Skip to main content

Dry Skin in Diabetes Mellitus and in Experimental Models of Diabetes

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

Patients with diabetes often have dry scaly skin (Huntley AC, Dermatol Clin 7:531–46, 1989; Yosipovitch G, et al., Diabetes Care 21:506–9, 1998; Pavicic T, Korting HC, J Dtsch Dermatol Ges 4:935–41, 2006). Moreover, diabetes mellitus induces various forms of dermopathy such as bullosis diabeticorum, necrobiosis lipoidica diabeticorum, scleredema diabeticorum, and acanthosis nigricans (Jelinek J, Diabet Med 10:201–13, 1993). Nonhealing ulcers occur in approximately 15 % of patients with diabetes, and therefore, it is imperative to prevent ulcer formation and improve wound healing in these patients (Reiber GE, Diabet Med 13: S6-11, 1996; Margolis DJ, et al., Diabetes Care 25:1835–9, 2002). In general, diabetic atrophy is thought to result from complications such as vasculopathy and neuropathy. Insulin resistance and hyperglycemia contribute to the impaired physiologic function observed in various tissues of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Huntley AC. Cutaneous manifestations of diabetes mellitus. Dermatol Clin. 1989;7:531–46.

    PubMed  CAS  Google Scholar 

  2. Yosipovitch G, Hodak E, Vardi P, et al. The prevalence of cutaneous manifestations in IDDM patients and their association with diabetes risk factors and microvascular complications. Diabetes Care. 1998;21:506–9.

    Article  PubMed  CAS  Google Scholar 

  3. Pavicic T, Korting HC. Xerosis and callus formation as a key to the diabetic foot syndrome: dermatologic view of the problem and its management. J Dtsch Dermatol Ges. 2006;4:935–41.

    Article  PubMed  Google Scholar 

  4. Jelinek J. The skin in diabetes. Diabet Med. 1993;10:201–13.

    Article  PubMed  CAS  Google Scholar 

  5. Reiber GE. The epidemiology of diabetic foot problems. Diabet Med. 1996;13:S6–11.

    PubMed  Google Scholar 

  6. Margolis DJ, Allen-Taylor L, Hoffstad O, et al. Diabetic neuropathic foot ulcers: the association of wound size, wound duration, and wound grade on healing. Diabetes Care. 2002;25:1835–9.

    Article  PubMed  Google Scholar 

  7. Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes. 1998;47:859–66.

    Article  PubMed  CAS  Google Scholar 

  8. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–90.

    Article  PubMed  CAS  Google Scholar 

  9. Kennedy L, Baynes JW. Non-enzymatic glycosylation and the chronic complications of diabetes: an overview. Diabetologia. 1984;26:93–8.

    Article  PubMed  CAS  Google Scholar 

  10. Sternberg M, Cohen Forterre L, Peyroux J. Connective tissue in diabetes mellitus: biochemical alterations of the intercellular matrix with special reference to proteoglycans, collagens and basement membranes. Diabetes Metab. 1985;11:27–50.

    CAS  Google Scholar 

  11. Schnider SL, Kohn RR. Effects of age and diabetes mellitus on the solubility and nonenzymatic glycosylation of human skin collagen. J Clin Invest. 1981;67:1630–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Aoki Y, Yazaki K, Shirotori K, et al. Stiffening of connective tissue in elderly patients with diabetes: relevance to diabetic nephropathy and oxidative stress. Diabetologia. 1993;36:79–83.

    Article  PubMed  CAS  Google Scholar 

  13. Hashmi F, Malone-Lee J, Hounsell E. Plantar skin in type II diabetes: an investigation of protein glycation and biomechanical properties of plantar epidermis. Eur J Dermatol. 2006;16:23–32.

    PubMed  CAS  Google Scholar 

  14. Franzen LE, Roberg K. Impaired connective tissue repair in streptozotocin-induced diabetes shows ultrastructural signs of impaired contraction. J Surg Res. 1995;58:407–14.

    Article  PubMed  CAS  Google Scholar 

  15. Bitar MS. Glucocorticoid dynamics and impaired wound healing in diabetes mellitus. Am J Pathol. 1998;152:547–54.

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Lateef H, Stevens MJ, Varani J. All-trans-retinoic acid suppresses matrix metalloproteinase activity and increases collagen synthesis in diabetic human skin in organ culture. Am J Pathol. 2004;165:167–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Rodgers KE, Ellefson DD, Espinoza T, et al. Expression of intracellular filament, collagen, and collagenase genes in diabetic and normal skin after injury. Wound Repair Regen. 2006;14:298–305.

    Article  PubMed  Google Scholar 

  18. Johnson BD, Page RC, Narayanan AS, et al. Effects of donor age on protein and collagen synthesis in vitro by human diploid fibroblasts. Lab Invest. 1986;55:490–6.

    PubMed  CAS  Google Scholar 

  19. Burke EM, Horton WE, Pearson JD, et al. Altered transcriptional regulation of human interstitial collagenase in cultured skin fibroblasts from older donors. Exp Gerontol. 1994;29:37–53.

    Article  PubMed  CAS  Google Scholar 

  20. Tsao M, Walthall B, Ham R. Clonal growth of normal human epidermal keratinocytes in a defined medium. J Cell Physiol. 1982;110:219–29.

    Article  PubMed  CAS  Google Scholar 

  21. Benoliel AM, Kahn-Perles B, Imbert J, et al. Insulin stimulates haptotactic migration of human epidermal keratinocytes through activation of NF-kappa B transcription factor. J Cell Sci. 1997;110:2089–97.

    PubMed  CAS  Google Scholar 

  22. Ando Y, Jensen PJ. Epidermal growth factor and insulin-like growth factor I enhance keratinocyte migration. J Invest Dermatol. 1993;100:633–9.

    Article  PubMed  CAS  Google Scholar 

  23. Wertheimer E, Trebicz M, Eldar T, et al. Differential roles of insulin receptor and insulin-like growth factor-1 receptor in differentiation of murine skin keratinocytes. J Invest Dermatol. 2000;115:24–9.

    Article  PubMed  CAS  Google Scholar 

  24. Yajima Y, Sueki H, Fujisawa R. Increased corneocyte surface area in the diabetic skin. Nippon Hifuka Gakkai Zasshi. 1991;101:129–34.

    PubMed  CAS  Google Scholar 

  25. Sakai S, Endo Y, Ozawa N, et al. Characteristics of the epidermis and stratum corneum of hairless mice with experimentally induced diabetes mellitus. J Invest Dermatol. 2003;120:79–85.

    Article  PubMed  CAS  Google Scholar 

  26. Wilson GL, Leiter EH. Streptozotocin interactions with pancreatic beta cells and the induction of insulin-dependent diabetes. Curr Top Microbiol Immunol. 1990;156:27–54.

    PubMed  CAS  Google Scholar 

  27. Tomlinson KC, Gardiner SM, Hebden RA, et al. Functional consequences of streptozotocin-induced diabetes mellitus, with particular reference to the cardiovascular system. Pharmacol Rev. 1992;44:103–50.

    PubMed  CAS  Google Scholar 

  28. Cheta D. Animal models of type I (insulin-dependent) diabetes mellitus. J Pediatr Endocrinol Metab. 1998;11:11–9.

    Article  PubMed  CAS  Google Scholar 

  29. Sakai S, Kikuchi K, Satoh J, et al. Functional properties of the stratum corneum in patients with diabetes mellitus: similarities to senile xerosis. Br J Dermatol. 2005;153:319–23.

    Article  PubMed  CAS  Google Scholar 

  30. Horii I, Nakayama Y, Obata M, et al. Stratum corneum hydration and amino acid content in xerotic skin. Br J Dermatol. 1989;121:587–92.

    Article  PubMed  CAS  Google Scholar 

  31. Imokawa G, Kuno H, Kawai M. Stratum corneum lipids serve as a bound-water modulator. J Invest Dermatol. 1991;96:845–51.

    Article  PubMed  CAS  Google Scholar 

  32. O’goshi K, Iguchi M, Tagami H. Functional analysis of the stratum corneum of scalp skin: studies in patients with alopecia areata and androgenic alopecia. Arch Dermatol Res. 2000;292:605–11.

    Article  PubMed  Google Scholar 

  33. Denda M, Hori J, Koyama J, et al. Stratum corneum sphingolipids and free amino acids in experimentally-induced scaly skin. Arch Dermatol Res. 1992;284:363–7.

    Article  PubMed  CAS  Google Scholar 

  34. Tanaka M, Okada M, Zhen YX, et al. Decreased hydration state of the stratum corneum and reduced amino acid content of the skin surface in patients with seasonal allergic rhinitis. Br J Dermatol. 1998;139:618–21.

    Article  PubMed  CAS  Google Scholar 

  35. Imokawa G, Abe A, Jin K, et al. Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J Invest Dermatol. 1991;96:523–6.

    Article  PubMed  CAS  Google Scholar 

  36. Akimoto K, Yoshikawa N, Higaki Y, et al. Quantitative analysis of stratum corneum lipids in xerosis and asteatotic eczema. J Dermatol. 1993;20:1–6.

    Article  PubMed  CAS  Google Scholar 

  37. Yoshikawa N, Imokawa G, Akimoto K, et al. Regional analysis of ceramides within the stratum corneum in relation to seasonal changes. Dermatology. 1994;188:207–14.

    Article  PubMed  CAS  Google Scholar 

  38. Hara M, Kikuchi K, Watanabe M, et al. Senile xerosis: functional, morphological, and biochemical studies. J Geriatr Dermatol. 1993;1:111–20.

    Google Scholar 

  39. Saint-Leger D, Francois AM, Leveque JL, et al. Stratum corneum lipids in skin xerosis. Dermatologica. 1989;178:151–5.

    Article  PubMed  CAS  Google Scholar 

  40. Paulauskis JD, Sul HS. Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3-L1 cells. J Biol Chem. 1988;263:7049–54.

    PubMed  CAS  Google Scholar 

  41. Jensen MD, Caruso M, Heiling V, et al. Insulin regulation of lipolysis in nondiabetic and IDDM subjects. Diabetes. 1989;38:1595–601.

    Article  PubMed  CAS  Google Scholar 

  42. Sztalryd C, Kraemer FB. Regulation of hormone-sensitive lipase in streptozotocin-induced diabetic rats. Metabolism. 1995;44:1391–6.

    Article  PubMed  CAS  Google Scholar 

  43. Fluhr JW, Mao-Qiang M, Brown BE, et al. Glycerol regulates stratum corneum hydration in sebaceous gland deficient (asebia) mice. J Invest Dermatol. 2003;120:728–37.

    Article  PubMed  CAS  Google Scholar 

  44. Navarro X, Kennedy WR, Fries TJ. Small nerve fiber dysfunction in diabetic neuropathy. Muscle Nerve. 1989;12:498–507.

    Article  PubMed  CAS  Google Scholar 

  45. McLellan K, Petrofsky JS, Bains G, et al. The effects of skin moisture and subcutaneous fat thickness on the ability of the skin to dissipate heat in young and old subjects, with and without diabetes, at three environmental room temperatures. Med Eng Phys. 2008;20:20.

    Google Scholar 

  46. Nakagawa N, Sakai S, Matsumoto M, et al. Relationship between NMF (lactate and potassium) content and the physical properties of the stratum corneum in healthy subjects. J Invest Dermatol. 2004;122:755–63.

    Article  PubMed  CAS  Google Scholar 

  47. Sugiyama Y, Ota Y, Hara M, et al. Osmotic stress up-regulates aquaporin-3 gene expression in cultured human keratinocytes. Biochim Biophys Acta. 2001;1522:82–8.

    Article  PubMed  CAS  Google Scholar 

  48. Ma T, Hara M, Sougrat R, et al. Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J Biol Chem. 2002;277:17147–53.

    Article  PubMed  CAS  Google Scholar 

  49. Hara-Chikuma M, Verkman AS. Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin-3 gene disruption. Mol Cell Biol. 2008;28:326–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Corcuff P, Leveque JL. Size and shape of corneocytes at various body site: influence of age. In: Leveque J-L, Agache PG, editors. Aging skin. New York: Marcel Dekker; 1993. p. 199–216.

    Google Scholar 

  51. Watanabe M, Tagami H, Horii I, et al. Functional analyses of the superficial stratum corneum in atopic xerosis. Arch Dermatol. 1991;127:1689–92.

    Article  PubMed  CAS  Google Scholar 

  52. Candi E, Melino G, Mei G, et al. Biochemical, structural, and transglutaminase substrate properties of human loricrin, the major epidermal cornified cell envelope protein. J Biol Chem. 1995;270:26382–90.

    Article  PubMed  CAS  Google Scholar 

  53. Wertheimer E, Spravchikov N, Trebicz M, et al. The regulation of skin proliferation and differentiation in the IR null mouse: implications for skin complications of diabetes. Endocrinology. 2001;142:1234–41.

    PubMed  CAS  Google Scholar 

  54. Sadagurski M, Nofech-Mozes S, Weingarten G, et al. Insulin receptor substrate 1 (IRS-1) plays a unique role in normal epidermal physiology. J Cell Physiol. 2007;213:519–27.

    Article  PubMed  CAS  Google Scholar 

  55. Anand P, Terenghi G, Warner G, et al. The role of endogenous nerve growth factor in human diabetic neuropathy. Nat Med. 1996;2:703–7.

    Article  PubMed  CAS  Google Scholar 

  56. Terenghi G, Mann D, Kopelman PG, et al. trkA and trkC expression is increased in human diabetic skin. Neurosci Lett. 1997;228:33–6.

    Article  PubMed  CAS  Google Scholar 

  57. Sato J, Denda M, Nakanishi J, et al. Dry condition affects desquamation of stratum corneum in vivo. J Dermatol Sci. 1998;18:163–9.

    Article  PubMed  CAS  Google Scholar 

  58. Sakai S, Sasai S, Endo Y, et al. Characterization of the physical properties of the stratum corneum by a new tactile sensor. Skin Res Technol. 2000;6:128–34.

    Article  PubMed  Google Scholar 

  59. Sato J, Yanai M, Hirao T, et al. Water content and thickness of the stratum corneum contribute to skin surface morphology. Arch Dermatol Res. 2000;292:412–7.

    Article  PubMed  CAS  Google Scholar 

  60. Jo N, Watanabe M, Kiyokane K, et al. In vivo microradioautographic study of insulin binding in the skin of normal and NIDDM mice: with special reference to acanthosis nigricans. Cell Mol Biol (Noisy-le-Grand). 1997;43:157–64.

    CAS  Google Scholar 

  61. Toh YC. Effect of streptozotocin-induced diabetes on the activity of the sebaceous glands in rats. Endokrinologie. 1982;80:56–9.

    PubMed  CAS  Google Scholar 

  62. Pham HT, Exelbert L, Segal-Owens AC, et al. A prospective, randomized, controlled double-blind study of a moisturizer for xerosis of the feet in patients with diabetes. Ostomy Wound Manage. 2002;48:30–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Sakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Sakai, S., Tagami, H. (2015). Dry Skin in Diabetes Mellitus and in Experimental Models of Diabetes. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_63-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_63-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics