminuria in aging mice and concordance with loci for human diabetic nephropathy found in a genome-wide association scan. Kidney Int. 2010;77(3):201–10. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed Central  CAS  PubMed  Google Scholar 

  115. DiPetrillo K, Wang X, Stylianou IM, Paigen B. Bioinformatics toolbox for narrowing rodent quantitative trait loci. Trends Genet. 2005;21(12):683–92.

    CAS  PubMed  Google Scholar 

  116. Cuppen E. Haplotype-based genetics in mice and rats. Trends Genet. 2005;21(6):318–22.

    CAS  PubMed  Google Scholar 

  117. Guryev V, Smits BM, van de Belt J, Verheul M, Hubner N, Cuppen E. Haplotype block structure is conserved across mammals. PLoS Genet. 2006;2(7):e121.

    PubMed Central  PubMed  Google Scholar 

  118. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–61. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  119. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001;409(6822):928–33. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  120. Wang X, Korstanje R, Higgins D, Paigen B. Haplotype analysis in multiple crosses to identify a QTL gene. Genome Res. 2004;14(9):1767–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Wittenburg H, Lyons MA, Li R, Kurtz U, Wang X, Mossner J, et al. QTL mapping for genetic determinants of lipoprotein cholesterol levels in combined crosses of inbred mouse strains. J Lipid Res. 2006;47(8):1780–90.

    CAS  PubMed  Google Scholar 

  122. Flint J, Eskin E. Genome-wide association studies in mice. Nat Rev Genet. 2012;13(11):807–17. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review].

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature. 2011;477(7364):289–94. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.

    CAS  PubMed  Google Scholar 

  125. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.

    CAS  PubMed  Google Scholar 

  126. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420(6915):520–62.

    CAS  PubMed  Google Scholar 

  127. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature. 2008;452(7189):872–6.

    CAS  PubMed  Google Scholar 

  128. Raven P, Fauquet C, Swaminathan MS, Borlaug N, Samper C. Where next for genome sequencing? Science. 2006;311(5760):468.

    CAS  PubMed  Google Scholar 

  129. Bentley DR. Whole-genome re-sequencing. Curr Opin Genet Dev. 2006;16(6):545–52.

    CAS  PubMed  Google Scholar 

  130. Schmouth JF, Bonaguro RJ, Corso-Diaz X, Simpson EM. Modelling human regulatory variation in mouse: finding the function in genome-wide association studies and whole-genome sequencing. PLoS Genet. 2012;8(3):e1002544. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Shiozawa M, Provoost AP, van Dokkum RP, Majewski RR, Jacob HJ. Evidence of gene-gene interactions in the genetic susceptibility to renal impairment after unilateral nephrectomy. J Am Soc Nephrol. 2000;11(11):2068–78.

    CAS  PubMed  Google Scholar 

  132. Kwitek-Black AE, Jacob HJ. The use of designer rats in the genetic dissection of hypertension. Curr Hypertens Rep. 2001;3(1):12–8.

    CAS  PubMed  Google Scholar 

  133. Stoll M, Jacob HJ. Genetic rat models of hypertension: relationship to human hypertension. Curr Hypertens Rep. 2001;3(2):157–64.

    CAS  PubMed  Google Scholar 

  134. Stoll M, Cowley Jr AW, Tonellato PJ, Greene AS, Kaldunski ML, Roman RJ, et al. A genomic-systems biology map for cardiovascular function. Science. 2001;294(5547):1723–6.

    CAS  PubMed  Google Scholar 

  135. Jacob HJ, Kwitek AE. Rat genetics: attaching physiology and pharmacology to the genome. Nat Rev Genet. 2002;3(1):33–42.

    CAS  PubMed  Google Scholar 

  136. Rao GN. Diet and kidney diseases in rats. Toxicol Pathol. 2002;30(6):651–6.

    CAS  PubMed  Google Scholar 

  137. Ma X, Abboud FM, Chapleau MW. Analysis of afferent, central, and efferent components of the baroreceptor reflex in mice. Am J Physiol Regul Integr Comp Physiol. 2002;283(5):R1033–40.

    PubMed  Google Scholar 

  138. Ishii T, Kuwaki T, Masuda Y, Fukuda Y. Postnatal development of blood pressure and baroreflex in mice. Auton Neurosci. 2001;94(1–2):34–41.

    CAS  PubMed  Google Scholar 

  139. Gross V, Plehm R, Tank J, Jordan J, Diedrich A, Obst M, et al. Heart rate variability and baroreflex function in AT2 receptor-disrupted mice. Hypertension. 2002;40(2):207–13.

    CAS  PubMed  Google Scholar 

  140. Rokosh DG, Simpson PC. Knockout of the alpha 1A/C-adrenergic receptor subtype: the alpha 1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci U S A. 2002;99(14):9474–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Besnard S, Bakouche J, Lemaigre-Dubreuil Y, Mariani J, Tedgui A, Henrion D. Smooth muscle dysfunction in resistance arteries of the staggerer mouse, a mutant of the nuclear receptor RORalpha. Circ Res. 2002;90(7):820–5.

    CAS  PubMed  Google Scholar 

  142. Vecchione C, Fratta L, Rizzoni D, Notte A, Poulet R, Porteri E, et al. Cardiovascular influences of alpha1b-adrenergic receptor defect in mice. Circulation. 2002;105(14):1700–7.

    CAS  PubMed  Google Scholar 

  143. Gross V, Luft FC. Adapting renal and cardiovascular physiology to the genetically hypertensive mouse. Semin Nephrol. 2002;22(2):172–9.

    PubMed  Google Scholar 

  144. Holschneider DP, Scremin OU, Roos KP, Chialvo DR, Chen K, Shih JC. Increased baroreceptor response in mice deficient in monoamine oxidase A and B. Am J Physiol Heart Circ Physiol. 2002;282(3):H964–72.

    CAS  PubMed  Google Scholar 

  145. Edouga D, Hugueny B, Gasser B, Bussieres L, Laborde K. Recovery after relief of fetal urinary obstruction: morphological, functional and molecular aspects. Am J Physiol Renal Physiol. 2001;281(1):F26–37.

    CAS  PubMed  Google Scholar 

  146. Kitagawa H, Pringle KC, Zuccollo J, Koike J, Nakada K, Ikoma M, et al. Glomerular size in renal dysplasia secondary to obstructive uropathy: a further exploration of the fetal lamb model. J Pediatr Surg. 2000;35(11):1651–5.

    CAS  PubMed  Google Scholar 

  147. Kitagawa H, Pringle KC, Zucollo J, Koike J, Nakada K, Moriya H, et al. Early fetal obstructive uropathy produces Potter’s syndrome in the lamb. J Pediatr Surg. 2000;35(11):1549–53.

    CAS  PubMed  Google Scholar 

  148. Smith LM, Ervin MG, Wada N, Ikegami M, Polk DH, Jobe AH. Antenatal glucocorticoids alter postnatal preterm lamb renal and cardiovascular responses to intravascular volume expansion. Pediatr Res. 2000;47(5):622–7.

    CAS  PubMed  Google Scholar 

  149. Kitagawa H, Pringle KC, Zuccolo J, Stone P, Nakada K, Kawaguchi F, et al. The pathogenesis of dysplastic kidney in a urinary tract obstruction in the female fetal lamb. J Pediatr Surg. 1999;34(11):1678–83.

    CAS  PubMed  Google Scholar 

  150. Wang J, Rose JC. Developmental changes in renal renin mRNA half-life and responses to stimulation in fetal lambs. Am J Physiol. 1999;277(4 Pt 2):R1130–5.

    CAS  PubMed  Google Scholar 

  151. Gimonet V, Bussieres L, Medjebeur AA, Gasser B, Lelongt B, Laborde K. Nephrogenesis and angiotensin II receptor subtypes gene expression in the fetal lamb. Am J Physiol. 1998;274(6 Pt 2):F1062–9.

    CAS  PubMed  Google Scholar 

  152. Nguyen HT, Kogan BA. Renal hemodynamic changes after complete and partial unilateral ureteral obstruction in the fetal lamb. J Urol. 1998;160(3 Pt 2):1063–9.

    CAS  PubMed  Google Scholar 

  153. Wang J, Perez FM, Rose JC. Developmental changes in renin-containing cells from the ovine fetal kidney. J Soc Gynecol Investig. 1997;4(4):191–6.

    CAS  PubMed  Google Scholar 

  154. Berry LM, Polk DH, Ikegami M, Jobe AH, Padbury JF, Ervin MG. Preterm newborn lamb renal and cardiovascular responses after fetal or maternal antenatal betamethasone. Am J Physiol. 1997;272(6 Pt 2):R1972–9.

    CAS  PubMed  Google Scholar 

  155. Matsell DG, Bennett T, Bocking AD. Characterization of fetal ovine renal dysplasia after mid-gestation ureteral obstruction. Clin Invest Med. 1996;19(6):444–52.

    CAS  PubMed  Google Scholar 

  156. Peters CA, Gaertner RC, Carr MC, Mandell J. Fetal compensatory renal growth due to unilateral ureteral obstruction. J Urol. 1993;150(2 Pt 2):597–600.

    CAS  PubMed  Google Scholar 

  157. Peters CA, Docimo SG, Luetic T, Reid LM, Retik AB, Mandell J. Effect of in utero vesicostomy on pulmonary hypoplasia in the fetal lamb with bladder outlet obstruction and oligohydramnios: a morphometric analysis. J Urol. 1991;146(4):1178–83.

    CAS  PubMed  Google Scholar 

  158. Rosines E, Sampogna RV, Johkura K, Vaughn DA, Choi Y, Sakurai H, et al. Staged in vitro reconstitution and implantation of engineered rat kidney tissue. Proc Natl Acad Sci U S A. 2007;104(52):20938–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Fissell WH. Developments towards an artificial kidney. Expert Rev Med Devices. 2006;3(2):155–65.

    PubMed  Google Scholar 

  160. Hammerman MR. Tissue engineering the kidney. Kidney Int. 2003;63(4):1195–204.

    PubMed  Google Scholar 

  161. Chugh S, Yuan H, Topham PS, Haydar SA, Mittal V, Taylor GA, et al. Aminopeptidase A: a nephritogenic target antigen of nephrotoxic serum. Kidney Int. 2001;59(2):601–13. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  162. Cook HT, Khan SB, Allen A, Bhangal G, Smith J, Lobb RR, et al. Treatment with an antibody to VLA-1 integrin reduces glomerular and tubulointerstitial scarring in a rat model of crescentic glomerulonephritis. Am J Pathol. 2002;161(4):1265–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Hiromura K, Haseley LA, Zhang P, Monkawa T, Durvasula R, Petermann AT, et al. Podocyte expression of the CDK-inhibitor p57 during development and disease. Kidney Int. 2001;60(6):2235–46.

    CAS  PubMed  Google Scholar 

  164. Lin F, Emancipator SN, Salant DJ, Medof ME. Decay-accelerating factor confers protection against complement-mediated podocyte injury in acute nephrotoxic nephritis. Lab Invest. 2002;82(5):563–9. [Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  165. Topham PS, Csizmadia V, Soler D, Hines D, Gerard CJ, Salant DJ, et al. Lack of chemokine receptor CCR1 enhances Th1 responses and glomerular injury during nephrotoxic nephritis. J Clin Invest. 1999;104(11):1549–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  166. Xu Y, Berrou J, Chen X, Fouqueray B, Callard P, Sraer JD, et al. Induction of urokinase receptor expression in nephrotoxic nephritis. Exp Nephrol. 2001;9(6):397–404.

    CAS  PubMed  Google Scholar 

  167. Yanagita M, Ishimoto Y, Arai H, Nagai K, Ito T, Nakano T, et al. Essential role of Gas6 for glomerular injury in nephrotoxic nephritis. J Clin Invest. 2002;110(2):239–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Carmago S, Shah SV, Walker PD. Meprin, a brush-border enzyme, plays an important role in hypoxic/ischemic acute renal tubular injury in rats. Kidney Int. 2002;61(3):959–66.

    CAS  PubMed  Google Scholar 

  169. Chatterjee PK, Brown PA, Cuzzocrea S, Zacharowski K, Stewart KN, Mota-Filipe H, et al. Calpain inhibitor-1 reduces renal ischemia/reperfusion injury in the rat. Kidney Int. 2001;59(6):2073–83.

    CAS  PubMed  Google Scholar 

  170. Fernandez M, Medina A, Santos F, Carbajo E, Rodriguez J, Alvarez J, et al. Exacerbated inflammatory response induced by insulin-like growth factor I treatment in rats with ischemic acute renal failure. J Am Soc Nephrol. 2001;12(9):1900–7.

    CAS  PubMed  Google Scholar 

  171. Gimelreich D, Popovtzer MM, Wald H, Pizov G, Berlatzky Y, Rubinger D. Regulation of ROMK and channel-inducing factor (CHIF) in acute renal failure due to ischemic reperfusion injury. Kidney Int. 2001;59(5):1812–20.

    CAS  PubMed  Google Scholar 

  172. Gretz N. The development of hypertension in the remnant kidney model after either pole resection or partial infarction of the kidney. J Am Soc Nephrol. 1995;5(10):1839–40.

    CAS  PubMed  Google Scholar 

  173. Jia ZQ, Worthington AE, Hill RP, Hunt JW. The effects of artery occlusion on temperature homogeneity during hyperthermia in rabbit kidneys in vivo. Int J Hyperthermia. 1997;13(1):21–37.

    CAS  PubMed  Google Scholar 

  174. Kakoki M, Hirata Y, Hayakawa H, Suzuki E, Nagata D, Nishimatsu H, et al. Effects of vasodilatory antihypertensive agents on endothelial dysfunction in rats with ischemic acute renal failure. Hypertens Res. 2000;23(5):527–33.

    CAS  PubMed  Google Scholar 

  175. Knoll T, Schult S, Birck R, Braun C, Michel MS, Bross S, et al. Therapeutic administration of an endothelin-A receptor antagonist after acute ischemic renal failure dose-dependently improves recovery of renal function. J Cardiovasc Pharmacol. 2001;37(4):483–8.

    CAS  PubMed  Google Scholar 

  176. Kren S, Hostetter TH. The course of the remnant kidney model in mice. Kidney Int. 1999;56(1):333–7.

    CAS  PubMed  Google Scholar 

  177. Kwon O, Phillips CL, Molitoris BA. Ischemia induces alterations in actin filaments in renal vascular smooth muscle cells. Am J Physiol Renal Physiol. 2002;282(6):F1012–9.

    CAS  PubMed  Google Scholar 

  178. Lieberthal W, Fuhro R, Andry CC, Rennke H, Abernathy VE, Koh JS, et al. Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am J Physiol Renal Physiol. 2001;281(4):F693–706.

    CAS  PubMed  Google Scholar 

  179. Lloberas N, Torras J, Herrero-Fresneda I, Cruzado JM, Riera M, Hurtado I, et al. Postischemic renal oxidative stress induces inflammatory response through PAF and oxidized phospholipids. Prevention by antioxidant treatment. Faseb J. 2002;16(8):908–10.

    CAS  PubMed  Google Scholar 

  180. Megyesi J, Andrade L, Vieira Jr JM, Safirstein RL, Price PM. Positive effect of the induction of p21WAF1/CIP1 on the course of ischemic acute renal failure. Kidney Int. 2001;60(6):2164–72.

    CAS  PubMed  Google Scholar 

  181. Meldrum KK, Hile K, Meldrum DR, Crone JA, Gearhart JP, Burnett AL. Simulated ischemia induces renal tubular cell apoptosis through a nuclear factor-kappaB dependent mechanism. J Urol. 2002;168(1):248–52.

    CAS  PubMed  Google Scholar 

  182. Modolo NS, Castiglia YM, Ganem EM, Braz JR, Vianna PT, Vane LA. Acute renal ischemia model in dogs: effects of metoprolol. Ren Fail. 2001;23(1):1–10.

    CAS  PubMed  Google Scholar 

  183. Mister M, Noris M, Szymczuk J, Azzollini N, Aiello S, Abbate M, et al. Propionyl-L-carnitine prevents renal function deterioration due to ischemia/reperfusion. Kidney Int. 2002;61(3):1064–78.

    CAS  PubMed  Google Scholar 

  184. Okusa MD. The inflammatory cascade in acute ischemic renal failure. Nephron. 2002;90(2):133–8.

    CAS  PubMed  Google Scholar 

  185. Power JM, Tonkin AM. Large animal models of heart failure. Aust N Z J Med. 1999;29(3):395–402.

    CAS  PubMed  Google Scholar 

  186. Textor SC. Pathophysiology of renal failure in renovascular disease. Am J Kidney Dis. 1994;24(4):642–51.

    CAS  PubMed  Google Scholar 

  187. Vaneerdeweg W, Buyssens N, De Winne T, Sebrechts M, Babloyan A, Arakelian S, et al. A standardized surgical technique to obtain a stable and reproducible chronic renal failure model in dogs. Eur Surg Res. 1992;24(5):273–82.

    CAS  PubMed  Google Scholar 

  188. Yoshida T, Tang SS, Hsiao LL, Jensen RV, Ingelfinger JR, Gullans SR. Global analysis of gene expression in renal ischemia-reperfusion in the mouse. Biochem Biophys Res Commun. 2002;291(4):787–94.

    CAS  PubMed  Google Scholar 

  189. Chevalier RL. Chronic partial ureteral obstruction and the developing kidney. Pediatr Radiol. 2008;38 Suppl 1:S35–40.

    PubMed  Google Scholar 

  190. Ma FY, Tesch GH, Flavell RA, Davis RJ, Nikolic-Paterson DJ. MKK3-p38 signaling promotes apoptosis and the early inflammatory response in the obstructed mouse kidney. Am J Physiol Renal Physiol. 2007;293(5):F1556–63.

    CAS  PubMed  Google Scholar 

  191. Chevalier RL. Pathogenesis of renal injury in obstructive uropathy. Curr Opin Pediatr. 2006;18(2):153–60.

    PubMed  Google Scholar 

  192. Lee VW, Harris DC. Adriamycin nephropathy: a model of focal segmental glomerulosclerosis. Nephrology (Carlton). 2011;16(1):30–8. [Review].

    Google Scholar 

  193. Pippin JW, Brinkkoetter PT, Cormack-Aboud FC, Durvasula RV, Hauser PV, Kowalewska J, et al. Inducible rodent models of acquired podocyte diseases. Am J Physiol Renal Physiol. 2009;296(2):F213–29. [Review].

    CAS  PubMed  Google Scholar 

  194. Fogo AB. Animal models of FSGS: lessons for pathogenesis and treatment. Semin Nephrol. 2003;23(2):161–71. [Review].

    CAS  PubMed  Google Scholar 

  195. Dai Y, Gu L, Yuan W, Yu Q, Ni Z, Ross MJ, et al. Podocyte-specific deletion of signal transducer and activator of transcription 3 attenuates nephrotoxic serum-induced glomerulonephritis. Kidney Int. 2013;84(5):950–61. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    CAS  PubMed  Google Scholar 

  196. Happe H, Peters DJ. Translational research in ADPKD: lessons from animal models. Nat Rev Nephrol. 2014;10(10):587–601. [Review].

    CAS  PubMed  Google Scholar 

  197. Nagao S, Kugita M, Yoshihara D, Yamaguchi T. Animal models for human polycystic kidney disease. Exp Anim. 2012;61(5):477–88. [Research Support, Non-U.S. Gov’t Review].

    CAS  PubMed  Google Scholar 

  198. Wilson PD. Mouse models of polycystic kidney disease. Curr Top Dev Biol. 2008;84:311–50. [Review].

    CAS  PubMed  Google Scholar 

  199. Foster MH. Relevance of systemic lupus erythematosus nephritis animal models to human disease. Semin Nephrol. 1999;19(1):12–24.

    CAS  PubMed  Google Scholar 

  200. Morel L, Wakeland EK. Susceptibility to lupus nephritis in the NZB/W model system. Curr Opin Immunol. 1998;10(6):718–25.

    CAS  PubMed  Google Scholar 

  201. Walport MJ, Davies KA, Botto M. C1q and systemic lupus erythematosus. Immunobiology. 1998;199(2):265–85.

    CAS  PubMed  Google Scholar 

  202. Gavalchin J, Staines NA. T and B cell recognition of idiotypes of anti-DNA autoantibodies. Lupus. 1997;6(3):337–43.

    CAS  PubMed  Google Scholar 

  203. Isenberg DA, Ravirajan CT, Rahman A, Kalsi J. The role of antibodies to DNA in systemic lupus erythematosus–a review and introduction to an international workshop on DNA antibodies held in London, May 1996. Lupus. 1997;6(3):290–304.

    CAS  PubMed  Google Scholar 

  204. Pickering MC, Cook HT, Warren J, Bygrave AE, Moss J, Walport MJ, et al. Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet. 2002;31(4):424–8.

    CAS  PubMed  Google Scholar 

  205. Salvador JM, Hollander MC, Nguyen AT, Kopp JB, Barisoni L, Moore JK, et al. Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity. 2002;16(4):499–508.

    CAS  PubMed  Google Scholar 

  206. Tabata N, Miyazawa M, Fujisawa R, Takei YA, Abe H, Hashimoto K. Establishment of monoclonal anti-retroviral gp70 autoantibodies from MRL/lpr lupus mice and induction of glomerular gp70 deposition and pathology by transfer into non-autoimmune mice. J Virol. 2000;74(9):4116–26.

    PubMed Central  CAS  PubMed  Google Scholar 

  207. Cruse JM, Lewis RE, Dilioglou S. Fate of immune complexes, glomerulonephritis, and cell-mediated vasculitis in lupus-prone MRL/Mp lpr/lpr mice. Exp Mol Pathol. 2000;69(3):211–22.

    CAS  PubMed  Google Scholar 

  208. Ophascharoensuk V, Fero ML, Hughes J, Roberts JM, Shankland SJ. The cyclin-dependent kinase inhibitor p27Kip1 safeguards against inflammatory injury. Nat Med. 1998;4(5):575–80.

    CAS  PubMed  Google Scholar 

  209. Cattell V, Cook HT, Ebrahim H, Waddington SN, Wei XQ, Assmann KJ, et al. Anti-GBM glomerulonephritis in mice lacking nitric oxide synthase type 2. Kidney Int. 1998;53(4):932–6.

    CAS  PubMed  Google Scholar 

  210. Quigg RJ, Lim A, Haas M, Alexander JJ, He C, Carroll MC. Immune complex glomerulonephritis in C4- and C3-deficient mice. Kidney Int. 1998;53(2):320–30.

    CAS  PubMed  Google Scholar 

  211. Tang T, Rosenkranz A, Assmann KJ, Goodman MJ, Gutierrez-Ramos JC, Carroll MC, et al. A role for Mac-1 (CDIIb/CD18) in immune complex-stimulated neutrophil function in vivo: Mac-1 deficiency abrogates sustained Fcgamma receptor-dependent neutrophil adhesion and complement-dependent proteinuria in acute glomerulonephritis. J Exp Med. 1997;186(11):1853–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  212. Ito MR, Terasaki S, Itoh J, Katoh H, Yonehara S, Nose M. Rheumatic diseases in an MRL strain of mice with a deficit in the functional Fas ligand. Arthritis Rheum. 1997;40(6):1054–63.

    CAS  PubMed  Google Scholar 

  213. Haas C, Ryffel B, Le Hir M. IFN-gamma is essential for the development of autoimmune glomerulonephritis in MRL/Ipr mice. J Immunol. 1997;158(11):5484–91.

    CAS  PubMed  Google Scholar 

  214. Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R, et al. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell. 1995;83(2):301–11.

    CAS  PubMed  Google Scholar 

  215. Cyster JG. Lymphoid organ development and cell migration. Immunol Rev. 2003;195:5–14.

    CAS  PubMed  Google Scholar 

  216. Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the generation of memory CD4 T cells in the whole body. Nature. 2001;410(6824):101–5.

    CAS  PubMed  Google Scholar 

  217. Gudmundsdottir H, Turka LA. T cell costimulatory blockade: new therapies for transplant rejection. J Am Soc Nephrol. 1999;10(6):1356–65.

    CAS  PubMed  Google Scholar 

  218. Dong VM, Womer KL, Sayegh MH. Transplantation tolerance: the concept and its applicability. Pediatr Transplant. 1999;3(3):181–92.

    CAS  PubMed  Google Scholar 

  219. Bromberg JS, Murphy B. Routes to allograft survival. J Clin Invest. 2001;107(7):797–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  220. Light J, Salomon DR, Diethelm AG, Alexander JW, Hunsicker L, Thistlethwaite R, et al. Bone marrow transfusions in cadaver renal allografts: pilot trials with concurrent controls. Clin Transplant. 2002;16(5):317–24.

    PubMed  Google Scholar 

  221. Knechtle SJ, Hamawy MM, Hu H, Fechner Jr JH, Cho CS. Tolerance and near-tolerance strategies in monkeys and their application to human renal transplantation. Immunol Rev. 2001;183:205–13.

    CAS  PubMed  Google Scholar 

  222. Inverardi L, Ricordi C. Tolerance and pancreatic islet transplantation. Philos Trans R Soc Lond B Biol Sci. 2001;356(1409):759–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  223. Field EH, Strober S. Tolerance, mixed chimerism and protection against graft-versus-host disease after total lymphoid irradiation. Philos Trans R Soc Lond B Biol Sci. 2001;356(1409):739–48.

    PubMed Central  CAS  PubMed  Google Scholar 

  224. Decker CJ, Heiser AD, Chaturvedi PR, Faust TJ, Ku G, Moseley S, et al. The novel IMPDH inhibitor VX-497 prolongs skin graft survival and improves graft versus host disease in mice. Drugs Exp Clin Res. 2001;27(3):89–95.

    CAS  PubMed  Google Scholar 

  225. Yoshimura R, Chargui J, Aitouche A, Veyron P, Touraine JL. Induction of hyperacute rejection of skin allografts by CD8+ lymphocytes. Transplantation. 2000;69(7):1452–7.

    CAS  PubMed  Google Scholar 

  226. Gardner CR. The pharmacology of immunosuppressant drugs in skin transplant rejection in mice and other rodents. Gen Pharmacol. 1995;26(2):245–71.

    CAS  PubMed  Google Scholar 

  227. Tepper MA, Linsley PS, Tritschler D, Esselstyn JM. Tolerance induction by soluble CTLA4 in a mouse skin transplant model. Transplant Proc. 1994;26(6):3151–4.

    CAS  PubMed  Google Scholar 

  228. Sho M, Sandner SE, Najafian N, Salama AD, Dong V, Yamada A, et al. New insights into the interactions between T-cell costimulatory blockade and conventional immunosuppressive drugs. Ann Surg. 2002;236(5):667–75.

    PubMed Central  PubMed  Google Scholar 

  229. Rolls HK, Kishimoto K, Dong VM, Illigens BM, Sho M, Sayegh MH, et al. T-cell response to cardiac myosin persists in the absence of an alloimmune response in recipients with chronic cardiac allograft rejection. Transplantation. 2002;74(7):1053–7.

    CAS  PubMed  Google Scholar 

  230. Zhai Y, Meng L, Gao F, Busuttil RW, Kupiec-Weglinski JW. Allograft rejection by primed/memory CD8+ T cells is CD154 blockade resistant: therapeutic implications for sensitized transplant recipients. J Immunol. 2002;169(8):4667–73.

    CAS  PubMed  Google Scholar 

  231. Fedoseyeva EV, Kishimoto K, Rolls HK, Illigens BM, Dong VM, Valujskikh A, et al. Modulation of tissue-specific immune response to cardiac myosin can prolong survival of allogeneic heart transplants. J Immunol. 2002;169(3):1168–74.

    CAS  PubMed  Google Scholar 

  232. Coates PT, Krishnan R, Kireta S, Johnston J, Russ GR. Human myeloid dendritic cells transduced with an adenoviral interleukin-10 gene construct inhibit human skin graft rejection in humanized NOD-scid chimeric mice. Gene Ther. 2001;8(16):1224–33.

    CAS  PubMed  Google Scholar 

  233. Fahy O, Porte H, Senechal S, Vorng H, McEuen AR, Buckley MG, et al. Chemokine-induced cutaneous inflammatory cell infiltration in a model of Hu-PBMC-SCID mice grafted with human skin. Am J Pathol. 2001;158(3):1053–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  234. Moulton KS, Melder RJ, Dharnidharka VR, Hardin-Young J, Jain RK, Briscoe DM. Angiogenesis in the huPBL-SCID model of human transplant rejection. Transplantation. 1999;67(12):1626–31.

    CAS  PubMed  Google Scholar 

  235. Briscoe DM, Dharnidharka VR, Isaacs C, Downing G, Prosky S, Shaw P, et al. The allogeneic response to cultured human skin equivalent in the hu-PBL-SCID mouse model of skin rejection. Transplantation. 1999;67(12):1590–9.

    CAS  PubMed  Google Scholar 

  236. Hammerman MR. Xenotransplantation of renal primordia. Curr Opin Nephrol Hypertens. 2002;11(1):11–6.

    PubMed  Google Scholar 

  237. Palmer DB, Lechler R. Can the thymus be a useful tool to induce specific tolerance to xenoantigens? Transplantation. 1999;68(11):1628–30.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan Kreidberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kreidberg, J. (2014). Translational Research Methods: The Value of Animal Models in Renal Research. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics